메뉴 건너뛰기




Volumn 60, Issue 1, 2011, Pages 51-70

High dimensional structured additive regression models: Bayesian regularization, smoothing and predictive performance

Author keywords

Bayesian lasso; Laplace prior; Markov chain Monte Carlo methods; Markov random fields; Penalized splines; Ridge regression; Scale mixtures

Indexed keywords


EID: 79952590314     PISSN: 00359254     EISSN: 14679876     Source Type: Journal    
DOI: 10.1111/j.1467-9876.2010.00723.x     Document Type: Article
Times cited : (21)

References (32)
  • 1
    • 14544300510 scopus 로고    scopus 로고
    • Analysing child mortality in Nigeria with geoadditive survival models
    • Adebayo, S. and Fahrmeir, L. (2005) Analysing child mortality in Nigeria with geoadditive survival models. Statist. Med., 24, 709-728.
    • (2005) Statist. Med. , vol.24 , pp. 709-728
    • Adebayo, S.1    Fahrmeir, L.2
  • 2
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert, J. H. and Chib, S. (1993) Bayesian analysis of binary and polychotomous response data. J. Am. Statist. Ass., 88, 669-679.
    • (1993) J. Am. Statist. Ass. , vol.88 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 3
    • 12344304266 scopus 로고    scopus 로고
    • Gene selection using a two-level hierarchical Bayesian model
    • Bae, K. and Mallick, B. K. (2004) Gene selection using a two-level hierarchical Bayesian model. Bioinformatics, 20, 3423-3430.
    • (2004) Bioinformatics , vol.20 , pp. 3423-3430
    • Bae, K.1    Mallick, B.K.2
  • 5
    • 39449093646 scopus 로고    scopus 로고
    • Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
    • Binder, H. and Schumacher, M. (2008) Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models. BMC Bioinform., 9, 14.
    • (2008) BMC Bioinform. , vol.9 , pp. 14
    • Binder, H.1    Schumacher, M.2
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001) Random forests. Mach. Learn., 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 26444547624 scopus 로고    scopus 로고
    • Generalized additive regression based on Bayesian P-splines
    • Brezger, A. and Lang, S. (2006) Generalized additive regression based on Bayesian P-splines. Computnl Statist. Data Anal., 50, 967-991.
    • (2006) Computnl Statist. Data Anal. , vol.50 , pp. 967-991
    • Brezger, A.1    Lang, S.2
  • 8
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: regularization, prediction and model fitting
    • Bühlmann, P. and Hothorn, T. (2007) Boosting algorithms: regularization, prediction and model fitting. Statist. Sci., 22, 477-505.
    • (2007) Statist. Sci. , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 9
    • 34548285351 scopus 로고    scopus 로고
    • BART: Bayesian additive regression trees
    • Graduate School of Business, University of Chicago, Chicago.
    • Chipman, H. A., George, E. I. and McCulloch, R. E. (2008) BART: Bayesian additive regression trees. Technical Report. Graduate School of Business, University of Chicago, Chicago.
    • (2008) Technical Report
    • Chipman, H.A.1    George, E.I.2    McCulloch, R.E.3
  • 10
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing using B-splines and penalties (with comments and rejoinder)
    • Eilers, P. H. C. and Marx, B. D. (1996) Flexible smoothing using B-splines and penalties (with comments and rejoinder). Statist. Sci., 11, 89-121.
    • (1996) Statist. Sci. , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 11
    • 8644257675 scopus 로고    scopus 로고
    • Penalized structured additive regression: a Bayesian perspective
    • Fahrmeir, L., Kneib, T. and Lang, S. (2004) Penalized structured additive regression: a Bayesian perspective. Statist. Sin., 14, 731-761.
    • (2004) Statist. Sin. , vol.14 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 12
    • 0038182874 scopus 로고    scopus 로고
    • Bayesian semiparametric regression analysis of multicategorical time-space data
    • Fahrmeir, L. and Lang, S. (2001a) Bayesian semiparametric regression analysis of multicategorical time-space data. Ann. Inst. Statist. Math., 53, 10-30.
    • (2001) Ann. Inst. Statist. Math. , vol.53 , pp. 10-30
    • Fahrmeir, L.1    Lang, S.2
  • 13
    • 0035649015 scopus 로고    scopus 로고
    • Bayesian inference for generalized additive mixed models based on Markov random field priors
    • Fahrmeir, L. and Lang, S. (2001b) Bayesian inference for generalized additive mixed models based on Markov random field priors. Appl. Statist., 50, 201-220.
    • (2001) Appl. Statist. , vol.50 , pp. 201-220
