메뉴 건너뛰기




Volumn 4, Issue 4, 2012, Pages 292-297

Evidence that a ' dynamic knockoutg' in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis

Author keywords

[No Author keywords available]

Indexed keywords

DIHYDROFOLATE REDUCTASE;

EID: 84858758329     PISSN: 17554330     EISSN: 17554349     Source Type: Journal    
DOI: 10.1038/nchem.1296     Document Type: Article
Times cited : (81)

References (45)
  • 1
    • 68049085675 scopus 로고    scopus 로고
    • A 21st century revisionist's view at A turning point in enzymology
    • Nagel, Z. D. & Klinman, J. P. A 21st century revisionist's view at a turning point in enzymology. Nature Chem. Biol. 5, 543-550 (2009).
    • (2009) Nature Chem. Biol. , vol.5 , pp. 543-550
    • Nagel, Z.D.1    Klinman, J.P.2
  • 2
    • 77955138384 scopus 로고    scopus 로고
    • Heavy atom motions and tunneling in hydrogen transfer reactions: The importance of the pre-tunneling state
    • Limbach, H-H., Schowen, K. B. & Schowen, R. L. Heavy atom motions and tunneling in hydrogen transfer reactions: the importance of the pre-tunneling state. J. Phys. Org. Chem. 23, 586-605 (2010).
    • (2010) J. Phys. Org. Chem. , vol.23 , pp. 586-605
    • Limbach, H.-H.1    Schowen, K.B.2    Schowen, R.L.3
  • 3
    • 65549106864 scopus 로고    scopus 로고
    • Probing coupled motions in enzymatic hydrogen tunnelling reactions
    • Allemann, R. K., Evans, R. M. & Loveridge, E. J. Probing coupled motions in enzymatic hydrogen tunnelling reactions. Biochem. Soc. Trans. 37, 349-353 (2009).
    • (2009) Biochem. Soc. Trans. , vol.37 , pp. 349-353
    • Allemann, R.K.1    Evans, R.M.2    Loveridge, E.J.3
  • 4
    • 33645801770 scopus 로고    scopus 로고
    • Atomic description of an enzyme reaction dominated by proton tunneling
    • Masgrau, L. et al. Atomic description of an enzyme reaction dominated by proton tunneling. Science 312, 237-241 (2006).
    • (2006) Science , vol.312 , pp. 237-241
    • Masgrau, L.1
  • 5
    • 33748614305 scopus 로고    scopus 로고
    • Computational and theoretical methods to explore the relation between enzyme dynamics and catalysis
    • Antoniou, D., Basner, J., Núñez, S. & Schwartz, S. D. Computational and theoretical methods to explore the relation between enzyme dynamics and catalysis. Chem. Rev. 106, 3170-3187 (2006).
    • (2006) Chem. Rev. , vol.106 , pp. 3170-3187
    • Antoniou, D.1    Basner, J.2    Núñez, S.3    Schwartz, S.D.4
  • 6
    • 33646935697 scopus 로고    scopus 로고
    • Dynamical contributions to enzyme catalysis: Critical tests of a popular hypothesis
    • Olsson, M. H. M., Parson, W. W. & Warshel, A. Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chem. Rev. 106, 1737-1756 (2006).
    • (2006) Chem. Rev. , vol.106 , pp. 1737-1756
    • Olsson, M.H.M.1    Parson, W.W.2    Warshel, A.3
  • 7
    • 79958826524 scopus 로고    scopus 로고
    • Protein dynamics and enzyme catalysis: Insights from simulations
    • McGeagh, J. D., Ranaghan, K. E. & Mulholland, A. J. Protein dynamics and enzyme catalysis: insights from simulations. Biochim. Biophys. Acta 1814, 1077-1092 (2011).
    • (2011) Biochim. Biophys. Acta , vol.1814 , pp. 1077-1092
    • McGeagh, J.D.1    Ranaghan, K.E.2    Mulholland, A.J.3
  • 8
    • 0033305793 scopus 로고    scopus 로고
    • Proton and hydrogen atom tunnelling in hydrolytic and redox enzyme catalysis
    • Kuznetsov, A. & Ulstrup, J. Proton and hydrogen atom tunnelling in hydrolytic and redox enzyme catalysis. Can. J. Chem. 77, 1085-1096 (1999).
