메뉴 건너뛰기




Volumn 6, Issue , 2005, Pages

Assessing approximate inference for binary gaussian process classification

Author keywords

Evidence; Expectation propagation; Gaussian process priors; Laplace's approximation; Marginal likelihood; MCMC; Probabilistic classification

Indexed keywords

APPROXIMATION THEORY; LAPLACE TRANSFORMS; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; PROBABILITY DISTRIBUTIONS;

EID: 25444528713     PISSN: 15337928     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (260)

References (29)
  • 1
    • 0003501215 scopus 로고    scopus 로고
    • A review of Gaussian random fields and correlation functions
    • Norwegian Computing Center, Oslo
    • P. Abrahamsen. A review of Gaussian random fields and correlation functions. Technical Report 917, Norwegian Computing Center, Oslo, 1997.
    • (1997) Technical Report , vol.917
    • Abrahamsen, P.1
  • 3
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 5
    • 0038891993 scopus 로고    scopus 로고
    • Sparse online Gaussian processes
    • L. Csató and M. Opper. Sparse online Gaussian processes. Neural Computation, 14(2):641-669, 2002.
    • (2002) Neural Computation , vol.14 , Issue.2 , pp. 641-669
    • Csató, L.1    Opper, M.2
  • 7
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • A. Gelman and X.-L. Meng. Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13(2): 163-185, 1998.
    • (1998) Statistical Science , vol.13 , Issue.2 , pp. 163-185
    • Gelman, A.1    Meng, X.-L.2
  • 9
    • 0004236492 scopus 로고
    • John Hopkins University Press, Baltimore, second edition
    • G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press, Baltimore, second edition, 1989.
    • (1989) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 12
    • 80053225881 scopus 로고    scopus 로고
    • Fast sparse Gaussian process methods: The informative vector machine
    • S. Becker, S. Thrun, and K. Obermayer, editors, Cambridge, MA. The MIT Press
    • N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 609-616, Cambridge, MA, 2003. The MIT Press.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 609-616
    • Lawrence, N.1    Seeger, M.2    Herbrich, R.3
  • 14
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • D. J. C. MacKay. Comparison of approximate methods for handling hyperparameters. Neural Computation, 11(5):1035-1068, 1999.
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 1035-1068
    • MacKay, D.J.C.1
  • 17
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • Department of Computer Science, University of Toronto
    • R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.
    • (1993) Technical Report , vol.CRG-TR-93-1
    • Neal, R.M.1
  • 18
    • 0002628667 scopus 로고    scopus 로고
    • Regression and classification using Gaussian process priors
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors. Oxford University Press
    • R. M. Neal. Regression and classification using Gaussian process priors. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 6, pages 475-501. Oxford University Press, 1998.
    • (1998) Bayesian Statistics , vol.6 , pp. 475-501
    • Neal, R.M.1
  • 19
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • R. M. Neal. Annealed importance sampling. Statistics and Computing, 11:125-139, 2001.
    • (2001) Statistics and Computing , vol.11 , pp. 125-139
    • Neal, R.M.1
  • 21
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: Mean-field algorithms
    • M. Opper and O. Winther. Gaussian processes for classification: Mean-field algorithms. Neural Computation, 12(11):2655-2684, 2000.
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2655-2684
    • Opper, M.1    Winther, O.2
  • 22
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for SV machines
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors. The MIT Press, Cambridge, MA
    • J. C. Platt. Probabilities for SV machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61-73. The MIT Press, Cambridge, MA, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 61-73
    • Platt, J.C.1
  • 26
    • 0041464774 scopus 로고    scopus 로고
    • PAC-Bayesian generalisation error bounds for Gaussian process classification
    • M. Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classification. Journal of Machine Learning Research, 3:233-269, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 233-269
    • Seeger, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.