메뉴 건너뛰기




Volumn 14, Issue 1, 2004, Pages 41-67

Bayesian model assessment in factor analysis

Author keywords

Bayes factors; Bayesian inference; Bridge sampling; Expected posterior prior; Latent factor models; Model selection criteria; Model uncertainty; Reversible jump MCMC

Indexed keywords


EID: 1842539381     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (392)

References (40)
  • 1
    • 0034413190 scopus 로고    scopus 로고
    • Bayesian dynamic factor models and variance matrix discounting for portfolio allocation
    • Aguilar, O. and West, M. (2000). Bayesian dynamic factor models and variance matrix discounting for portfolio allocation. J. Bus. Econom. Statist. 18, 338-357.
    • (2000) J. Bus. Econom. Statist. , vol.18 , pp. 338-357
    • Aguilar, O.1    West, M.2
  • 2
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike, H. (1987). Factor analysis and AIC. Psychometrika 52, 317-332.
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 3
    • 0032329779 scopus 로고    scopus 로고
    • A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm
    • Arminger, G. and Muthén, B. O. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika 63, 271-300.
    • (1998) Psychometrika , vol.63 , pp. 271-300
    • Arminger, G.1    Muthén, B.O.2
  • 6
    • 0001143218 scopus 로고
    • A Candidate's formula: A curious result in Bayesian prediction
    • Besag, J. (1989). A Candidate's formula: a curious result in Bayesian prediction. Biometrika 76, 183-183.
    • (1989) Biometrika , vol.76 , pp. 183-183
    • Besag, J.1
  • 8
    • 1842600741 scopus 로고
    • An expert model selection approach to determine the "best" pattern structure in factor analysis models
    • Edited by H. Bozdogan and A. K. Gupta
    • Bozdogan, H. and Ramirez, D. E. (1987). An expert model selection approach to determine the "best" pattern structure in factor analysis models. In Multivariate Statistical Modelling and Data Aanalysis (Edited by H. Bozdogan and A. K. Gupta).
    • (1987) Multivariate Statistical Modelling and Data Aanalysis
    • Bozdogan, H.1    Ramirez, D.E.2
  • 9
    • 1842444014 scopus 로고    scopus 로고
    • Bayesian factor analysis model and choosing the number of factors using a new informational complexity criterion
    • Department of Statistics, University of Tennessee
    • Bozdogan, H. and Shigemasu, K. (1998). Bayesian factor analysis model and choosing the number of factors using a new informational complexity criterion. Technical Report. Department of Statistics, University of Tennessee.
    • (1998) Technical Report
    • Bozdogan, H.1    Shigemasu, K.2
  • 11
    • 0041974049 scopus 로고
    • Marginal likelihood from the Gibbs output
    • Chib, S. (1995). Marginal likelihood from the Gibbs output. J. Amer. Statist. Assoc. 90, 1313-1321.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1313-1321
    • Chib, S.1
  • 12
    • 0000043041 scopus 로고
    • Some matrix-variate distribution theory: Notational considerations and a Bayesian application
    • Dawid, A. P. (1981). Some matrix-variate distribution theory: notational considerations and a Bayesian application. Biometrika 68, 265-274.
    • (1981) Biometrika , vol.68 , pp. 265-274
    • Dawid, A.P.1
  • 13
    • 0041696122 scopus 로고    scopus 로고
    • On Bayesian model and variable selection using MCMC
    • Dellaportas, P., Forster, J. J. and Ntzoufras, I. (2002). On Bayesian model and variable selection using MCMC. Statist. Comput. 12, 27-36.
    • (2002) Statist. Comput. , vol.12 , pp. 27-36
    • Dellaportas, P.1    Forster, J.J.2    Ntzoufras, I.3
  • 14
    • 21744432053 scopus 로고    scopus 로고
    • Computing Bayes factors by combining simulation and asymptotic approximations
    • DiCiccio, T. J., Kass, R. A., Raftery, A. E. and Wasserman, L. (1997). Computing Bayes factors by combining simulation and asymptotic approximations. J. Amer. Statist. Assoc. 92, 903-915.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 903-915
    • Diciccio, T.J.1    Kass, R.A.2    Raftery, A.E.3    Wasserman, L.4
  • 15
    • 0000539315 scopus 로고
    • Bayesian model choice: Asymptotics and exact calculations
    • Gelfand, A. E. and Dey, D. (1994). Bayesian model choice: asymptotics and exact calculations. J. Roy. Statist. Soc. Ser. B 56, 501-514.
    • (1994) J. Roy. Statist. Soc. Ser. B , vol.56 , pp. 501-514
    • Gelfand, A.E.1    Dey, D.2
  • 16
    • 0003057177 scopus 로고