    • (1999) Can. J. Chem. , vol.77 , pp. 1085-1096
    • Kuznetsov, A.1    Ulstrup, J.2
  • 10
    • 72249089538 scopus 로고    scopus 로고
    • Evidence to support the hypothesis that promoting vibrations enhance the rate of an enzyme catalyzed h-tunneling reaction
    • Pudney, C. R. et al. Evidence to support the hypothesis that promoting vibrations enhance the rate of an enzyme catalyzed H-tunneling reaction. J. Am. Chem. Soc. 131, 17072-17073 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 17072-17073
    • Pudney, C.R.1
  • 11
    • 68049093016 scopus 로고    scopus 로고
    • Enzymatic transition states and dynamic motion in barrier crossing
    • Schwartz, S. D. & Schramm, V. L. Enzymatic transition states and dynamic motion in barrier crossing. Nature Chem. Biol. 5, 551-558 (2009).
    • (2009) Nature Chem. Biol. , vol.5 , pp. 551-558
    • Schwartz, S.D.1    Schramm, V.L.2
  • 12
    • 78650152378 scopus 로고    scopus 로고
    • Slow conformational motions that favor sub-picosecond motions important for catalysis
    • Pineda, J. R. E. T., Antoniou, D. & Schwartz, S. D. Slow conformational motions that favor sub-picosecond motions important for catalysis. J. Phys. Chem. B 114, 15985-15990 (2010).
    • (2010) J. Phys. Chem. B , vol.114 , pp. 15985-15990
    • Pineda, J.R.E.T.1    Antoniou, D.2    Schwartz, S.D.3
  • 13
    • 37249032102 scopus 로고    scopus 로고
    • Dynamic personalities of proteins
    • Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964-972 (2007).
    • (2007) Nature , vol.450 , pp. 964-972
    • Henzler-Wildman, K.1    Kern, D.2
  • 14
    • 0042905762 scopus 로고    scopus 로고
    • A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: The beta-neopentylcobalamin system combined with prior adocobalamin data
    • Doll, K. M. & Finke, R. G. A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: the beta-neopentylcobalamin system combined with prior adocobalamin data. Inorg. Chem. 42, 4849-4856 (2003).
    • (2003) Inorg. Chem. , vol.42 , pp. 4849-4856
    • Doll, K.M.1    Finke, R.G.2
  • 15
    • 0043236031 scopus 로고    scopus 로고
    • The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling
    • Doll, K. M., Bender, B. R. & Finke, R. G. The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling. J. Am. Chem. Soc. 125, 10877-10884 (2003).
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 10877-10884
    • Doll, K.M.1    Bender, B.R.2    Finke, R.G.3
  • 16
    • 77955127388 scopus 로고    scopus 로고
    • An analysis of all the relevant facts and arguments indicates that enzyme catalysis does not involve large contributions from nuclear tunneling
    • Kamerlin, S. C. L. & Warshel, A. An analysis of all the relevant facts and arguments indicates that enzyme catalysis does not involve large contributions from nuclear tunneling. J. Phys. Org. Chem. 23, 677-684 (2010).
    • (2010) J. Phys. Org. Chem. , vol.23 , pp. 677-684
    • Kamerlin, S.C.L.1    Warshel, A.2
  • 17
    • 70350453758 scopus 로고    scopus 로고
    • Enzyme millisecond conformational dynamics do not catalyze the chemical step
    • Pisliakov, A. V., Cao, J., Kamerlin, S. C. L. & Warshel, A. Enzyme millisecond conformational dynamics do not catalyze the chemical step. Proc. Natl Acad. Sci. USA 106, 17359-17364 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 17359-17364
    • Pisliakov, A.V.1    Cao, J.2    Kamerlin, S.C.L.3    Warshel, A.4
  • 18
    • 33748589503 scopus 로고    scopus 로고
    • Isotope effects and quantum tunneling in enzyme-catalyzed hydrogen transfer. Part I. The experimental basis
    • Romesberg, F. E. & Schowen, R. L. Isotope effects and quantum tunneling in enzyme-catalyzed hydrogen transfer. Part I. The experimental basis. Adv. Phys. Org. Chem. 39, 27-77 (2004).
