메뉴 건너뛰기




Volumn 19, Issue 1, 2004, Pages 81-94

Model uncertainty

Author keywords

Bayes factors; Classification arid regression trees; Linear and nonparametric regression; Model averaging; Objective prior distributions; Reversible jump Markov chain Monte Carlo; Variable selection

Indexed keywords


EID: 4043115647     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/088342304000000035     Document Type: Article
Times cited : (360)

References (130)
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B. Petrov and F. Csáki, eds. Akadémiai Kiadó, Budapest
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. Petrov and F. Csáki, eds.) 267-281. Akadémiai Kiadó, Budapest.
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 4043091425 scopus 로고    scopus 로고
    • Computational advances for and from Bayesian analysis
    • ANDRIEU, C., DOUCET, A. and ROBERT, C. (2004). Computational advances for and from Bayesian analysis. Statist. Sci. 19 118-127.
    • (2004) Statist. Sci. , vol.19 , pp. 118-127
    • Andrieu, C.1    Doucet, A.2    Robert, C.3
  • 4
    • 4043076004 scopus 로고    scopus 로고
    • The marginal likelihood for decomposable and nondecomposable graphical Gaussian models
    • Dept. Mathematics, York Univ
    • ATAY-KAYIS, A. and MASSAM, H. (2002). The marginal likelihood for decomposable and nondecomposable graphical Gaussian models. Technical report, Dept. Mathematics, York Univ.
    • (2002) Technical Report
    • Atay-Kayis, A.1    Massam, H.2
  • 5
    • 4043135554 scopus 로고    scopus 로고
    • Optimal predictive model selection
    • BARBIERI, M. M. and BERGER, J. (2004). Optimal predictive model selection. Ann. Statist. 32 870-897.
    • (2004) Ann. Statist. , vol.32 , pp. 870-897
    • Barbieri, M.M.1    Berger, J.2
  • 6
    • 0000609589 scopus 로고
    • A comment on D. V. Lindley's statistical paradox
    • BARTLETT, M. (1957). A comment on D. V. Lindley's statistical paradox. Biometrika 44 533-534.
    • (1957) Biometrika , vol.44 , pp. 533-534
    • Bartlett, M.1
  • 7
    • 0037336255 scopus 로고    scopus 로고
    • Approximations and consistency of Bayes factors as model dimension grows
    • BERGER, J. O., GHOSH, J. K. and MUKHOPADHYAY, N. (2003). Approximations and consistency of Bayes factors as model dimension grows. J. Statist. Plann. Inference 112 241-258.
    • (2003) J. Statist. Plann. Inference , vol.112 , pp. 241-258
    • Berger, J.O.1    Ghosh, J.K.2    Mukhopadhyay, N.3
  • 8
    • 0001809736 scopus 로고    scopus 로고
    • The intrinsic Bayes factor for linear models
    • J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds. Oxford Univ. Press
    • BERGER, J. O. and PERICCHI, L. R. (1996a). The intrinsic Bayes factor for linear models. In Bayesian Statistics 5 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 25-44. Oxford Univ. Press.
    • (1996) Bayesian Statistics 5 , pp. 25-44
    • Berger, J.O.1    Pericchi, L.R.2
  • 9
    • 0000298252 scopus 로고    scopus 로고
    • The intrinsic Bayes factor for model selection and prediction
    • BERGER, J. O. and PERICCHI, L. R. (1996b). The intrinsic Bayes factor for model selection and prediction. J. Amer. Statist. Assoc. 91 109-122.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 109-122
    • Berger, J.O.1    Pericchi, L.R.2
  • 10
    • 0009297427 scopus 로고    scopus 로고
    • Accurate and stable Bayesian model selection: The median intrinsic Bayes factor
    • BERGER, J. O. and PERICCHI, L. R. (1998). Accurate and stable Bayesian model selection: The median intrinsic Bayes factor. Sankhȳa Ser. B 60 1-18.
    • (1998) Sankhȳa Ser. B , vol.60 , pp. 1-18
    • Berger, J.O.1    Pericchi, L.R.2
  • 11
    • 0042107603 scopus 로고    scopus 로고
    • Objective Bayesian methods for model selection: Introduction and comparison (with discussion)
    • P. Lahiri, ed. IMS, Beachwood, OH
    • BERGER, J. O. and PERICCHI, L. (2001). Objective Bayesian methods for model selection: Introduction and comparison (with discussion). In Model Selection (P. Lahiri, ed.) 135-207. IMS, Beachwood, OH.
    • (2001) Model Selection , pp. 135-207
    • Berger, J.O.1    Pericchi, L.2
  • 13
    • 0000103562 scopus 로고
    • Spatial statistics and Bayesian computation (with discussion)
    • BESAG, J. and GREEN, P. J. (1993). Spatial statistics and Bayesian computation (with discussion). J. Roy. Statist. Soc. Ser. B 55 25-37.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 25-37
    • Besag, J.1    Green, P.J.2
  • 15
    • 0141688093 scopus 로고    scopus 로고
    • Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion)
    • BROOKS, S. P., GIUDICI, P. and ROBERTS, G. O. (2003). Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol 65 3-55.