    • Fahrmeir, L.1    Lang, S.2
  • 14
    • 34250335316 scopus 로고    scopus 로고
    • Geoadditive regression for analyzing small-scale geographical variability in car insurance
    • Fahrmeir, L., Sagerer, F. and Sussmann, G. (2007) Geoadditive regression for analyzing small-scale geographical variability in car insurance. Bl. Deutsch. Gesell. Versicherungsmath., 28, 47-65.
    • (2007) Bl. Deutsch. Gesell. Versicherungsmath. , vol.28 , pp. 47-65
    • Fahrmeir, L.1    Sagerer, F.2    Sussmann, G.3
  • 15
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Bayesn Anal., 1, 515-534.
    • (2006) Bayesn Anal. , vol.1 , pp. 515-534
    • Gelman, A.1
  • 16
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • Gneiting, T. and Raftery, A. E. (2007) Strictly proper scoring rules, prediction, and estimation. J. Am. Statist. Ass., 102, 359-378.
    • (2007) J. Am. Statist. Ass. , vol.102 , pp. 359-378
    • Gneiting, T.1    Raftery, A.E.2
  • 17
    • 79952581947 scopus 로고    scopus 로고
    • An efficient algorithm for L1-penalized estimation. Leiden University Medical Center, Leiden.
    • Goeman, J. J. (2007) An efficient algorithm for L1-penalized estimation. Leiden University Medical Center, Leiden.
    • (2007)
    • Goeman, J.J.1
  • 18
    • 67349234649 scopus 로고    scopus 로고
    • Alternative prior distributions for variable selection with very many more variables than observations
    • Department of Statistics, Warwick University, Coventry.
    • Griffin, J. E. and Brown, P. J. (2005) Alternative prior distributions for variable selection with very many more variables than observations. Technical Report. Department of Statistics, Warwick University, Coventry.
    • (2005) Technical Report
    • Griffin, J.E.1    Brown, P.J.2
  • 19
    • 48249133172 scopus 로고    scopus 로고
    • Bayesian adaptive lassos with non-convex penalization
    • Department of Statistics, Warwick University, Coventry.
    • Griffin, J. E. and Brown, P. J. (2007) Bayesian adaptive lassos with non-convex penalization. Technical Report. Department of Statistics, Warwick University, Coventry.
    • (2007) Technical Report
    • Griffin, J.E.1    Brown, P.J.2
  • 20
    • 0036013001 scopus 로고    scopus 로고
    • A probabilistic nearest neighbour method for statistical pattern recognition
    • Holmes, C. C. and Adams, N. M. (2002) A probabilistic nearest neighbour method for statistical pattern recognition. J. R. Statist. Soc. B, 64, 295-306.
    • (2002) J. R. Statist. Soc. B , vol.64 , pp. 295-306
    • Holmes, C.C.1    Adams, N.M.2
  • 22
    • 0042744696 scopus 로고    scopus 로고
    • Detecting differentially expressed genes in microarrays using Bayesian model selection
    • Ishwaran, H. and Rao, S. J. (2005) Detecting differentially expressed genes in microarrays using Bayesian model selection. J. Am. Statist. Ass., 100, 438-455.
    • (2005) J. Am. Statist. Ass. , vol.100 , pp. 438-455
    • Ishwaran, H.1    Rao, S.J.2
  • 23
    • 70349516088 scopus 로고    scopus 로고
    • Geo-additive models of childhood undernutrition in three Sub-Saharan African countries
    • Kandala, N.-B., Fahrmeir, L., Klasen, S. and Priebe, J. (2009) Geo-additive models of childhood undernutrition in three Sub-Saharan African countries. Popln Space Place, 15, 461-473.
    • (2009) Popln Space Place , vol.15 , pp. 461-473
    • Kandala, N.-B.1    Fahrmeir, L.2    Klasen, S.3    Priebe, J.4
  • 24
    • 79952590737 scopus 로고    scopus 로고
    • Bayesian regularization and smoothing for hazard regression
    • Department of Statistics, Ludwig Maximilians University, Munich.
    • Konrath, S., Kneib, T. and Fahrmeir, L. (2008) Bayesian regularization and smoothing for hazard regression. Technical Report 35. Department of Statistics, Ludwig Maximilians University, Munich.
    • (2008) Technical Report 35
    • Konrath, S.1    Kneib, T.2    Fahrmeir, L.3
  • 30
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 31
    • 35948952417 scopus 로고    scopus 로고
    • Joint detection of important biomarkers and optimal dose-response model using penalties
    • Vandenhende, F., Eilers, P. H. C., Ledent, E., Renard, D. and Tibaldi, F. (2007) Joint detection of important biomarkers and optimal dose-response model using penalties. Statist. Med., 26, 4876-4888.
    • (2007) Statist. Med. , vol.26 , pp. 4876-4888
    • Vandenhende, F.1    Eilers, P.H.C.2    Ledent, E.3    Renard, D.4    Tibaldi, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.