메뉴 건너뛰기




Volumn 91, Issue 433, 1996, Pages 109-122

The intrinsic bayes factor for model selection and prediction

Author keywords

Asymptotic Bayes factors; Hypothesis testing; Noninformative prior; Posterior probability; Training sample

Indexed keywords


EID: 0000298252     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.1996.10476668     Document Type: Article
Times cited : (710)

References (48)
  • 2
    • 85011125615 scopus 로고
    • A Bayesian Test for a Two-Way Contingency Table Using Independence Priors
    • Albert, J. H. (1990), “A Bayesian Test for a Two-Way Contingency Table Using Independence Priors,” Canadian Journal of Statistics, 14, 1583-1590.
    • (1990) Canadian Journal of Statistics , vol.14 , pp. 1583-1590
    • Albert, J.H.1
  • 3
    • 85042555551 scopus 로고
    • Posterior Probabilities for Choosing a Regression Model
    • Atkinson, A. C. (1978), “Posterior Probabilities for Choosing a Regression Model,” Biometrika, 65, 39-48.
    • (1978) Biometrika , vol.65 , pp. 39-48
    • Atkinson, A.C.1
  • 4
    • 0001141391 scopus 로고
    • On the Development of the Reference Prior Method
    • J. M. Bernardo et al., London: Oxford University Press
    • Berger, J., and Bernardo, J. M. (1992), “On the Development of the Reference Prior Method,” in Bayesian Statistics IV, eds. J. M. Bernardo et al., London: Oxford University Press, pp. 35-60.
    • (1992) Bayesian Statistics IV , pp. 35-60
    • Berger, J.1    Bernardo, J.M.2
  • 5
    • 84972514254 scopus 로고
    • Testing Precise Hypotheses
    • Berger, J., and Delampady, M. (1987), “Testing Precise Hypotheses,” Statistical Science, 3, 317-352.
    • (1987) Statistical Science , vol.3 , pp. 317-352
    • Berger, J.1    Delampady, M.2
  • 8
    • 0001809736 scopus 로고
    • The Intrinsic Bayes Factor for Linear Models
    • J. M. Bernardo et al., London: Oxford University Press
    • Berger, J., and Pericchi, L. (1995), “The Intrinsic Bayes Factor for Linear Models,” in Bayesian Statistics V, eds. J. M. Bernardo et al., London: Oxford University Press, pp. 23-42.
    • (1995) Bayesian Statistics V , pp. 23-42
    • Berger, J.1    Pericchi, L.2
  • 10
    • 84950900304 scopus 로고
    • Testing a Point Null Hypothesis: The Irreconcilability of P-Values and Evidence
    • Berger, J., and Sellke, T. (1987), “Testing a Point Null Hypothesis: The Irreconcilability of P-Values and Evidence,” Journal of the American Statistical Association, 82, 112-122.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 112-122
    • Berger, J.1    Sellke, T.2
  • 12
    • 0041974049 scopus 로고
    • to appear in Journal of the American Statistical Association
    • Chib, S. (1995), “Marginal Likelihood From the Gibbs Output,” to appear in Journal of the American Statistical Association.
    • (1995) Marginal Likelihood from the Gibbs Output
    • Chib, S.1
  • 13
    • 0005371653 scopus 로고
    • Lower Bounds on Bayes Factors for Multinomial Distribution, With Application to Chi-Squared Tests of Fit
    • Delampady, M., and Berger, J. O. (1990), “Lower Bounds on Bayes Factors for Multinomial Distribution, With Application to Chi-Squared Tests of Fit,” The Annals of Statistics, 18, 1295-1316.
    • (1990) The Annals of Statistics , vol.18 , pp. 1295-1316
    • Delampady, M.1    Berger, J.O.2
  • 15
    • 0043251222 scopus 로고
    • Discussion of “The Intrinsic Bayes Factor for Linear Models,”
    • by J. Berger and L. Pericchi, eds. J. M. Bernardo et al., London: Oxford University Press
    • Dey, D. K. (1995), Discussion of “The Intrinsic Bayes Factor for Linear Models,” by J. Berger and L. Pericchi, in Bayesian Statistics V, eds. J. M. Bernardo et al., London: Oxford University Press, pp. 43-45.
    • (1995) Bayesian Statistics V , pp. 43-45
    • Dey, D.K.1
  • 18
    • 26444433586 scopus 로고
    • Bayesian Statistical Inference for Psychological Research
    • Edwards, W., Lindman, H., and Savage, L. J. (1963), “Bayesian Statistical Inference for Psychological Research,” Psychological Review, 70, 193-242.
    • (1963) Psychological Review , vol.70 , pp. 193-242
    • Edwards, W.1    Lindman, H.2    Savage, L.J.3
  • 24
    • 0003247384 scopus 로고
    • Weight of Evidence: A Brief Survey
    • J. M. Bernardo et al., New York: Elsevier
    • Good, I. J. (1985), “Weight of Evidence: A Brief Survey,” in Bayesian Statistics 2, eds. J. M. Bernardo et al., New York: Elsevier, pp. 249-269.
