메뉴 건너뛰기




Volumn 394, Issue 1, 2006, Pages 259-265

Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase

Author keywords

Dihydrofolate reductase; Dynamics; Hydrogen transfer; Kinetics; Protein motions; Tunnelling

Indexed keywords

ACTIVATION ENERGY; CATALYSIS; ESCHERICHIA COLI; ISOTOPES; RATE CONSTANTS;

EID: 32944457660     PISSN: 02646021     EISSN: None     Source Type: Journal    
DOI: 10.1042/BJ20051464     Document Type: Article
Times cited : (51)

References (53)
  • 1
    • 0022004980 scopus 로고
    • Electron transfers in chemistry and biology
    • Marcus, R. A. and Sutin, N. (1985) Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265-322
    • (1985) Biochim. Biophys. Acta , vol.811 , pp. 265-322
    • Marcus, R.A.1    Sutin, N.2
  • 3
    • 0035794224 scopus 로고    scopus 로고
    • Importance of barrier shape in enzyme-catalyzed reactions: Vibrationally assisted hydrogen tunneling in tryptophan tryptophylquinone-dependent amine dehydrogenases
    • Basran, J., Patel, S., Sutcliffe, M. J. and Scrutton, N. S. (2001) Importance of barrier shape in enzyme-catalyzed reactions: vibrationally assisted hydrogen tunneling in tryptophan tryptophylquinone-dependent amine dehydrogenases. J. Biol. Chem. 276, 6234-6242
    • (2001) J. Biol. Chem. , vol.276 , pp. 6234-6242
    • Basran, J.1    Patel, S.2    Sutcliffe, M.J.3    Scrutton, N.S.4
  • 4
    • 0037125529 scopus 로고    scopus 로고
    • Hydrogen tunneling in peptidylglycine α-hydroxylating monooxygenase
    • Francisco, W. A., Knapp, M. J., Blackburn, N. J. and Klinman, J. P. (2002) Hydrogen tunneling in peptidylglycine α-hydroxylating monooxygenase. J. Am. Chem. Soc. 124, 8194-8195
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 8194-8195
    • Francisco, W.A.1    Knapp, M.J.2    Blackburn, N.J.3    Klinman, J.P.4
  • 5
    • 0036301901 scopus 로고    scopus 로고
    • Environmentally coupled hydrogen tunneling: Linking catalysis to dynamics
    • Knapp, M. J. and Klinman, J. P. (2002) Environmentally coupled hydrogen tunneling: linking catalysis to dynamics. Eur. J. Biochem. 269, 3113-3121
    • (2002) Eur. J. Biochem. , vol.269 , pp. 3113-3121
    • Knapp, M.J.1    Klinman, J.P.2
  • 6
    • 0033168713 scopus 로고    scopus 로고
    • Hydrogen tunneling in biology
    • Kohen, A. and Klinman, J. P. (1999) Hydrogen tunneling in biology. Chem. Biol. 6, R191-R198
    • (1999) Chem. Biol. , vol.6
    • Kohen, A.1    Klinman, J.P.2
  • 7
    • 0034327617 scopus 로고    scopus 로고
    • Protein flexibility correlates with degree of hydrogen tunneling in thermophilic and mesophilic alcohol dehydrogenases
    • Kohen, A. and Klinman, J. P. (2000) Protein flexibility correlates with degree of hydrogen tunneling in thermophilic and mesophilic alcohol dehydrogenases. J. Am. Chem. Soc. 122, 10738-10739
    • (2000) J. Am. Chem. Soc. , vol.122 , pp. 10738-10739
    • Kohen, A.1    Klinman, J.P.2
  • 8
    • 0242267579 scopus 로고    scopus 로고
    • Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis
    • Maglia, G. and Allemann, R. K. (2003) Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis. J. Am. Chem. Soc. 125, 13372-13373
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 13372-13373
    • Maglia, G.1    Allemann, R.K.2
  • 9
    • 0033592315 scopus 로고    scopus 로고
    • Nature of hydrogen transfer in soybean lipoxygenase 1: Separation of primary and secondary isotope effects
    • Rickert, K. W. and Klinman, J. P. (1999) Nature of hydrogen transfer in soybean lipoxygenase 1: separation of primary and secondary isotope effects. Biochemistry 38, 12218-12228
    • (1999) Biochemistry , vol.38 , pp. 12218-12228
    • Rickert, K.W.1    Klinman, J.P.2
  • 10
    • 1242307783 scopus 로고    scopus 로고
    • Vibrationally enhanced hydrogen tunneling in the Escherichia coli thymidylate synthase catalyzed reaction