    • (2004) Adv. Phys. Org. Chem. , vol.39 , pp. 27-77
    • Romesberg, F.E.1    Schowen, R.L.2
  • 19
    • 34547456661 scopus 로고    scopus 로고
    • Origin of the temperature dependence of isotope effects in enzymatic reactions: The case of dihydrofolate reductase
    • Liu, H. & Warshel, A. Origin of the temperature dependence of isotope effects in enzymatic reactions: the case of dihydrofolate reductase. J. Phys. Chem. B 111, 7852-7861 (2007).
    • (2007) J. Phys. Chem. B , vol.111 , pp. 7852-7861
    • Liu, H.1    Warshel, A.2
  • 20
    • 33845282135 scopus 로고
    • Theoretical transition structures for hydride transfer to methyleneiminium ion from methylamine and dihydropyridine. on the nonlinearity of hydride transfers
    • Wu, Y. D. & Houk, K. Theoretical transition structures for hydride transfer to methyleneiminium ion from methylamine and dihydropyridine. On the nonlinearity of hydride transfers. J. Am. Chem. Soc. 109, 2226-2227 (1987).
    • (1987) J. Am. Chem. Soc. , vol.109 , pp. 2226-2227
    • Wu, Y.D.1    Houk, K.2
  • 21
    • 79955972786 scopus 로고    scopus 로고
    • Effect of ph on hydride transfer by escherichia coli dihydrofolate reductase
    • Loveridge, E. J. & Allemann, R. K. Effect of pH on hydride transfer by Escherichia coli dihydrofolate reductase. ChemBioChem 12, 1258-1262 (2011).
    • (2011) ChemBioChem , vol.12 , pp. 1258-1262
    • Loveridge, E.J.1    Allemann, R.K.2
  • 22
    • 1842830209 scopus 로고    scopus 로고
    • Tunneling and coupled motion in the escherichia coli dihydrofolate reductase catalysis
    • Sikorski, R. S. et al. Tunneling and coupled motion in the Escherichia coli dihydrofolate reductase catalysis. J. Am. Chem. Soc. 126, 4778-4779 (2004).
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 4778-4779
    • Sikorski, R.S.1
  • 23
    • 0033519723 scopus 로고    scopus 로고
    • Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase
    • Kohen, A., Cannio, R., Bartolucci, S. & Klinman, J. P. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399, 496-499 (1999).
    • (1999) Nature , vol.399 , pp. 496-499
    • Kohen, A.1    Cannio, R.2    Bartolucci, S.3    Klinman, J.P.4
  • 24
    • 0034616853 scopus 로고    scopus 로고
    • Evidence for quantum mechanical tunneling in the coupled cobalt-carbon bond homolysis-substrate radical generation reaction catalyzed by methylmalonyl-coa mutase
    • Chowdhury, S. & Banerjee, R. Evidence for quantum mechanical tunneling in the coupled cobalt-carbon bond homolysis-substrate radical generation reaction catalyzed by methylmalonyl-CoA mutase. J. Am. Chem. Soc. 122, 5417-5418 (2000).
    • (2000) J. Am. Chem. Soc. , vol.122 , pp. 5417-5418
    • Chowdhury, S.1    Banerjee, R.2
  • 25
    • 29344449107 scopus 로고    scopus 로고
    • Oxygen-and temperature-dependent kinetic isotope effects in choline oxidase: Correlating reversible hydride transfer with environmentally enhanced tunneling
    • Fan, F. & Gadda, G. Oxygen-and temperature-dependent kinetic isotope effects in choline oxidase: correlating reversible hydride transfer with environmentally enhanced tunneling. J. Am. Chem. Soc. 127, 17954-17961 (2005).
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 17954-17961
    • Fan, F.1    Gadda, G.2
  • 26
    • 57349195545 scopus 로고    scopus 로고
    • Hydrogen tunneling in glucose oxidation by the archaeon thermoplasma acidophilum
    • Anandarajah, K. & Schowen, K. Hydrogen tunneling in glucose oxidation by the archaeon Thermoplasma acidophilum. Z. Phys. Chem. 222, 1333-1347 (2008).