    • (1985) Bayesian Statistics 2 , pp. 249-269
    • Good, I.J.1
  • 25
    • 0000554045 scopus 로고
    • On the Choice of a Model to Fit Data From an Exponential Family
    • Haughton, D. (1988), “On the Choice of a Model to Fit Data From an Exponential Family,” The Annals of Statistics, 16, 342-355.
    • (1988) The Annals of Statistics , vol.16 , pp. 342-355
    • Haughton, D.1
  • 27
    • 0002541945 scopus 로고
    • Ockham's razor and Bayesian analysis
    • Jefferys, W., and Berger, J. (1992), “Ockham's razor and Bayesian analysis,” American Scientist, 80, 64-72.
    • (1992) American Scientist , vol.80 , pp. 64-72
    • Jefferys, W.1    Berger, J.2
  • 30
    • 27944462549 scopus 로고
    • A Reference Bayesian Test for Nested Hypotheses and Its Relationship to the Schwarz Criterion
    • Kass, R. E., and Wasserman, L. (1995), “A Reference Bayesian Test for Nested Hypotheses and Its Relationship to the Schwarz Criterion,” Jour-nal of the American Statistical Association, 90, 928-934.
    • (1995) Jour-Nal of the American Statistical Association , vol.90 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 32
    • 84950945692 scopus 로고
    • Model Selection and Accounting for Model Uncertainty In Graphical Models Using Occam's Window
    • Madigan, D., and Raftery, A. E. (1994), “Model Selection and Accounting for Model Uncertainty In Graphical Models Using Occam's Window,” Journal of the American Statistical Association, 89, 1535-1546.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.E.2
  • 33
    • 0000868003 scopus 로고
    • Bayes Factors for Nonlinear Hypotheses and Likelihood Distributions
    • McCulloch, R. E., and Rossi, P. E. (1993), “Bayes Factors for Nonlinear Hypotheses and Likelihood Distributions,” Biometrika, 79, 663-676.
    • (1993) Biometrika , vol.79 , pp. 663-676
    • McCulloch, R.E.1    Rossi, P.E.2
  • 37
    • 0042413116 scopus 로고
    • Bayesian Hypothesis Testing in Linear Models With Continuously Induced Conjugate Priors Across Hypotheses
    • J. M. Bernardo et al., New York: Elsevier
    • Poirier, D. J. (1985), “Bayesian Hypothesis Testing in Linear Models With Continuously Induced Conjugate Priors Across Hypotheses,” in Bayesian Statistics 2, eds. J. M. Bernardo et al., New York: Elsevier, pp. 711-722.
    • (1985) Bayesian Statistics 2 , pp. 711-722
    • Poirier, D.J.1
  • 38
    • 84946632766 scopus 로고
    • Theoretical Explanation of Observed Decreasing Failure Rate
    • Proschan, F. (1963), 'Theoretical Explanation of Observed Decreasing Failure Rate,” Technometrics, 5, 375-383.
    • (1963) Technometrics , vol.5 , pp. 375-383
    • Proschan, F.1
  • 42
    • 85011194189 scopus 로고
    • Estimating the Dimension of a Model
    • Schwarz, G. (1978), “Estimating the Dimension of a Model,” The Annals of Statistics, 6, 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 44
    • 0042750126 scopus 로고
    • An Omnibus Test for Normality for Small Samples
    • Spiegelhalter, D. J. (1980), “An Omnibus Test for Normality for Small Samples,” Biometrika, 67, 493-496.
    • (1980) Biometrika , vol.67 , pp. 493-496
    • Spiegelhalter, D.J.1
  • 46
    • 0041115938 scopus 로고
    • Hierarchical Bayesian Analysis Using Monte Carlo Integration: Computing Posterior Distributions When There are Many Possible Models
    • Stewart, L. (1987), “Hierarchical Bayesian Analysis Using Monte Carlo Integration: Computing Posterior Distributions When There are Many Possible Models,” The Statistician, 36, 211-219.
    • (1987) The Statistician , vol.36 , pp. 211-219
    • Stewart, L.1
  • 47
    • 0345838586 scopus 로고
    • Bayes Factors, Nuisance Parameters, and Imprecise Tests
    • J. M. Bernardo et al., London: Oxford University Press
    • Verdinelli, I., and Wasserman, L. (1995), “Bayes Factors, Nuisance Parameters, and Imprecise Tests,” in Bayesian Statistics V, eds. J. M. Bernardo et al., London: Oxford University Press.
    • (1995) Bayesian Statistics V
    • Verdinelli, I.1    Wasserman, L.2
  • 48
    • 0039026915 scopus 로고
    • Posterior Odds for Selected Regression Hypotheses
    • J. M. Bernardo et al., Valencia: Valencia University Press
    • Zellner, A., and Siow (1980), “Posterior Odds for Selected Regression Hypotheses,” in Bayesian Statistics 1, eds. J. M. Bernardo et al., Valencia: Valencia University Press, pp. 585-603.
    • (1980) Bayesian Statistics 1 , pp. 585-603
    • Zellner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.