    • Agrawal, N., Hong, B. Y., Mihai, C. and Kohen, A. (2004) Vibrationally enhanced hydrogen tunneling in the Escherichia coli thymidylate synthase catalyzed reaction. Biochemistry 43, 1998-2006
    • (2004) Biochemistry , vol.43 , pp. 1998-2006
    • Agrawal, N.1    Hong, B.Y.2    Mihai, C.3    Kohen, A.4
  • 12
    • 0043236031 scopus 로고    scopus 로고
    • The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling
    • Doll, K. M., Bender, B. R. and Finke, R. G. (2003) The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling. J. Am. Chem. Soc. 125, 10877-10884
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 10877-10884
    • Doll, K.M.1    Bender, B.R.2    Finke, R.G.3
  • 13
    • 0037518552 scopus 로고    scopus 로고
    • Dynamic barriers and tunneling. New views of hydrogen transfer in enzyme reactions
    • Klinman, J. P. (2003) Dynamic barriers and tunneling. New views of hydrogen transfer in enzyme reactions. Pure Appl. Chem. 75, 601-608
    • (2003) Pure Appl. Chem. , vol.75 , pp. 601-608
    • Klinman, J.P.1
  • 15
    • 0346726109 scopus 로고    scopus 로고
    • How enzymes work: Analysis by modern rate theory and computer simulations
    • Garcia-Viloca, M., Gao, J., Karplus, M. and Truhlar, D. G. (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303, 186-195
    • (2004) Science , vol.303 , pp. 186-195
    • Garcia-Viloca, M.1    Gao, J.2    Karplus, M.3    Truhlar, D.G.4
  • 16
    • 33751123245 scopus 로고    scopus 로고
    • Curve crossing formulation for proton transfer reactions in solution
    • Borgis, D. and Hynes, J. T. (1996) Curve crossing formulation for proton transfer reactions in solution. J. Phys. Chem. 100, 1118-1128
    • (1996) J. Phys. Chem. , vol.100 , pp. 1118-1128
    • Borgis, D.1    Hynes, J.T.2
  • 17
    • 0026707687 scopus 로고
    • Vibrationally enhanced tunneling as a mechanism for enzymatic hydrogen transfer
    • Bruno, W. J. and Bialek, W. (1992) Vibrationally enhanced tunneling as a mechanism for enzymatic hydrogen transfer. Biophys. J. 63, 689-699
    • (1992) Biophys. J. , vol.63 , pp. 689-699
    • Bruno, W.J.1    Bialek, W.2
  • 19
    • 0033305793 scopus 로고    scopus 로고
    • Proton and hydrogen atom tunnelling in hydrolytic and redox enzyme catalysis
    • Kuznetsov, A. M. and Ulstrup, J. (1999) Proton and hydrogen atom tunnelling in hydrolytic and redox enzyme catalysis. Can. J. Chem. 77, 1085-1096
    • (1999) Can. J. Chem. , vol.77 , pp. 1085-1096
    • Kuznetsov, A.M.1    Ulstrup, J.2
  • 20
    • 0037159205 scopus 로고    scopus 로고
    • Coupling interactions of distal residues enhance dihydrofolate reductase catalysis: Mutational effects on hydride transfer rates
    • Rajagopalan, P. T. R., Lutz, S. and Benkovic, S. J. (2002) Coupling interactions of distal residues enhance dihydrofolate reductase catalysis: mutational effects on hydride transfer rates. Biochemistry 41, 12618-12628
    • (2002) Biochemistry , vol.41 , pp. 12618-12628
    • Rajagopalan, P.T.R.1    Lutz, S.2    Benkovic, S.J.3
  • 21
    • 0031015737 scopus 로고    scopus 로고
    • Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: Crystallographic evidence
    • Sawaya, M. R. and Kraut, J. (1997) Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36, 586-603
    • (1997) Biochemistry , vol.36 , pp. 586-603
    • Sawaya, M.R.1    Kraut, J.2
  • 22
    • 11144328151 scopus 로고    scopus 로고
    • Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle
    • Venkitakrishnan, R. P., Zaborowski, E., McElheny, D., Benkovic, S. J., Dyson, H. J. and Wright, R E. (2004) Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle. Biochemistry 43, 16046-16055
    • (2004) Biochemistry , vol.43 , pp. 16046-16055
    • Venkitakrishnan, R.P.1    Zaborowski, E.2    McElheny, D.3    Benkovic, S.J.4    Dyson, H.J.5    Wright, R.E.6
  • 23
    • 0035928796 scopus 로고    scopus 로고
    • Backbone dynamics in dihydrofolate reductase complexes: Role of loop flexibility in the catalytic mechanism