    • (2003) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.65 , pp. 3-55
    • Brooks, S.P.1    Giudici, P.2    Roberts, G.O.3
  • 16
    • 0000294132 scopus 로고    scopus 로고
    • The choice of variables in multivariate regression: A non-conjugate Bayesian decision theory approach
    • BROWN, P. J., FEARN, T. and VANNUCCI, M. (1999). The choice of variables in multivariate regression: A non-conjugate Bayesian decision theory approach. Biometrika 86 635-648.
    • (1999) Biometrika , vol.86 , pp. 635-648
    • Brown, P.J.1    Fearn, T.2    Vannucci, M.3
  • 19
    • 0002980086 scopus 로고
    • Learning classification trees
    • BUNTINE, W. (1992). Learning classification trees. Statist. Comput. 2 63-73.
    • (1992) Statist. Comput. , vol.2 , pp. 63-73
    • Buntine, W.1
  • 20
    • 0000506629 scopus 로고
    • Bayesian model choice via Markov chain Monte Carlo methods
    • CARLIN, B. P. and CHIB, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods. J. Roy. Statist. Soc. Ser. B 57 473-484.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 473-484
    • Carlin, B.P.1    Chib, S.2
  • 21
    • 4043064683 scopus 로고    scopus 로고
    • Objective Bayes variable selection
    • Dept. Statistics, Univ. Florida
    • CASELLA, G. and MORENO, E. (2002). Objective Bayes variable selection. Technical Report 2002-023, Dept. Statistics, Univ. Florida.
    • (2002) Technical Report 2002-023
    • Casella, G.1    Moreno, E.2
  • 22
    • 21844506388 scopus 로고
    • Importance-weighted marginal Bayesian posterior density estimation
    • CHEN, M.-H. (1994). Importance-weighted marginal Bayesian posterior density estimation. J. Amer. Statist. Assoc. 89 818-824.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 818-824
    • Chen, M.-H.1
  • 23
    • 0037290198 scopus 로고    scopus 로고
    • Prior elicitation for model selection and estimation in generalized linear mixed models
    • CHEN, M.-H., IBRAHIM, J. G., SHAO, Q.-M. and WEISS, R. E. (2003). Prior elicitation for model selection and estimation in generalized linear mixed models. J. Statist. Plann. Inference 111 57-76.
    • (2003) J. Statist. Plann. Inference , vol.111 , pp. 57-76
    • Chen, M.-H.1    Ibrahim, J.G.2    Shao, Q.-M.3    Weiss, R.E.4
  • 24
    • 0033474268 scopus 로고    scopus 로고
    • Prior elicitation, variable selection and Bayesian computation for logistic regression models
    • CHEN, M.-H., IBRAHIM, J. G. and YIANNOUTSOS, C. (1999). Prior elicitation, variable selection and Bayesian computation for logistic regression models. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 223-242.
    • (1999) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.61 , pp. 223-242
    • Chen, M.-H.1    Ibrahim, J.G.2    Yiannoutsos, C.3
  • 25
    • 0031527297 scopus 로고    scopus 로고
    • On Monte Carlo methods for estimating ratios of normalizing constants
    • CHEN, M.-H, and SHAO, Q.-M. (1997). On Monte Carlo methods for estimating ratios of normalizing constants. Ann. Statist. 25 1563-1594.
    • (1997) Ann. Statist. , vol.25 , pp. 1563-1594
    • Chen, M.-H.1    Shao, Q.-M.2
  • 27
    • 0041974049 scopus 로고
    • Marginal likelihood from the Gibbs output
    • CHIB, S. (1995). Marginal likelihood from the Gibbs output. J. Amer. Statist. Assoc. 90 1313-1321.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1313-1321
    • Chib, S.1
  • 28
    • 1842715143 scopus 로고    scopus 로고
    • Marginal likelihood from the Metropolis-Hastings output
    • CHIB, S. and JELIAZKOV, I. (2001). Marginal likelihood from the Metropolis-Hastings output. J. Amer. Statist. Assoc. 96 270-281.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 270-281
    • Chib, S.1    Jeliazkov, I.2
  • 29
    • 0030532505 scopus 로고    scopus 로고
    • Bayesian variable selection with related predictors
    • CHIPMAN, H. A. (1996). Bayesian variable selection with related predictors. Canad. J. Statist. 24 17-36.
    • (1996) Canad. J. Statist. , vol.24 , pp. 17-36
    • Chipman, H.A.1
  • 31
    • 0042306266 scopus 로고    scopus 로고
    • The practical implementation of Bayesian model selection (with discussion)
    • P. Lahiri, ed. IMS, Beachwood, OH
    • CHIPMAN, H. A., GEORGE, E. I. and MCCULLOCH, R. E. (2001), The practical implementation of Bayesian model selection (with discussion). In Model Selection (P. Lahiri, ed.) 65-134. IMS, Beachwood, OH.
