메뉴 건너뛰기




Volumn , Issue , 2008, Pages 349-366

Random-effects models for joint analysis of repeated-measurement and time-to-event outcomes

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84862025942     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (10)

References (57)
  • 3
    • 0030084172 scopus 로고    scopus 로고
    • A unified approach for modelling longitudinal and failure time data, with application in medical monitoring
    • Berzuini, C. and Larizza, C. (1996). A unified approach for modelling longitudinal and failure time data, with application in medical monitoring. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 109–123.
    • (1996) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.18 , pp. 109-123
    • Berzuini, C.1    Larizza, C.2
  • 5
    • 33847417861 scopus 로고    scopus 로고
    • Dynamic analysis of recurrent event data with missing observations, with application to infant diarrhoea in Brazil
    • Borgan, Ø., Fiaccone, R. L., Henderson, R., and Barreto, M. L. (2007). Dynamic analysis of recurrent event data with missing observations, with application to infant diarrhoea in Brazil. Scandinavian Journal of Statistics 34, 53–69.
    • (2007) Scandinavian Journal of Statistics , vol.34 , pp. 53-69
    • Borgan, Ø.1    Fiaccone, R.L.2    Henderson, R.3    Barreto, M.L.4
  • 6
    • 0041833567 scopus 로고    scopus 로고
    • Bayesian approaches to joint cure-rate and longitudinal models with applications to cancer vaccine trials
    • Brown, E. R. and Ibrahim, J. G. (2003a). Bayesian approaches to joint cure-rate and longitudinal models with applications to cancer vaccine trials. Biometrics 59, 686–693.
    • (2003) Biometrics , vol.59 , pp. 686-693
    • Brown, E.R.1    Ibrahim, J.G.2
  • 7
    • 0037869564 scopus 로고    scopus 로고
    • A Bayesian semiparametric joint hierarchical model for longitudinal and survival data
    • Brown, E. R. and Ibrahim, J. G. (2003b). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 59, 221–228.
    • (2003) Biometrics , vol.59 , pp. 221-228
    • Brown, E.R.1    Ibrahim, J.G.2
  • 8
    • 33745288267 scopus 로고    scopus 로고
    • Joint models for multivariate longitudinal and multivariate survival data
    • Chi, Y. Y. and Ibrahim, J. G. (2006). Joint models for multivariate longitudinal and multivariate survival data. Biometrics 62, 432–445.
    • (2006) Biometrics , vol.62 , pp. 432-445
    • Chi, Y.Y.1    Ibrahim, J.G.2
  • 10
  • 11
    • 0024205607 scopus 로고
    • An approach to the analysis of repeated measurements
    • Diggle, P. J. (1988). An approach to the analysis of repeated measurements. Biometrics 44, 959–971.
    • (1988) Biometrics , vol.44 , pp. 959-971
    • Diggle, P.J.1
  • 12
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal data analysis (With discussion)
    • Diggle, P. J. and Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis (with discussion). Applied Statistics 43, 49–94.
    • (1994) Applied Statistics , vol.43 , pp. 49-94
    • Diggle, P.J.1    Kenward, M.G.2
  • 13
    • 0009099933 scopus 로고    scopus 로고
    • Dealing with missing values in longitudinal studies
    • B. S. Everitt and G. Dunn (eds.), London: Arnold
    • Diggle, P. J. (1998). Dealing with missing values in longitudinal studies. In B. S. Everitt and G. Dunn (eds.), Recent Advances in the Statistical Analysis of Medical Data, pp. 203–228. London: Arnold.
    • (1998) Recent Advances in the Statistical Analysis of Medical Data , pp. 203-228
    • Diggle, P.J.1
  • 15
    • 0036023398 scopus 로고    scopus 로고
    • Biostatistical approaches for modeling longitudinal and event time data
    • Do, K.-A. (2002). Biostatistical approaches for modeling longitudinal and event time data. Clinical Cancer Research 8, 2473–2474.
