메뉴 건너뛰기




Volumn 20, Issue 2, 2003, Pages 802-815

Assessing brain activity through spatial Bayesian variable selection

Author keywords

Activation probabilities; Anatomical prior information; Bayesian spatial modeling; Edge preservation; fMRI experiments; Ising prior; Markov chain Monte Carlo sampling

Indexed keywords

ARTICLE; BAYES THEOREM; BRAIN CORTEX; DATA ANALYSIS; ELECTROENCEPHALOGRAM; GRAY MATTER; MODEL; NUCLEAR MAGNETIC RESONANCE IMAGING; PRIORITY JOURNAL; SIMULATION; TECHNIQUE;

EID: 0142011000     PISSN: 10538119     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1053-8119(03)00360-4     Document Type: Article
Times cited : (42)

References (23)
  • 1
    • 0032890017 scopus 로고    scopus 로고
    • Mixture model mapping of the brain activation in functional magnetic resonance images
    • Everitt B.S., Bullmore E.T. Mixture model mapping of the brain activation in functional magnetic resonance images. Hum. Brain Mapp. 7:1999;1-14.
    • (1999) Hum. Brain Mapp. , vol.7 , pp. 1-14
    • Everitt, B.S.1    Bullmore, E.T.2
  • 2
    • 0142035899 scopus 로고    scopus 로고
    • Spatial smoothing with robust priors in functional MRI
    • Schwaiger, M., Opitz, O., (Eds.), Springer-Verlag, Heidelberg
    • Fahrmeir, L., Gössl, C., Hennerfeind, A., 2002. Spatial smoothing with robust priors in functional MRI, in: Schwaiger, M., Opitz, O., (Eds.), Exploratory Data Analysis in Empirical Research, Springer-Verlag, Heidelberg, pp. 50-57.
    • (2002) Exploratory Data Analysis in Empirical Research , pp. 50-57
    • Fahrmeir, L.1    Gössl, C.2    Hennerfeind, A.3
  • 6
    • 0042042167 scopus 로고    scopus 로고
    • Efficient sampling from the posterior distribution in generalized linear models
    • Gamerman D. Efficient sampling from the posterior distribution in generalized linear models. Stat. Comput. 7:1997;57-68.
    • (1997) Stat. Comput. , vol.7 , pp. 57-68
    • Gamerman, D.1
  • 7
    • 2242458721 scopus 로고    scopus 로고
    • A Bayesian time-course model for functional magnetic resonance imaging data (with discussion)
    • Genovese C.R. A Bayesian time-course model for functional magnetic resonance imaging data (with discussion). J. Am. Stat. Assoc. 95:2000;691-719.
    • (2000) J. Am. Stat. Assoc. , vol.95 , pp. 691-719
    • Genovese, C.R.1
  • 8
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George E., McCulloch R. Approaches for Bayesian variable selection. Stat. Sinica. 7:1997;339-373.
    • (1997) Stat. Sinica , vol.7 , pp. 339-373
    • George, E.1    McCulloch, R.2
  • 10
    • 0035013277 scopus 로고    scopus 로고
    • Bayesian spatio-temporal inference in functional magnetic resonance Imaging
    • Gössl C., Auer D.P., Fahrmeir L. Bayesian spatio-temporal inference in functional magnetic resonance Imaging. Biometrics June. 57:2001;554-562.
    • (2001) Biometrics June , vol.57 , pp. 554-562
    • Gössl, C.1    Auer, D.P.2    Fahrmeir, L.3
  • 11
    • 0034973147 scopus 로고    scopus 로고
    • Bayesian modeling of the hemodynamic response function in BOLD fMRI
    • Gössl C., Fahrmeir L., Auer D.P. Bayesian modeling of the hemodynamic response function in BOLD fMRI. NeuroImage July. 14:(1 Part 1):2001;140-148.
    • (2001) NeuroImage July , vol.14 , Issue.1 PART 1 , pp. 140-148
    • Gössl, C.1    Fahrmeir, L.2    Auer, D.P.3
  • 12
    • 0036970574 scopus 로고    scopus 로고
    • Hidden Markov models and disease mapping