    • (2001) Model Selection , pp. 65-134
    • Chipman, H.A.1    George, E.I.2    Mcculloch, R.E.3
  • 32
    • 4043117355 scopus 로고    scopus 로고
    • Bayesian treed generalized linear models (with discussion)
    • J. M. Bernardo, M. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds. Oxford Univ. Press
    • CHIPMAN, H. A., GEORGE, E. I. and MCCULLOCH, R. E. (2003). Bayesian treed generalized linear models (with discussion). In Bayesian Statistics 7 (J. M. Bernardo, M. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) 85-103. Oxford Univ. Press.
    • (2003) Bayesian Statistics , vol.7 , pp. 85-103
    • Chipman, H.A.1    George, E.I.2    Mcculloch, R.E.3
  • 34
    • 0001078433 scopus 로고    scopus 로고
    • Bayesian model averaging and model search strategies (with discussion)
    • J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds, Oxford Univ. Press
    • CLYDE, M. (1999). Bayesian model averaging and model search strategies (with discussion). In Bayesian Statistics 6 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds,) 157-185. Oxford Univ. Press.
    • (1999) Bayesian Statistics , vol.6 , pp. 157-185
    • Clyde, M.1
  • 35
    • 33645533650 scopus 로고    scopus 로고
    • Discussion of "the practical implementation of Bayesian model selection,"
    • by H. A. Chipman, E. I. George and R. E. McCulloch P. Lahiri, ed. IMS, Beachwood, OH
    • CLYDE, M. (2001). Discussion of "The practical implementation of Bayesian model selection," by H. A. Chipman, E. I. George and R. E. McCulloch. In Model Selection (P. Lahiri, ed.) 117-124. IMS, Beachwood, OH.
    • (2001) Model Selection , pp. 117-124
    • Clyde, M.1
  • 38
    • 0001682758 scopus 로고    scopus 로고
    • Multiple shrinkage and subset selection in wavelets
    • CLYDE, M., PARMIGIANI, G. and VIDAKOVIC, B. (1998). Multiple shrinkage and subset selection in wavelets. Biometrika 85 391-401.
    • (1998) Biometrika , vol.85 , pp. 391-401
    • Clyde, M.1    Parmigiani, G.2    Vidakovic, B.3
  • 39
    • 4043060426 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Management Science and Information Systems, Univ. Texas, Austin
    • CUI, W. (2002). Variable selection: Empirical Bayes vs. fully Bayes. Ph.D. dissertation, Dept. Management Science and Information Systems, Univ. Texas, Austin.
    • (2002) Variable Selection: Empirical Bayes Vs. Fully Bayes
    • Cui, W.1
  • 41
    • 0000860415 scopus 로고    scopus 로고
    • Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models
    • DELLAPORTAS, P. and FORSTER, J. J. (1999). Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models. Biometrika 86 615-633.
    • (1999) Biometrika , vol.86 , pp. 615-633
    • Dellaportas, P.1    Forster, J.J.2
  • 42
    • 0041696122 scopus 로고    scopus 로고
    • On Bayesian model and variable selection using MCMC
    • DELLAPORTAS, P., FORSTER, J. J. and NTZOUFRAS, I. (2002). On Bayesian model and variable selection using MCMC. Statist. Comput. 12 27-36.
    • (2002) Statist. Comput. , vol.12 , pp. 27-36
    • Dellaportas, P.1    Forster, J.J.2    Ntzoufras, I.3
  • 43
    • 3843120764 scopus 로고    scopus 로고
    • Bayesian inference for nondecomposable graphical Gaussian models
    • DELLAPORTAS, P., GIUDICI, P. and ROBERTS, G. (2003). Bayesian inference for nondecomposable graphical Gaussian models. Sankhȳa Ser. A. 65 43-55.
    • (2003) Sankhȳa Ser. A. , vol.65 , pp. 43-55
    • Dellaportas, P.1    Giudici, P.2    Roberts, G.3
  • 44
    • 0001038826 scopus 로고
    • Covariance selection
    • DEMPSTER, A. M. (1972). Covariance selection. Biometrics 28 157-175.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.M.1
  • 49
    • 21744432053 scopus 로고    scopus 로고
    • Computing Bayes factors by combining simulation and asymptotic approximations
    • DICICCIO, T. J., KASS, R. E., RAFTERY, A. and WASSERMAN, L. (1997). Computing Bayes factors by combining simulation and asymptotic approximations. J. Amer. Statist. Assoc. 92 903-915.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 903-915
    • Diciccio, T.J.1    Kass, R.E.2    Raftery, A.3    Wasserman, L.4
  • 50
    • 0002276308 scopus 로고
    • Assessment and propagation of model uncertainty (with discussion)
    • DRAPER, D. (1995). Assessment and propagation of model uncertainty (with discussion). J. Roy. Statist. Soc. Ser. B 57 45-97.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 45-97
    • Draper, D.1
  • 51
    • 0001069865 scopus 로고    scopus 로고
    • A case study of stochastic optimization in health policy: Problem formulation and preliminary results
    • DRAPER, D. and FOUSKAKIS, D. (2000). A case study of stochastic optimization in health policy: Problem formulation and preliminary results. J. Global Optimization 18 399-416.