    • (2002) Clinical Cancer Research , vol.8 , pp. 2473-2474
    • Do, K.-A.1
  • 16
    • 0347363890 scopus 로고    scopus 로고
    • Diagnostics for joint longitudinal and dropout time modeling
    • Dobson, A. and Henderson, R. (2003). Diagnostics for joint longitudinal and dropout time modeling. Biometrics 59, 741–751.
    • (2003) Biometrics , vol.59 , pp. 741-751
    • Dobson, A.1    Henderson, R.2
  • 17
    • 3242768440 scopus 로고    scopus 로고
    • Analysis of longitudinal studies with death and drop-out: A case study
    • Dufoil, C., Brayne, D., and Clayton, D. (2004). Analysis of longitudinal studies with death and drop-out: a case study. Statistics in Medicine 23, 2215–2226.
    • (2004) Statistics in Medicine , vol.23 , pp. 2215-2226
    • Dufoil, C.1    Brayne, D.2    Clayton, D.3
  • 18
    • 0036618247 scopus 로고    scopus 로고
    • Joint modelling of event time and nonignorable missing longitudinal data
    • Dupuy, J. F. and Mesbah, M. (2002). Joint modelling of event time and nonignorable missing longitudinal data. Lifetime Data Analysis 8, 99–115.
    • (2002) Lifetime Data Analysis , vol.8 , pp. 99-115
    • Dupuy, J.F.1    Mesbah, M.2
  • 19
    • 84959806518 scopus 로고
    • True and spurious duration dependence: The identifiability of the proportional hazard model
    • Elbers, C. and Ridder, G. (1982). True and spurious duration dependence: The identifiability of the proportional hazard model. Review of Economic Studies 49, 403–409.
    • (1982) Review of Economic Studies , vol.49 , pp. 403-409
    • Elbers, C.1    Ridder, G.2
  • 21
    • 1342289473 scopus 로고    scopus 로고
    • Separate and joint modeling of longitudinal and event time data using standard computer packages
    • Guo, X. and Carlin, B. P. (2004). Separate and joint modeling of longitudinal and event time data using standard computer packages. American Statistician 58, 16–24.
    • (2004) American Statistician , vol.58 , pp. 16-24
    • Guo, X.1    Carlin, B.P.2
  • 22
    • 0141429907 scopus 로고    scopus 로고
    • Joint modelling of repeated measures and survival time data
    • Ha, I. D., Park, T. S., and Lee, Y. J. (2003). Joint modelling of repeated measures and survival time data. Biometrical Journal 45, 647–658.
    • (2003) Biometrical Journal , vol.45 , pp. 647-658
    • Ha, I.D.1    Park, T.S.2    Lee, Y.J.3
  • 23
    • 2942549785 scopus 로고    scopus 로고
    • A latent process model for joint modeling of events and marker
    • Hashemi, R., Jacqmin-Gadda, H., and Commenges, D. (2003). A latent process model for joint modeling of events and marker. Lifetime Data Analysis 9, 331–343.
    • (2003) Lifetime Data Analysis , vol.9 , pp. 331-343
    • Hashemi, R.1    Jacqmin-Gadda, H.2    Commenges, D.3
  • 24
    • 84959838413 scopus 로고
    • The identifiability of the proportional hazard model
    • Heckman, J. and Singer, B. (1984). The identifiability of the proportional hazard model. Review of Economic Studies 51, 231–243.
    • (1984) Review of Economic Studies , vol.51 , pp. 231-243
    • Heckman, J.1    Singer, B.2
  • 25
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of measurements and event time data
    • Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of measurements and event time data. Biostatistics 1, 465–480.
    • (2000) Biostatistics , vol.1 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 26
    • 0344097453 scopus 로고    scopus 로고
    • Identification and efficacy of longitudinal markers for survival
    • Henderson, R., Diggle, P., and Dobson, A. (2002). Identification and efficacy of longitudinal markers for survival. Biostatistics 3, 33–50.