    • Osborne, M. J., Schnell, J., Benkovic, S. J., Dyson, H. J. and Wright, P. E. (2001) Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochemistry 40, 9846-9859
    • (2001) Biochemistry , vol.40 , pp. 9846-9859
    • Osborne, M.J.1    Schnell, J.2    Benkovic, S.J.3    Dyson, H.J.4    Wright, P.E.5
  • 24
    • 0028049327 scopus 로고
    • Dynamics of a flexible loop in dihydrofolate-reductase from Escherichia coli and its implication for catalysis
    • Falzone, C. J., Wright, P. E. and Benkovic, S. J. (1994) Dynamics of a flexible loop in dihydrofolate-reductase from Escherichia coli and its implication for catalysis. Biochemistry 33, 439-442
    • (1994) Biochemistry , vol.33 , pp. 439-442
    • Falzone, C.J.1    Wright, P.E.2    Benkovic, S.J.3
  • 26
    • 0023668190 scopus 로고
    • Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli
    • Fierke, C. A., Johnson, K. A. and Benkovic, S. J. (1987) Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry 26, 4085-4092
    • (1987) Biochemistry , vol.26 , pp. 4085-4092
    • Fierke, C.A.1    Johnson, K.A.2    Benkovic, S.J.3
  • 27
    • 0031808658 scopus 로고    scopus 로고
    • Stretching exercises: Flexibility in dihydrofolate reductase catalysis
    • Miller, G. P. and Benkovic, S. J. (1998) Stretching exercises: flexibility in dihydrofolate reductase catalysis. Chem. Biol. 5, R105-R113
    • (1998) Chem. Biol. , vol.5
    • Miller, G.P.1    Benkovic, S.J.2
  • 28
    • 84961978282 scopus 로고    scopus 로고
    • Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase
    • Cummins, P. L. and Gready, J. E. (2001) Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase. J. Am. Chem. Soc. 123, 3418-3428
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 3418-3428
    • Cummins, P.L.1    Gready, J.E.2
  • 29
    • 0033616094 scopus 로고    scopus 로고
    • Catalytic mechanism of dihydrofolate reductase enzyme: A combined quantum-mechanical/molecular-mechanical characterization of transition state structure for the hydride transfer step
    • Castillo, R., Andres, J. and Moliner, V. (1999) Catalytic mechanism of dihydrofolate reductase enzyme: a combined quantum-mechanical/molecular- mechanical characterization of transition state structure for the hydride transfer step. J. Am. Chem. Soc. 121, 12140-12147
    • (1999) J. Am. Chem. Soc. , vol.121 , pp. 12140-12147
    • Castillo, R.1    Andres, J.2    Moliner, V.3
  • 30
    • 0037459224 scopus 로고    scopus 로고
    • Importance of substrate and cofactor polarization in the active site of dihydrofolate reductase
    • Garcia-Viloca, M., Truhlar, D. G. and Gao, J. (2003) Importance of substrate and cofactor polarization in the active site of dihydrofolate reductase. J. Mol. Biol. 327, 549-560
    • (2003) J. Mol. Biol. , vol.327 , pp. 549-560
    • Garcia-Viloca, M.1    Truhlar, D.G.2    Gao, J.3
  • 31
    • 0344391945 scopus 로고    scopus 로고
    • Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase
    • Garcia-Viloca, M., Truhlar, D. G. and Gao, J. (2003) Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase. Biochemistry 42, 13558-13575
    • (2003) Biochemistry , vol.42 , pp. 13558-13575
    • Garcia-Viloca, M.1    Truhlar, D.G.2    Gao, J.3
  • 32
    • 0346936519 scopus 로고    scopus 로고
    • Barriers to hydride transfer in wild type and mutant dihydrofolate reductase from E. coli
    • Thorpe, I. F. and Brooks, C. L. (2003) Barriers to hydride transfer in wild type and mutant dihydrofolate reductase from E. coli. J. Phys. Chem. B 107, 14042-14051
    • (2003) J. Phys. Chem. B , vol.107 , pp. 14042-14051
    • Thorpe, I.F.1    Brooks, C.L.2
  • 33
    • 6344294816 scopus 로고    scopus 로고
    • The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase
    • Thorpe, I. F. and Brooks, C. L. (2004) The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase. Proteins Struct. Funct. Bioinform. 57, 444-457