    • (2000) J. Global Optimization , vol.18 , pp. 399-416
    • Draper, D.1    Fouskakis, D.2
  • 52
    • 0037290186 scopus 로고    scopus 로고
    • Variable selection in qualitative models via an entropic explanatory power
    • DUPUIS, J. A. and ROBERT, C. P. (2003). Variable selection in qualitative models via an entropic explanatory power. J. Statist. Plann. Inference 111 77-94.
    • (2003) J. Statist. Plann. Inference , vol.111 , pp. 77-94
    • Dupuis, J.A.1    Robert, C.P.2
  • 53
    • 18044404766 scopus 로고    scopus 로고
    • Benchmark priors for Bayesian model averaging
    • FERÁNDEZ, C., LEY, E. and STEEL, M. F. (2001). Benchmark priors for Bayesian model averaging. J. Econometrics 100 381-427.
    • (2001) J. Econometrics , vol.100 , pp. 381-427
    • Ferández, C.1    Ley, E.2    Steel, M.F.3
  • 54
    • 21844523862 scopus 로고
    • The risk inflation criterion for multiple regression
    • FOSTER, D. P. and GEORGE, E. I. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22 1947-1975.
    • (1994) Ann. Statist. , vol.22 , pp. 1947-1975
    • Foster, D.P.1    George, E.I.2
  • 55
    • 0016128505 scopus 로고
    • Regression by leaps and bounds
    • FURNIVAL, G. M. and WILSON, R. W., JR. (1974). Regression by leaps and bounds. Technometrics 16 499-511.
    • (1974) Technometrics , vol.16 , pp. 499-511
    • Furnival, G.M.1    Wilson Jr., R.W.2
  • 57
    • 0000079228 scopus 로고
    • Model determination using predictive distributions, with implementation via sampling-based methods (with discussion)
    • J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds. Oxford Univ. Press
    • GELFAND, A. E., DEY, D. K. and CHANG, H. (1992). Model determination using predictive distributions, with implementation via sampling-based methods (with discussion). In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 147-167. Oxford Univ. Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 147-167
    • Gelfand, A.E.1    Dey, D.K.2    Chang, H.3
  • 58
    • 0002799511 scopus 로고    scopus 로고
    • Model choice: A minimum posterior predictive loss approach
    • GELFAND, A. E. and GHOSH, S. K. (1998). Model choice: A minimum posterior predictive loss approach. Biometrika 85 1-11.
    • (1998) Biometrika , vol.85 , pp. 1-11
    • Gelfand, A.E.1    Ghosh, S.K.2
  • 59
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398-409.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 60
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • GELMAN, A. and MENG, X.-L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statist. Sci. 13 163-185.
    • (1998) Statist. Sci. , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.-L.2
  • 61
    • 0001078433 scopus 로고    scopus 로고
    • Discussion of "Bayesian model averaging and model search strategies,"
    • by M. Clyde J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds. Oxford Univ. Press
    • GEORGE, E. I. (1999). Discussion of "Bayesian model averaging and model search strategies," by M. Clyde. In Bayesian Statistics 6 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 175-177. Oxford Univ. Press.
    • (1999) Bayesian Statistics , vol.6 , pp. 175-177
    • George, E.I.1
  • 62
    • 0442309436 scopus 로고    scopus 로고
    • The variable selection problem
    • GEORGE, E. I. (2000). The variable selection problem. J. Amer. Statist. Assoc. 95 1304-1308.
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 1304-1308
    • George, E.I.1
  • 63
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and empirical Bayes variable selection
    • GEORGE, E. I. and FOSTER, D. P. (2000). Calibration and empirical Bayes variable selection. Biometrika 87 731-747.
    • (2000) Biometrika , vol.87 , pp. 731-747
    • George, E.I.1    Foster, D.P.2
  • 65
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • GEORGE, E. I. and MCCULLOCH, R. E. (1997). Approaches for Bayesian variable selection. Statist. Sinica 7 339-374.
    • (1997) Statist. Sinica , vol.7 , pp. 339-374
    • George, E.I.1    Mcculloch, R.E.2
  • 67
    • 0000647838 scopus 로고    scopus 로고
    • Variable selection and model comparison in regression
    • J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds. Oxford Univ. Press
    • GEWEKE, J. (1996). Variable selection and model comparison in regression. In Bayesian Statistics 5 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 609-620. Oxford Univ. Press.
    • (1996) Bayesian Statistics , vol.5 , pp. 609-620
    • Geweke, J.1
  • 68
    • 0001099335 scopus 로고    scopus 로고
    • Decomposable graphical Gaussian model determination
    • GIUDICI, P. and GREEN, P. J. (1999). Decomposable graphical Gaussian model determination. Biometrika 86 785-801.