    • (2002) Biostatistics , vol.3 , pp. 33-50
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 27
    • 0031022645 scopus 로고    scopus 로고
    • Model-based approaches to analysing incomplete longitudinal and failure time data
    • Hogan, J. W. and Laird, N. M. (1997). Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine 16, 259–272.
    • (1997) Statistics in Medicine , vol.16 , pp. 259-272
    • Hogan, J.W.1    Laird, N.M.2
  • 28
    • 3843075419 scopus 로고    scopus 로고
    • Tutorial in biostatistics — handling drop-out in longitudinal studies
    • Hogan, J. W., Roy, J., and Korkontzelou, C. (2004). Tutorial in biostatistics — handling drop-out in longitudinal studies. Statistics in Medicine 23, 1455–1497.
    • (2004) Statistics in Medicine , vol.23 , pp. 1455-1497
    • Hogan, J.W.1    Roy, J.2    Korkontzelou, C.3
  • 30
    • 33845482505 scopus 로고    scopus 로고
    • Joint modelling of survival and longitudinal data: Likelihood approach revisited
    • Hsieh, F., Tseng, Y. K., and Wang, J. L. (2006). Joint modelling of survival and longitudinal data: Likelihood approach revisited. Biometrics 62, 1037–1043.
    • (2006) Biometrics , vol.62 , pp. 1037-1043
    • Hsieh, F.1    Tseng, Y.K.2    Wang, J.L.3
  • 32
    • 3442883055 scopus 로고    scopus 로고
    • Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials
    • Ibrahim, J. G., Chen, M. H., and Sinha, D. (2004) Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials. Statistica Sinica 14, 863–883.
    • (2004) Statistica Sinica , vol.14 , pp. 863-883
    • Ibrahim, J.G.1    Chen, M.H.2    Sinha, D.3
  • 33
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963–974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 34
    • 0042485002 scopus 로고    scopus 로고
    • The joint modeling of a longitudinal disease progression marker and the failure time process in the presence of cure
    • Law, N. J., Taylor, J. M. G., and Sandler, H. (2002). The joint modeling of a longitudinal disease progression marker and the failure time process in the presence of cure. Biostatistics 3, 547–563.
    • (2002) Biostatistics , vol.3 , pp. 547-563
    • Law, N.J.1    Taylor, J.M.G.2    Sandler, H.3
  • 37
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112–1121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 39
    • 38249020269 scopus 로고
    • A simple approach to the identifiability of the proportional hazards model
    • Melino, A. and Sueyoshi, G. (1990). A simple approach to the identifiability of the proportional hazards model. Economics Letters 33, 63–68.
    • (1990) Economics Letters , vol.33 , pp. 63-68
    • Melino, A.1    Sueyoshi, G.2
  • 40
    • 10944224477 scopus 로고    scopus 로고
    • Joint modelling of longitudinal and survival data via a common frailty
    • Ratcliffe, S. J., Guo, W., and Ten Have, T. R. (2004). Joint modelling of longitudinal and survival data via a common frailty. Biometrics 60, 892–899.
    • (2004) Biometrics , vol.60 , pp. 892-899
    • Ratcliffe, S.J.1    Guo, W.2    Ten Have, T.R.3
  • 41
    • 0035971784 scopus 로고    scopus 로고
    • A methodology for analysing a repeated measures and survival outcome simultaneously
    • Rochon, J. and Gillespie, B. W. (2001). A methodology for analysing a repeated measures and survival outcome simultaneously. Statistics in Medicine, 20, 1173–1184.
    • (2001) Statistics in Medicine , vol.20 , pp. 1173-1184
    • Rochon, J.1    Gillespie, B.W.2
  • 42
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581–592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 44
    • 2342525727 scopus 로고    scopus 로고
    • An estimator for the proportional hazards model with multiple longitudinal covariates measured with error
    • Song, X. A., Davidian, M., and Tsiatis, A. A. (2002a). An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 3, 511–528.
