메뉴 건너뛰기




Volumn 96, Issue 455, 2001, Pages 1122-1132

Markov chain monte carlo methods for computing bayes factors: A comparative review

Author keywords

Bayesian model choice; Gibbs sampler; Marginal likelihood; Metropolis hastings algorithm; Reversible jump sampler

Indexed keywords


EID: 0442312140     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1198/016214501753208780     Document Type: Article
Times cited : (225)

References (39)
  • 3
    • 0001809736 scopus 로고    scopus 로고
    • The Intrinsic Bayes Factor for Linear Models
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press
    • Berger, J. O., and Pericchi, L. R. (1996), “The Intrinsic Bayes Factor for Linear Models,” in Bayesian Statistics (Vol. 5) eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press, pp. 25–44.
    • (1996) Bayesian Statistics , vol.5 , pp. 25-44
    • Berger, J.O.1    Pericchi, L.R.2
  • 5
    • 0002923202 scopus 로고
    • Prediction Analysis for Binary Data
    • R. G. Miller, Jr., B. Efron, B. W. Brown, Jr., and L. E. Moses, New York: Wiley
    • Brown, B. W. (1980), “Prediction Analysis for Binary Data,” in Biostatistics Casebook, eds. R. G. Miller, Jr., B. Efron, B. W. Brown, Jr., and L. E. Moses, New York: Wiley, pp. 3–18.
    • (1980) Biostatistics Casebook , pp. 3-18
    • Brown, B.W.1
  • 6
    • 0000506629 scopus 로고
    • Bayesian Model Choice via Markov Chain Monte Carlo Methods
    • Ser. B
    • Carlin, B. P., and Chib, S. (1995), “Bayesian Model Choice via Markov Chain Monte Carlo Methods,” Journal of the Royal Statistical Society, Ser. B, 57, 473–484.
    • (1995) Journal of the Royal Statistical Society , vol.57 , pp. 473-484
    • Carlin, B.P.1    Chib, S.2
  • 8
    • 0001342598 scopus 로고
    • Monte Carlo Bayesian Methods for Discrete Regression Models and Categorical Time Series
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press
    • Carlin, B. P., and Polson, N. G. (1992), “Monte Carlo Bayesian Methods for Discrete Regression Models and Categorical Time Series,” in Bayesian Statistics (Vol. 4), eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press, pp. 577–586.
    • (1992) Bayesian Statistics , vol.4 , pp. 577-586
    • Carlin, B.P.1    Polson, N.G.2
  • 11
    • 0043047984 scopus 로고    scopus 로고
    • On MCMC Sampling in Hierarchical Longitudinal Models
    • Chib, S., and Carlin, B. P. (1999), “On MCMC Sampling in Hierarchical Longitudinal Models,” Statistics and Computing, 9, 17–26.
    • (1999) Statistics and Computing , vol.9 , pp. 17-26
    • Chib, S.1    Carlin, B.P.2
  • 12
    • 0000911137 scopus 로고    scopus 로고
    • Analysis of Multivariate Probit Models
    • Chib, S., and Greenberg, E. (1998), “Analysis of Multivariate Probit Models,” Biometrika, 85, 347–361.
    • (1998) Biometrika , vol.85 , pp. 347-361
    • Chib, S.1    Greenberg, E.2
  • 16
    • 0002276308 scopus 로고
    • Assessment and Propagation of Model Uncertainty
    • (with discussion), Ser. B
    • Draper, D. (1995), “Assessment and Propagation of Model Uncertainty” (with discussion), Journal of the Royal Statistical Society, Ser. B, 57, 45–97.
    • (1995) Journal of the Royal Statistical Society , vol.57 , pp. 45-97
    • Draper, D.1
  • 17
    • 0000079228 scopus 로고
    • Model Determination Using Predictive Distributions With implementation via Sampling-Based Methods
    • (with discussion), eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press
    • Gelfand, A. E., Dey, D. K., and Chang, H. (1992), “Model Determination Using Predictive Distributions With implementation via Sampling-Based Methods” (with discussion), in Bayesian Statistics (Vol. 4), eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford University Press, pp. 147–167.
    • (1992) Bayesian Statistics , vol.4 , pp. 147-167
    • Gelfand, A.E.1    Dey, D.K.2    Chang, H.3
  • 18
    • 0002799511 scopus 로고    scopus 로고
    • Model Choice: A Minimum Posterior Predictive Loss Approach
    • Gelfand, A. E., and Ghosh, S. K. (1998), “Model Choice: A Minimum Posterior Predictive Loss Approach,” Biometrika, 85, 1–11.
    • (1998) Biometrika , vol.85 , pp. 1-11
    • Gelfand, A.E.1    Ghosh, S.K.2
  • 20
    • 0035591051 scopus 로고    scopus 로고
