-
1
-
-
0003501215
-
A review of Gaussian random fields and correlation functions
-
Norwegian Computing Center, Oslo
-
P. Abrahamsen. A review of Gaussian random fields and correlation functions. Technical Report 917, Norwegian Computing Center, Oslo, 1997.
-
(1997)
Technical Report
, vol.917
-
-
Abrahamsen, P.1
-
3
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
5
-
-
0038891993
-
Sparse online Gaussian processes
-
L. Csató and M. Opper. Sparse online Gaussian processes. Neural Computation, 14(2):641-669, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.2
, pp. 641-669
-
-
Csató, L.1
Opper, M.2
-
6
-
-
4243137056
-
Hybrid Monte Carlo
-
S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics Letters B, 195(2):216-222, 1987.
-
(1987)
Physics Letters B
, vol.195
, Issue.2
, pp. 216-222
-
-
Duane, S.1
Kennedy, A.D.2
Pendleton, B.J.3
Roweth, D.4
-
7
-
-
0000736067
-
Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
-
A. Gelman and X.-L. Meng. Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13(2): 163-185, 1998.
-
(1998)
Statistical Science
, vol.13
, Issue.2
, pp. 163-185
-
-
Gelman, A.1
Meng, X.-L.2
-
9
-
-
0004236492
-
-
John Hopkins University Press, Baltimore, second edition
-
G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press, Baltimore, second edition, 1989.
-
(1989)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.F.2
-
12
-
-
80053225881
-
Fast sparse Gaussian process methods: The informative vector machine
-
S. Becker, S. Thrun, and K. Obermayer, editors, Cambridge, MA. The MIT Press
-
N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 609-616, Cambridge, MA, 2003. The MIT Press.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 609-616
-
-
Lawrence, N.1
Seeger, M.2
Herbrich, R.3
-
14
-
-
0000597408
-
Comparison of approximate methods for handling hyperparameters
-
D. J. C. MacKay. Comparison of approximate methods for handling hyperparameters. Neural Computation, 11(5):1035-1068, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.5
, pp. 1035-1068
-
-
MacKay, D.J.C.1
-
17
-
-
0004087397
-
Probabilistic inference using Markov chain Monte Carlo methods
-
Department of Computer Science, University of Toronto
-
R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.
-
(1993)
Technical Report
, vol.CRG-TR-93-1
-
-
Neal, R.M.1
-
18
-
-
0002628667
-
Regression and classification using Gaussian process priors
-
J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors. Oxford University Press
-
R. M. Neal. Regression and classification using Gaussian process priors. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 6, pages 475-501. Oxford University Press, 1998.
-
(1998)
Bayesian Statistics
, vol.6
, pp. 475-501
-
-
Neal, R.M.1
-
19
-
-
0000273048
-
Annealed importance sampling
-
R. M. Neal. Annealed importance sampling. Statistics and Computing, 11:125-139, 2001.
-
(2001)
Statistics and Computing
, vol.11
, pp. 125-139
-
-
Neal, R.M.1
-
21
-
-
0034320350
-
Gaussian processes for classification: Mean-field algorithms
-
M. Opper and O. Winther. Gaussian processes for classification: Mean-field algorithms. Neural Computation, 12(11):2655-2684, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.11
, pp. 2655-2684
-
-
Opper, M.1
Winther, O.2
-
22
-
-
0003243224
-
Probabilities for SV machines
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors. The MIT Press, Cambridge, MA
-
J. C. Platt. Probabilities for SV machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61-73. The MIT Press, Cambridge, MA, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 61-73
-
-
Platt, J.C.1
-
26
-
-
0041464774
-
PAC-Bayesian generalisation error bounds for Gaussian process classification
-
M. Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classification. Journal of Machine Learning Research, 3:233-269, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 233-269
-
-
Seeger, M.1
|