    • Interpreting the likelihood ratio statistic in factor models when sample size is small
    • Geweke, J. F. and Singleton, K. J. (1980). Interpreting the likelihood ratio statistic in factor models when sample size is small. J. Amer. Statist. Assoc. 75, 133-137.
    • (1980) J. Amer. Statist. Assoc. , vol.75 , pp. 133-137
    • Geweke, J.F.1    Singleton, K.J.2
  • 17
    • 0030539706 scopus 로고    scopus 로고
    • Measuring the pricing error of the arbitrage pricing theory
    • Geweke, J. F. and Zhou, G. (1996). Measuring the pricing error of the arbitrage pricing theory. Rev. Finan. Stud. 9, 557-587.
    • (1996) Rev. Finan. Stud. , vol.9 , pp. 557-587
    • Geweke, J.F.1    Zhou, G.2
  • 19
    • 0035591051 scopus 로고    scopus 로고
    • On the relationship between Markov Chain Monte Carlo methods for model uncertainty
    • Godsill, S. J. (2001). On the relationship between Markov Chain Monte Carlo methods for model uncertainty. J. Comput. Graph. Statist. 10, 230-241.
    • (2001) J. Comput. Graph. Statist. , vol.10 , pp. 230-241
    • Godsill, S.J.1
  • 20
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 21
    • 1842444010 scopus 로고
    • Identifiability of full, marginal, and conditional factor analysis model
    • Ihara, M. and Kano, Y. (1995). Identifiability of full, marginal, and conditional factor analysis model. Statist. Probab. Lett. 23, 343-350.
    • (1995) Statist. Probab. Lett. , vol.23 , pp. 343-350
    • Ihara, M.1    Kano, Y.2
  • 22
    • 0001766512 scopus 로고
    • Some contributions to maximum likelihood factor analysis
    • Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika 32, 443-482.
    • (1967) Psychometrika , vol.32 , pp. 443-482
    • Jöreskog, K.G.1
  • 25
    • 0002603162 scopus 로고
    • A Bayesian approach to confirmatory factor analysis
    • Lee, S. Y. (1981). A Bayesian approach to confirmatory factor analysis. Psychometrika 46, 153-160.
    • (1981) Psychometrika , vol.46 , pp. 153-160
    • Lee, S.Y.1
  • 26
    • 0031514994 scopus 로고    scopus 로고
    • Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator
    • Lewis, S. M. and Raftery, A. E. (1997). Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator. J. Amer. Statist. Assoc. 92, 648-655.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 648-655
    • Lewis, S.M.1    Raftery, A.E.2
  • 28
    • 0037367594 scopus 로고    scopus 로고
    • Bayesian meta-analysis for longitudinal data models using multivariate mixture priors
    • Lopes, H. F., Müller, P. and Rosner, G. L. (2003). Bayesian meta-analysis for longitudinal data models using multivariate mixture priors. Biometrics 59, 66-75.
    • (2003) Biometrics , vol.59 , pp. 66-75
    • Lopes, H.F.1    Müller, P.2    Rosner, G.L.3
  • 29
    • 0000237150 scopus 로고
    • Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases
    • Martin, J. L. and McDonald, R. P. (1981). Bayesian estimation in unrestricted factor analysis: a treatment for Heywood cases. Psychometrika 40, 505-517.
    • (1981) Psychometrika , vol.40 , pp. 505-517
    • Martin, J.L.1    McDonald, R.P.2
  • 30
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
    • Meng, X. L. and Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Statist. Sinica 6, 831-860.
    • (1996) Statist. Sinica , vol.6 , pp. 831-860
    • Meng, X.L.1    Wong, W.H.2
  • 31
    • 0003078723 scopus 로고
    • Approximate Bayesian inference with the weighted likelihood bootstrap
    • Newton, M. A. and Raftery, A. E. (1994). Approximate Bayesian inference with the weighted likelihood bootstrap. J. Roy. Statist. Soc. Ser. B 56, 3-48.
    • (1994) J. Roy. Statist. Soc. Ser. B , vol.56 , pp. 3-48
    • Newton, M.A.1    Raftery, A.E.2
  • 32
    • 0001981538 scopus 로고    scopus 로고
    • Time varying covariances: A factor stochastic volatility approach
    • (Edited by J. M. Bernardo et al.) Oxford University Press, London
    • Pitt, M. K. and Shephard, N. (1998). Time varying covariances: a factor stochastic volatility approach. In Bayesian Statistics 6 (Edited by J. M. Bernardo et al.) Oxford University Press, London.
    • (1998) Bayesian Statistics , vol.6
    • Pitt, M.K.1    Shephard, N.2
  • 38
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Tierney, L. and Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Soc. 81, 82-86.
    • (1986) J. Amer. Statist. Soc. , vol.81 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.