    • (2002) Biostatistics , vol.3 , pp. 511-528
    • Song, X.A.1    Davidian, M.2    Tsiatis, A.A.3
  • 45
    • 0036966285 scopus 로고    scopus 로고
    • A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
    • Song, X. A., Davidian, M., and Tsiatis, A. A. (2002b). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58, 742–753.
    • (2002) Biometrics , vol.58 , pp. 742-753
    • Song, X.A.1    Davidian, M.2    Tsiatis, A.A.3
  • 48
    • 0035987865 scopus 로고    scopus 로고
    • Techniques for incorporating longitudinal measurements into analyses of survival data from clinical trials
    • Troxel, A. B. (2002). Techniques for incorporating longitudinal measurements into analyses of survival data from clinical trials. Statistical Methods in Medical Research 11, 237–245.
    • (2002) Statistical Methods in Medical Research , vol.11 , pp. 237-245
    • Troxel, A.B.1
  • 49
    • 8644246036 scopus 로고    scopus 로고
    • Joint modelling of longitudinal and time-to-event data: An overview
    • Tsiatis, A. A. and Davidian, M. (2004). Joint modelling of longitudinal and time-to-event data: an overview. Statistica Sinica 14, 809–834.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 50
    • 21844506206 scopus 로고
    • Modelling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS
    • Tsiatis, A. A., DeGruttola, V., and Wulfsohn, M. S. (1995). Modelling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association 90, 27–37.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 27-37
    • Tsiatis, A.A.1    Degruttola, V.2    Wulfsohn, M.S.3
  • 51
    • 31344445432 scopus 로고    scopus 로고
    • Shared parameter models for the joint analysis of longitudinal data and event times
    • Vonesh, E. F., Greene, T., and Schluchter, M. D. (2006). Shared parameter models for the joint analysis of longitudinal data and event times. Statistics in Medicine 25, 143–163.
    • (2006) Statistics in Medicine , vol.25 , pp. 143-163
    • Vonesh, E.F.1    Greene, T.2    Schluchter, M.D.3
  • 52
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modelling the censoring process
    • Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modelling the censoring process. Biometrics, 44, 175–88.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2
  • 53
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53, 330–339.
    • (1997) Biometrics , vol.53 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 54
    • 0035106144 scopus 로고    scopus 로고
    • The evaluation of multiple surrogate endpoints
    • Xu, J. and Zeger, S. L. (2001a). The evaluation of multiple surrogate endpoints. Biometrics 57, 81–87.
    • (2001) Biometrics , vol.57 , pp. 81-87
    • Xu, J.1    Zeger, S.L.2
  • 55
    • 0035650134 scopus 로고    scopus 로고
    • Joint analysis of longitudinal data comprising repeated measures and time to events
    • Xu, J. and Zeger, S. L. (2001b). Joint analysis of longitudinal data comprising repeated measures and time to events. Applied Statistics 50, 375–388.
    • (2001) Applied Statistics , vol.50 , pp. 375-388
    • Xu, J.1    Zeger, S.L.2
  • 56
    • 8644269772 scopus 로고    scopus 로고
    • Joint longitudinal-survival-cure models and their application to prostate cancer
    • Yu, M. G., Law, N. J, Taylor J. M. G., and Sandler, H. M. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica 14, 835–862.
    • (2004) Statistica Sinica , vol.14 , pp. 835-862
    • Yu, M.G.1    Law, N.J.2    Taylor, J.M.G.3    Sandler, H.M.4
  • 57
    • 34547837458 scopus 로고    scopus 로고
    • Maximum likelihood estimation in semiparametric regression models with censored data
    • Zeng, D. and Lin, D. Y. (2007). Maximum likelihood estimation in semiparametric regression models with censored data. Journal of the Royal Statistical Society, Series B, 69, 1–30.
    • (2007) Journal of the Royal Statistical Society, Series B , vol.69 , pp. 1-30
    • Zeng, D.1    Lin, D.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.