    • (1999) Biometrika , vol.86 , pp. 785-801
    • Giudici, P.1    Green, P.J.2
  • 69
    • 0035591051 scopus 로고    scopus 로고
    • On the relationship between Markov chain Monte Carlo methods for model uncertainty
    • GODSILL, S. J. (2001). On the relationship between Markov chain Monte Carlo methods for model uncertainty. J. Comput. Graph. Statist. 10 230-248.
    • (2001) J. Comput. Graph. Statist. , vol.10 , pp. 230-248
    • Godsill, S.J.1
  • 70
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • GREEN, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 71
    • 0346641850 scopus 로고    scopus 로고
    • Trans-dimensional Markov chain Monte Carlo
    • P. J. Green, N. L. Hjort and S. Richardson, eds. Oxford Univ. Press
    • GREEN, P. J. (2003). Trans-dimensional Markov chain Monte Carlo. In Highly Structured Stochastic Systems (P. J. Green, N. L. Hjort and S. Richardson, eds.) 179-206. Oxford Univ. Press.
    • (2003) Highly Structured Stochastic Systems , pp. 179-206
    • Green, P.J.1
  • 72
    • 0442312140 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for computing Bayes factors: A comparative review
    • HAN, C. and CARLIN, B. P. (2001). Markov chain Monte Carlo methods for computing Bayes factors: A comparative review. J. Amer. Statist. Assoc. 96 1122-1132.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1122-1132
    • Han, C.1    Carlin, B.P.2
  • 73
    • 0011031587 scopus 로고    scopus 로고
    • Spline adaptation in extended linear models (with discussion)
    • HANSEN, M. H. and KOOPERBERG, C. (2002). Spline adaptation in extended linear models (with discussion). Statist. Sci. 17 2-51.
    • (2002) Statist. Sci. , vol.17 , pp. 2-51
    • Hansen, M.H.1    Kooperberg, C.2
  • 74
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and the principle of minimum description length
    • HANSEN, M. H. and YU, B. (2001). Model selection and the principle of minimum description length. J. Amer. Statist. Assoc. 96 746-774.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 746-774
    • Hansen, M.H.1    Yu, B.2
  • 75
    • 84972494642 scopus 로고
    • Uncertainty, policy analysis and statistics (with discussion)
    • HODGES, J. S. (1987). Uncertainty, policy analysis and statistics (with discussion). Statist. Sci. 2 259-275.
    • (1987) Statist. Sci. , vol.2 , pp. 259-275
    • Hodges, J.S.1
  • 76
    • 0001259111 scopus 로고    scopus 로고
    • Bayesian model averaging: A tutorial (with discussion)
    • Corrected version
    • HOETING, J. A., MADIGAN, D., RAFTERY, A. E. and VOLINSKY, C. T. (1999). Bayesian model averaging: A tutorial (with discussion). Statist. Sci. 14 382-417. (Corrected version available at http://www.stat.washington. edu/www/research/online/hoeting1999.pdf.)
    • (1999) Statist. Sci. , vol.14 , pp. 382-417.
    • Hoeting, J.A.1    Madigan, D.2    Raftery, A.E.3    Volinsky, C.T.4
  • 77
    • 0036749901 scopus 로고    scopus 로고
    • Bayesian variable and transformation selection in linear regression
    • HOETING, J. A., RAFTERY, A. E. and MADIGAN, D. (2002). Bayesian variable and transformation selection in linear regression. J. Comput. Graph. Statist. 11 485-507.
    • (2002) J. Comput. Graph. Statist. , vol.11 , pp. 485-507
    • Hoeting, J.A.1    Raftery, A.E.2    Madigan, D.3
  • 78
    • 0033266924 scopus 로고    scopus 로고
    • Bayesian variable selection for proportional hazards models
    • IBRAHIM, J. G., CHEN, M.-H. and MACEACHERN, S. N. (1999). Bayesian variable selection for proportional hazards models. Canad. J. Statist. 27 701-717.
    • (1999) Canad. J. Statist. , vol.27 , pp. 701-717
    • Ibrahim, J.G.1    Chen, M.-H.2    Maceachern, S.N.3
  • 79
    • 0034398668 scopus 로고    scopus 로고
    • Bayesian variable selection for time series count data
    • IBRAHIM, J. G., CHEN, M.-H. and RYAN, L. M. (2000). Bayesian variable selection for time series count data. Statist. Sinica 10 971-987.
    • (2000) Statist. Sinica , vol.10 , pp. 971-987
    • Ibrahim, J.G.1    Chen, M.-H.2    Ryan, L.M.3
  • 80
    • 3543030265 scopus 로고    scopus 로고
    • Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences
    • JOHNSTONE, I. and SILVERMAN, B. (2004). Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences. Ann. Statist. 32 1594-1649.