    • (2008) Z. Phys. Chem. , vol.222 , pp. 1333-1347
    • Anandarajah, K.1    Schowen, K.2
  • 27
    • 68149157996 scopus 로고    scopus 로고
    • Structural and mechanistic aspects of flavoproteins: Probes of hydrogen tunnelling
    • Hay, S., Pudney, C. R. & Scrutton, N. S. Structural and mechanistic aspects of flavoproteins: probes of hydrogen tunnelling. FEBS J. 276, 3930-3941 (2009).
    • (2009) FEBS J. , vol.276 , pp. 3930-3941
    • Hay, S.1    Pudney, C.R.2    Scrutton, N.S.3
  • 28
    • 63649139679 scopus 로고    scopus 로고
    • Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase
    • Heyes, D. J., Sakuma, M., de Visser, S. P. & Scrutton, N. S. Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase. J. Biol. Chem. 284, 3762-3767 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 3762-3767
    • Heyes, D.J.1    Sakuma, M.2    De Visser, S.P.3    Scrutton, N.S.4
  • 29
    • 0031015737 scopus 로고    scopus 로고
    • Loop and subdomain movements in the mechanism of escherichia coli dihydrofolate reductase: Crystallographic evidence
    • Sawaya, M. R. & Kraut, J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36, 586-603 (1997).
    • (1997) Biochemistry , vol.36 , pp. 586-603
    • Sawaya, M.R.1    Kraut, J.2
  • 30
    • 79953823548 scopus 로고    scopus 로고
    • A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis
    • Bhabha, G. et al. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332, 234-238 (2011).
    • (2011) Science , vol.332 , pp. 234-238
    • Bhabha, G.1
  • 31
    • 80052149070 scopus 로고    scopus 로고
    • Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions
    • Adamczyk, A. J., Cao, J., Kamerlin, S. C. L. & Warshel, A. Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc. Natl Acad. Sci. USA 108, 14115-14120 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 14115-14120
    • Adamczyk, A.J.1    Cao, J.2    Kamerlin, S.C.L.3    Warshel, A.4
  • 32
    • 1842531419 scopus 로고    scopus 로고
    • Pivotal role of gly 121 in dihydrofolate reductase from escherichia coli: The altered structure of a mutant enzyme may form the basis of its diminished catalytic performance
    • Swanwick, R. S., Shrimpton, P. J. & Allemann, R. K. Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: the altered structure of a mutant enzyme may form the basis of its diminished catalytic performance. Biochemistry 43, 4119-4127 (2004).
    • (2004) Biochemistry , vol.43 , pp. 4119-4127
    • Swanwick, R.S.1    Shrimpton, P.J.2    Allemann, R.K.3
  • 33
    • 0023668190 scopus 로고
    • Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from escherichia coli
    • Fierke, C. A., Johnson, K. A. & Benkovic, S. J. Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry 26, 4085-4092 (1987).
    • (1987) Biochemistry , vol.26 , pp. 4085-4092
    • Fierke, C.A.1    Johnson, K.A.2    Benkovic, S.J.3
  • 34
    • 0041761262 scopus 로고    scopus 로고
    • Hydride transfer during catalysis by dihydrofolate reductase from thermotoga maritima
    • Maglia, G., Javed, M. H. & Allemann, R. K. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima. Biochem. J. 374, 529-535 (2003).
    • (2003) Biochem. J. , vol.374 , pp. 529-535
    • Maglia, G.1    Javed, M.H.2    Allemann, R.K.3
  • 35
    • 83755168786 scopus 로고    scopus 로고
    • The role of large-scale motions in catalysis by dihydrofolate reductase
    • Loveridge, E. J. et al. The role of large-scale motions in catalysis by dihydrofolate reductase. J. Am. Chem. Soc. 133, 20561-20570 (2011).
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 20561-20570
    • Loveridge, E.J.1
  • 36
    • 67849095470 scopus 로고    scopus 로고
    • III functionally important conformations of the met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations
    • Arora, K. & Brooks, C. L. III Functionally important conformations of the Met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations. J. Am. Chem. Soc. 131, 5642-5647 (2009).