    • Green P.J., Richardson S. Hidden Markov models and disease mapping. J. Am. Stat. Assoc. 97:2002;1055-1070.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 1055-1070
    • Green, P.J.1    Richardson, S.2
  • 13
    • 0033647016 scopus 로고    scopus 로고
    • Spatial mixture modeling of fMRI data
    • Hartvig N.V., Jensen J.L. Spatial mixture modeling of fMRI data. Hum. Brain Mapp. 11:2000;233-248.
    • (2000) Hum. Brain Mapp. , vol.11 , pp. 233-248
    • Hartvig, N.V.1    Jensen, J.L.2
  • 14
    • 0032398552 scopus 로고    scopus 로고
    • Auxiliary variable methods for Markov chain Monte Carlo with applications
    • Higdon D. Auxiliary variable methods for Markov chain Monte Carlo with applications. J. Am. Stat. Assoc. 93:1998;585-595.
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 585-595
    • Higdon, D.1
  • 15
    • 0035722943 scopus 로고    scopus 로고
    • The effects of aging upon the hemodynamic response measured by functional MRI
    • Huettel S.A. The effects of aging upon the hemodynamic response measured by functional MRI. NeuroImage January. 13:2001;161-175.
    • (2001) NeuroImage January , vol.13 , pp. 161-175
    • Huettel, S.A.1
  • 16
    • 0036234511 scopus 로고    scopus 로고
    • Anatomically informed basis functions in multi-subject studies
    • Kiebel S., Friston K.J. Anatomically informed basis functions in multi-subject studies. Hum. Brain Mapp. 16:2002;36-46.
    • (2002) Hum. Brain Mapp. , vol.16 , pp. 36-46
    • Kiebel, S.1    Friston, K.J.2
  • 17
    • 0033917623 scopus 로고    scopus 로고
    • Anatomically informed basis functions
    • Kiebel S., Goebel R., Friston K.J. Anatomically informed basis functions. NeuroImage. 11:2000;656-667.
    • (2000) NeuroImage , vol.11 , pp. 656-667
    • Kiebel, S.1    Goebel, R.2    Friston, K.J.3
  • 18
    • 0010081155 scopus 로고    scopus 로고
    • Nonparametric regression using linear combinations of basis functions
    • Kohn R., Smith M., Chan D. Nonparametric regression using linear combinations of basis functions. Stat. Comput. 11:2001;313-322.
    • (2001) Stat. Comput. , vol.11 , pp. 313-322
    • Kohn, R.1    Smith, M.2    Chan, D.3
  • 19
    • 0000783674 scopus 로고    scopus 로고
    • Hypothesis testing and model selection
    • W. Gilks, S. Richardson, & D. Spiegelhalter. London: Chapman and Hall
    • Raftery A. Hypothesis testing and model selection. Gilks W., Richardson S., Spiegelhalter D. Markov Chain Monte Carlo in Practice. 1996;165-187 Chapman and Hall, London.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 165-187
    • Raftery, A.1
  • 20
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression via Bayesian variable selection
    • Smith M., Kohn R. Nonparametric regression via Bayesian variable selection. J. Econometr. 75:1996;317-344.
    • (1996) J. Econometr. , vol.75 , pp. 317-344
    • Smith, M.1    Kohn, R.2
  • 21
    • 0001604033 scopus 로고    scopus 로고
    • Additive nonparametric regression with autocorrelated errors
    • Smith M., Wong C., Kohn R. Additive nonparametric regression with autocorrelated errors. J. R. Stat. Soc. Ser. B. 60:1998;311-331.
    • (1998) J. R. Stat. Soc. Ser. B , vol.60 , pp. 311-331
    • Smith, M.1    Wong, C.2    Kohn, R.3
  • 22
    • 33747349191 scopus 로고
    • Non-universal critical dynamics in Monte Carlo simulations
    • Swendsen R., Wang J. Non-universal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58:1987;86-88.
    • (1987) Phys. Rev. Lett. , vol.58 , pp. 86-88
    • Swendsen, R.1    Wang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.