    • (2004) Ann. Statist. , vol.32 , pp. 1594-1649
    • Johnstone, I.1    Silverman, B.2
  • 81
    • 4043129651 scopus 로고    scopus 로고
    • Graphical models
    • JORDAN, M. I. (2004). Graphical models. Statist. Sci. 19 140-155.
    • (2004) Statist. Sci. , vol.19 , pp. 140-155
    • Jordan, M.I.1
  • 83
    • 0001006927 scopus 로고    scopus 로고
    • Bayesian model choice: What and why?
    • J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds. Oxford Univ. Press
    • KEY, J. T., PERICCHI, L. R. and SMITH, A. F. M. (1999). Bayesian model choice: What and why? In Bayesian Statistics 6 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 343-370. Oxford Univ. Press.
    • (1999) Bayesian Statistics , vol.6 , pp. 343-370
    • Key, J.T.1    Pericchi, L.R.2    Smith, A.F.M.3
  • 84
    • 0034406376 scopus 로고    scopus 로고
    • Wavelet estimation using Bayesian basis selection and basis averaging
    • KOHN, R., MARRON, J. S. and YAU, P. (2000). Wavelet estimation using Bayesian basis selection and basis averaging. Statist. Sinica 10 109-128.
    • (2000) Statist. Sinica , vol.10 , pp. 109-128
    • Kohn, R.1    Marron, J.S.2    Yau, P.3
  • 85
    • 1542513676 scopus 로고
    • Regression selection strategies and revealed priors
    • LEAMER, E. E. (1978a). Regression selection strategies and revealed priors. J. Amer. Statist. Assoc. 73 580-587.
    • (1978) J. Amer. Statist. Assoc. , vol.73 , pp. 580-587
    • Leamer, E.E.1
  • 87
    • 0031514994 scopus 로고    scopus 로고
    • Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator
    • LEWIS, S. M. and RAFTERY, A. E. (1997). Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator. J. Amer. Statist. Assoc. 92 648-655.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 648-655
    • Lewis, S.M.1    Raftery, A.E.2
  • 88
    • 4043051932 scopus 로고    scopus 로고
    • Gaussian hyper-geometric and other mixtures of g-priors for Bayesian variable selection
    • Statistical and Applied Mathematical Sciences Inst, Research Triangle Park, NC
    • LIANG, F., PAULO, R., MOLINA, G., CLYDE, M. and BERGER, J. (2003). Gaussian hyper-geometric and other mixtures of g-priors for Bayesian variable selection. Technical report, Statistical and Applied Mathematical Sciences Inst, Research Triangle Park, NC.
    • (2003) Technical Report
    • Liang, F.1    Paulo, R.2    Molina, G.3    Clyde, M.4    Berger, J.5
  • 89
    • 0347666339 scopus 로고    scopus 로고
    • Automatic Bayesian model averaging for linear regression and applications in Bayesian curve fitting
    • LIANG, F., TRUONG, Y. and WONG, W. H. (2001). Automatic Bayesian model averaging for linear regression and applications in Bayesian curve fitting. Statist, Sinica 11 1005-1029.
    • (2001) Statist, Sinica , vol.11 , pp. 1005-1029
    • Liang, F.1    Truong, Y.2    Wong, W.H.3
  • 90
    • 0002438052 scopus 로고
    • The choice of variables in multiple regression (with discussion)
    • LlNDLEY, D. V. (1968). The choice of variables in multiple regression (with discussion). J. Roy. Statist. Soc. Ser. B 30 31-66.
    • (1968) J. Roy. Statist. Soc. Ser. B , vol.30 , pp. 31-66
    • Llndley, D.V.1
  • 91
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • MADIGAN, D. and RAFTERY, A. E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. J. Amer. Statist. Assoc. 89 1535-1546.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.E.2
  • 92
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • MADIGAN, D. and YORK, J. (1995). Bayesian graphical models for discrete data. Internat. Statist. Rev. 63 215-232.
    • (1995) Internat. Statist. Rev. , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 93
    • 0035529541 scopus 로고    scopus 로고
    • A Bayesian approach to selecting covariates for prediction
    • MARRIOTT, J. M., SPENCER, N. M. and PETTITT, A. N. (2001). A Bayesian approach to selecting covariates for prediction. Scand. J. Statist. 28 87-97.
    • (2001) Scand. J. Statist. , vol.28 , pp. 87-97
    • Marriott, J.M.1    Spencer, N.M.2    Pettitt, A.N.3
  • 95
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
    • MENG, X.-L. and WONG, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statist. Sinica 6 831-860.
    • (1996) Statist. Sinica , vol.6 , pp. 831-860
    • Meng, X.-L.1    Wong, W.H.2
  • 97
    • 0000130839 scopus 로고
    • Bayesian variable selection in linear regression (with discussion)
    • MITCHELL, T. J. and BEAUCHAMP, J. J. (1988). Bayesian variable selection in linear regression (with discussion). J. Amer. Statist. Assoc. 83 1023-1032.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 1023-1032
    • Mitchell, T.J.1    Beauchamp, J.J.2
  • 98
    • 4043092820 scopus 로고    scopus 로고
    • Nonparametric Bayesian data analysis
    • MÜLLER, P. and QUINTANA, F. A. (2004). Nonparametric Bayesian data analysis. Statist. Sci. 19 95-110.