    • On the Relationship Between Markov Chain Monte Carlo Methods for Model Uncertainty
    • Godsill, S. J. (2001), “On the Relationship Between Markov Chain Monte Carlo Methods for Model Uncertainty,” Journal of Computational and Graphical Statistics, 10, 230–248.
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , pp. 230-248
    • Godsill, S.J.1
  • 22
    • 77956889087 scopus 로고
    • Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination
    • Green, P. J. (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,” Biometrika, 82, 711–732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 24
    • 77956890234 scopus 로고
    • Monte Carlo Sampling Methods Using Markov Chains and Their Applications
    • Hastings, W. K. (1970), “Monte Carlo Sampling Methods Using Markov Chains and Their Applications,” Biometrika, 57, 97–109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 26
    • 1642602502 scopus 로고    scopus 로고
    • Bayesian Detection of Clusters and Discontinuities in Disease Maps
    • Knorr-Held, L., and Rasser, G. (2000), “Bayesian Detection of Clusters and Discontinuities in Disease Maps,” Biometrics, 56, 13–21.
    • (2000) Biometrics , vol.56 , pp. 13-21
    • Knorr-Held, L.1    Rasser, G.2
  • 28
    • 0033460110 scopus 로고    scopus 로고
    • Bayes Factors: What They Are and What They Are Not
    • Lavine, M., and Schervish, M. J. (1999), “Bayes Factors: What They Are and What They Are Not,” The American Statistician, 53, 119–122.
    • (1999) The American Statistician , vol.53 , pp. 119-122
    • Lavine, M.1    Schervish, M.J.2
  • 29
    • 21844520724 scopus 로고
    • Bayesian Graphical Models for Discrete Data
    • Madigan, D., and York, J. (1995), “Bayesian Graphical Models for Discrete Data,” International Statistical Review, 63, 215–232
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 30
    • 0001857092 scopus 로고
    • Fractional Bayes Factors for Model Comparison
    • (with discussion), Ser. B
    • O’Hagan, A. (1995), “Fractional Bayes Factors for Model Comparison” (with discussion), Journal of the Royal Statistical Society, Ser. B, 57, 99–138.
    • (1995) Journal of the Royal Statistical Society , vol.57 , pp. 99-138
    • O’Hagan, A.1
  • 31
    • 0002013327 scopus 로고    scopus 로고
    • Bayesian Model Comparison via Jump Diffusions
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, London: Chapman & Hall
    • Phillips, D. B., and Smith, A. F. M. (1996), “Bayesian Model Comparison via Jump Diffusions,” in Markov Chain Monte Carlo in Practice, eds. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, London: Chapman & Hall, pp. 215–239.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 215-239
    • Phillips, D.B.1    Smith, A.F.M.2
  • 33
    • 18244378520 scopus 로고    scopus 로고
    • Bayesian Analysis of Mixtures With an Unknown Number of Components
    • Ser. B
    • Richardson, S., and Green, P. J. (1997), “Bayesian Analysis of Mixtures With an Unknown Number of Components,” Journal of the Royal Statistical Society, Ser. B, 59, 731–758.
    • (1997) Journal of the Royal Statistical Society , vol.59 , pp. 731-758
    • Richardson, S.1    Green, P.J.2
  • 34
    • 85012561888 scopus 로고
    • Estimating the Dimension of a Model
    • Schwarz, G. (1978), “Estimating the Dimension of a Model,” Annals of Statistics, 6, 461–464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 36
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian Analysis of Mixture Models With an Unknown Number of Components—an Alternative to Reversible Jump Methods
    • Stephens, M. (2000), “Bayesian Analysis of Mixture Models With an Unknown Number of Components—an Alternative to Reversible Jump Methods,” Annals of Statistics, 28, 40–74.
    • (2000) Annals of Statistics , vol.28 , pp. 40-74
    • Stephens, M.1
  • 37
    • 0034825038 scopus 로고    scopus 로고
    • MCMC Methods for Restoration of Nonlinearly Distorted Autoregressive Signals
    • Troughton, P. T., and Godsill, S. J. (1999), “MCMC Methods for Restoration of Nonlinearly Distorted Autoregressive Signals,” Signal Processing, 81, 83–97.
    • (1999) Signal Processing , vol.81 , pp. 83-97
    • Troughton, P.T.1    Godsill, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.