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 5642-5647
    • Arora, K.1    Brooks, C.L.2
  • 37
    • 0035928796 scopus 로고    scopus 로고
    • Backbone dynamics in dihydrofolate reductase complexes: Role of loop flexibility in the catalytic mechanism
    • Osborne, M. J., Schnell, J., Benkovic, S. J., Dyson, H. J. & Wright, P. E. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochemistry 40, 9846-9859 (2001).
    • (2001) Biochemistry , vol.40 , pp. 9846-9859
    • Osborne, M.J.1    Schnell, J.2    Benkovic, S.J.3    Dyson, H.J.4    Wright, P.E.5
  • 38
    • 77953879146 scopus 로고    scopus 로고
    • The temperature dependence of the kinetic isotope effects of dihydrofolate reductase from thermotoga maritima is influenced by intersubunit interactions
    • Loveridge, E. J. & Allemann, R. K. The temperature dependence of the kinetic isotope effects of dihydrofolate reductase from Thermotoga maritima is influenced by intersubunit interactions. Biochemistry 49, 5390-5396 (2010).
    • (2010) Biochemistry , vol.49 , pp. 5390-5396
    • Loveridge, E.J.1    Allemann, R.K.2
  • 39
    • 76149110500 scopus 로고    scopus 로고
    • Solvent effects on catalysis by escherichia coli dihydrofolate reductase
    • Loveridge, E. J., Tey, L-H. & Allemann, R. K. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase. J. Am. Chem. Soc. 132, 1137-1143 (2010).
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 1137-1143
    • Loveridge, E.J.1    Tey, L.-H.2    Allemann, R.K.3
  • 40
    • 56749083652 scopus 로고    scopus 로고
    • Solvent effects on environmentally coupled hydrogen tunnelling during catalysis by dihydrofolate reductase from thermotoga maritima
    • Loveridge, E. J., Evans, R. M. & Allemann, R. K. Solvent effects on environmentally coupled hydrogen tunnelling during catalysis by dihydrofolate reductase from Thermotoga maritima. Chem. Eur. J. 14, 10782-10788 (2008).
    • (2008) Chem. Eur. J. , vol.14 , pp. 10782-10788
    • Loveridge, E.J.1    Evans, R.M.2    Allemann, R.K.3
  • 41
    • 34249104188 scopus 로고    scopus 로고
    • The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies
    • Liu, H. & Warshel, A. The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies. Biochemistry 46, 6011-6025 (2007).
    • (2007) Biochemistry , vol.46 , pp. 6011-6025
    • Liu, H.1    Warshel, A.2
  • 42
    • 32944457660 scopus 로고    scopus 로고
    • Coupling of protein motions and hydrogen transfer during catalysis by escherichia coli dihydrofolate reductase
    • Swanwick, R. S., Maglia, G., Tey, L-H. & Allemann, R. K. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase. Biochem. J. 394, 259-265 (2006).
    • (2006) Biochem. J. , vol.394 , pp. 259-265
    • Swanwick, R.S.1    Maglia, G.2    Tey, L.-H.3    Allemann, R.K.4
  • 43
    • 36949079198 scopus 로고
    • Crystalline dihydropteroylglutamic acid
    • Blakley, R. Crystalline dihydropteroylglutamic acid. Nature 188, 231-232 (1960).
    • (1960) Nature , vol.188 , pp. 231-232
    • Blakley, R.1
  • 44
    • 0020466628 scopus 로고
    • Kinetic mechanism of the reaction catalyzed by dihydrofolate reductase from escherichia coli
    • Stone, S. R. & Morrison, J. F. Kinetic mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli. Biochemistry 21, 3757-3765 (1982).
    • (1982) Biochemistry , vol.21 , pp. 3757-3765
    • Stone, S.R.1    Morrison, J.F.2
  • 45
    • 34250213275 scopus 로고    scopus 로고
    • Temperature dependence of acidity constants, a tool to affect separation selectivity in capillary electrophoresis
    • Reijenga, J. C., Gagliardi, L. G. & Kenndler, E. Temperature dependence of acidity constants, a tool to affect separation selectivity in capillary electrophoresis. J. Chromatogr. A 1155, 142-145 (2007).
    • (2007) J. Chromatogr. A , vol.1155 , pp. 142-145
    • Reijenga, J.C.1    Gagliardi, L.G.2    Kenndler, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.