    • (2004) Statist. Sci. , vol.19 , pp. 95-110
    • Müller, P.1    Quintana, F.A.2
  • 99
    • 0037290161 scopus 로고    scopus 로고
    • Bayesian variable and link determination for generalised linear models
    • NTZOUFRAS, I., DELLAPORTAS, P. and FORSTER, J. J. (2003). Bayesian variable and link determination for generalised linear models. J. Statist. Plann. Inference 111 165-180.
    • (2003) J. Statist. Plann. Inference , vol.111 , pp. 165-180
    • Ntzoufras, I.1    Dellaportas, P.2    Forster, J.J.3
  • 101
    • 0001857092 scopus 로고
    • Fractional Bayes factors for model comparison (with discussion)
    • O'HAGAN, A. (1995). Fractional Bayes factors for model comparison (with discussion). J. Roy. Statist. Soc. Ser. B 57 99-138.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 99-138
    • O'Hagan, A.1
  • 102
    • 0002648792 scopus 로고    scopus 로고
    • The Schwarz criterion and related methods for normal linear models
    • PAULER, D. K. (1998). The Schwarz criterion and related methods for normal linear models. Biometrika 85 13-27.
    • (1998) Biometrika , vol.85 , pp. 13-27
    • Pauler, D.K.1
  • 103
    • 0442293879 scopus 로고    scopus 로고
    • Bayes factors and approximations for variance component models
    • PAULER, D. K., WAKEFIELD, J. C. and KASS, R. E. (1999). Bayes factors and approximations for variance component models. J. Amer. Statist. Assoc. 94 1242-1253.
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 1242-1253
    • Pauler, D.K.1    Wakefield, J.C.2    Kass, R.E.3
  • 104
    • 0011286633 scopus 로고    scopus 로고
    • Expected posterior prior distributions for model selection
    • Institute of Statistics and Decision Sciences, Duke Univ
    • PÉREZ, J. and BERGER, J. O. (2000). Expected posterior prior distributions for model selection. Technical Report 00-08, Institute of Statistics and Decision Sciences, Duke Univ.
    • (2000) Technical Report , Issue.8
    • Pérez, J.1    Berger, J.O.2
  • 105
    • 0000297493 scopus 로고    scopus 로고
    • Approximate Bayes factors and accounting for model uncertainty in generalised linear models
    • RAFTERY, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika 83 251-266.
    • (1996) Biometrika , vol.83 , pp. 251-266
    • Raftery, A.E.1
  • 106
  • 107
    • 0001348541 scopus 로고    scopus 로고
    • Accounting for model uncertainty in survival analysis improves predictive performance
    • J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds. Oxford Univ. Press
    • RAFTERY, A. E., MADIGAN, D. and VOLINSKY, C. T. (1996). Accounting for model uncertainty in survival analysis improves predictive performance. In Bayesian Statistics 5 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 323-349. Oxford Univ. Press.
    • (1996) Bayesian Statistics , vol.5 , pp. 323-349
    • Raftery, A.E.1    Madigan, D.2    Volinsky, C.T.3
  • 108
    • 0035995077 scopus 로고    scopus 로고
    • Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models
    • ROVERATO, A. (2002). Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models. Scand. J. Statist. 29 391-411.
    • (2002) Scand. J. Statist. , vol.29 , pp. 391-411
    • Roverato, A.1
  • 110
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 111
    • 0000307942 scopus 로고    scopus 로고
    • Variable selection and function estimation in additive nonparametric regression using a data-based prior (with discussion)
    • SHIVELY, T. S., KOHN, R. and WOOD, S. (1999). Variable selection and function estimation in additive nonparametric regression using a data-based prior (with discussion). J. Amer. Statist. Assoc. 94 777-806.
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 777-806
    • Shively, T.S.1    Kohn, R.2    Wood, S.3
  • 112
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion)
    • SMITH, A. F. M. and ROBERTS, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). J. Roy. Statist. Soc. Ser. B 55 3-23.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 113
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • SMITH, M. and KOHN, R. (1996). Nonparametric regression using Bayesian variable selection. J. Econometrics 75 317-343.
    • (1996) J. Econometrics , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 114
    • 0031326917 scopus 로고    scopus 로고
    • A Bayesian approach to nonparametric bivariate regression
    • SMITH, M. and KOHN, R. (1997). A Bayesian approach to nonparametric bivariate regression. J. Amer. Statist. Assoc. 92 1522-1535.
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 1522-1535
    • Smith, M.1    Kohn, R.2
  • 115
    • 0036970576 scopus 로고    scopus 로고
    • Parsimonious covariance matrix estimation for longitudinal data
    • SMITH, M. and KOHN, R. (2002). Parsimonious covariance matrix estimation for longitudinal data. J. Amer. Statist. Assoc. 97 1141-1153.
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 1141-1153
    • Smith, M.1    Kohn, R.2
  • 116
    • 0041115942 scopus 로고
    • Bayesian posterior distributions over sets of possible models with inferences computed by Monte Carlo integration
    • STEWART, L. and DAVIS, W. W. (1986). Bayesian posterior distributions over sets of possible models with inferences computed by Monte Carlo integration. The Statistician 35 175-182.
    • (1986) The Statistician , vol.35 , pp. 175-182
    • Stewart, L.1    Davis, W.W.2
  • 117
    • 0000300851 scopus 로고
    • Proper Bayes minimax estimators of the multivariate normal mean
    • STRAWDERMAN, W. E. (1971). Proper Bayes minimax estimators of the multivariate normal mean. Ann. Math. Statist. 42 385-388.
    • (1971) Ann. Math. Statist. , vol.42 , pp. 385-388
    • Strawderman, W.E.1
  • 118
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discussion)
    • TIERNEY, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22 1701-1728.
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1728
    • Tierney, L.1
  • 119
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • TIERNEY, L. and KADANE, J. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81 82-86.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 82-86
    • Tierney, L.1    Kadane, J.2
  • 120
    • 21844487977 scopus 로고
    • Computing Bayes factors using a generalization of the Savage-Dickey density ratio
    • VERDINELLI, I. and WASSERMAN, L. (1995). Computing Bayes factors using a generalization of the Savage-Dickey density ratio. J. Amer. Statist. Assoc. 90 614-618.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 614-618
    • Verdinelli, I.1    Wasserman, L.2
  • 121
    • 0040007375 scopus 로고    scopus 로고
    • Bayesian model averaging in proportional hazard models: Assessing the risk of a stroke
    • VOLINSKY, C. T., MADIGAN, D., RAFTERY, A. E. and KRONMAL, R. A. (1997). Bayesian model averaging in proportional hazard models: Assessing the risk of a stroke. Appl. Statist. 46 433-448.
    • (1997) Appl. Statist. , vol.46 , pp. 433-448
    • Volinsky, C.T.1    Madigan, D.2    Raftery, A.E.3    Kronmal, R.A.4
  • 122
    • 0030327432 scopus 로고    scopus 로고
    • The Bayesian modeling of covariates for population pharmacokinetic models
    • WAKEFIELD, J. and BENNETT, J. (1996). The Bayesian modeling of covariates for population pharmacokinetic models. J. Amer. Statist. Assoc. 91 917-927.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 917-927
    • Wakefield, J.1    Bennett, J.2
  • 123
    • 73249123413 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Management Science and Information Systems, Univ. Texas, Austin
    • WANG, X. (2002). Bayesian variable selection for generalized linear models. Ph.D. dissertation, Dept. Management Science and Information Systems, Univ. Texas, Austin.
    • (2002) Bayesian Variable Selection for Generalized Linear Models
    • Wang, X.1
  • 124
    • 3543026876 scopus 로고    scopus 로고
    • Bayesian variable selection and regularisation for time-frequency surface estimation
    • To appear
    • WOLFE, P. J., GODSILL, S. J. and NG, W.-J. (2004). Bayesian variable selection and regularisation for time-frequency surface estimation. J. R. Stat. Soc. Ser B Stat. Methodol. To appear.
    • (2004) J. R. Stat. Soc. Ser B Stat. Methodol.
    • Wolfe, P.J.1    Godsill, S.J.2    Ng, W.-J.3
  • 125
    • 3843149220 scopus 로고    scopus 로고
    • Efficient estimation of covariance selection models
    • WONG, F., CARTER, C. and KOHN, R. (2003). Efficient estimation of covariance selection models. Biometrika 90 809-830.
    • (2003) Biometrika , vol.90 , pp. 809-830
    • Wong, F.1    Carter, C.2    Kohn, R.3
  • 126
    • 0032347252 scopus 로고    scopus 로고
    • A Bayesian approach to robust binary nonparametric regression
    • WOOD, S. and KOHN, R. (1998). A Bayesian approach to robust binary nonparametric regression. J. Amer. Statist. Assoc. 93 203-213.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 203-213
    • Wood, S.1    Kohn, R.2
  • 128
    • 0009913910 scopus 로고
    • Posterior odds ratios for regression hypotheses: General considerations and some specific results
    • A. Zellner, ed. Univ. Chicago Press
    • ZELLNER, A. (1984). Posterior odds ratios for regression hypotheses: General considerations and some specific results. In Basic Issues in Econometrics (A. Zellner, ed.) 275-305. Univ. Chicago Press.
    • (1984) Basic Issues in Econometrics , pp. 275-305
    • Zellner, A.1
  • 129
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distributions
    • P. K. Goel and A. Zellner, eds. North-Holland, Amsterdam
    • ZELLNER, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti (P. K. Goel and A. Zellner, eds.) 233-243. North-Holland, Amsterdam.
    • (1986) Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti , pp. 233-243
    • Zellner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.