    • (2004) Proteins Struct. Funct. Bioinform. , vol.57 , pp. 444-457
    • Thorpe, I.F.1    Brooks, C.L.2
  • 34
    • 0038810233 scopus 로고    scopus 로고
    • Correlated motion and the effect of distal mutations in dihydrofolate reductase
    • Rod, T. H., Radkiewicz, J. L. and Brooks, C. L. (2003) Correlated motion and the effect of distal mutations in dihydrofolate reductase. Proc. Natl. Acad. Sci. U.S.A. 100, 6980-6985
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 6980-6985
    • Rod, T.H.1    Radkiewicz, J.L.2    Brooks, C.L.3
  • 35
    • 0038298137 scopus 로고    scopus 로고
    • How dihydrofolate reductase facilitates protonation of dihydrofolate
    • Rod, T. H. and Brooks, C. L. (2003) How dihydrofolate reductase facilitates protonation of dihydrofolate. J. Am. Chem. Soc. 125, 8718-8719
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 8718-8719
    • Rod, T.H.1    Brooks, C.L.2
  • 36
    • 0037188007 scopus 로고    scopus 로고
    • Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis
    • Agarwal, P. K., Billeter, S. R. and Hammes-Schiffer, S. (2002) Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis. J. Phys. Chem. B 106, 3283-3293
    • (2002) J. Phys. Chem. B , vol.106 , pp. 3283-3293
    • Agarwal, P.K.1    Billeter, S.R.2    Hammes-Schiffer, S.3
  • 37
    • 0031443372 scopus 로고    scopus 로고
    • Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant
    • Cameron, C. E. and Benkovic, S. J. (1997) Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant. Biochemistry 36, 15792-15800
    • (1997) Biochemistry , vol.36 , pp. 15792-15800
    • Cameron, C.E.1    Benkovic, S.J.2
  • 38
    • 1842531419 scopus 로고    scopus 로고
    • 121 in dihydrofolate reductase from Escherichia coli: The altered structure of a mutant enzyme may form the basis of its diminished catalytic performance
    • 121 in dihydrofolate reductase from Escherichia coli: the altered structure of a mutant enzyme may form the basis of its diminished catalytic performance. Biochemistry 43, 4119-4127
    • (2004) Biochemistry , vol.43 , pp. 4119-4127
    • Swanwick, R.S.1    Shrimpton, P.J.2    Allemann, R.K.3
  • 39
    • 0041761262 scopus 로고    scopus 로고
    • Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima
    • Maglia, G., Javed, M. H. and Allemann, R. K. (2003) Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima. Biochem. J. 374, 529-535
    • (2003) Biochem. J. , vol.374 , pp. 529-535
    • Maglia, G.1    Javed, M.H.2    Allemann, R.K.3
  • 40
    • 0020466628 scopus 로고
    • Kinetic mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli
    • Stone, S. R. and Morrison, J. F. (1982) Kinetic mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli. Biochemistry 21, 3757-3765
    • (1982) Biochemistry , vol.21 , pp. 3757-3765
    • Stone, S.R.1    Morrison, J.F.2
  • 41
    • 0032485865 scopus 로고    scopus 로고
    • Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase
    • Miller, G. P. and Benkovic, S. J. (1998) Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase. Biochemistry 37, 6336-6342
    • (1998) Biochemistry , vol.37 , pp. 6336-6342
    • Miller, G.P.1    Benkovic, S.J.2
  • 43
    • 0037123216 scopus 로고    scopus 로고
    • Temperature-dependent isotope effects in soybean lipoxygenase-1: Correlating hydrogen tunneling with protein dynamics
    • Knapp, M. J., Rickert, K. and Klinman, J. P. (2002) Temperature-dependent isotope effects in soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics. J. Am. Chem. Soc. 124, 3865-3874
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 3865-3874
    • Knapp, M.J.1    Rickert, K.2    Klinman, J.P.3
  • 44
    • 0029964954 scopus 로고    scopus 로고
    • Experimental evidence for extensive tunneling of hydrogen in the lipoxygenase reaction: Implications for enzyme catalysis
    • Jonsson, T., Glickman, M. H., Sun, S. J. and Klinman, J. P. (1996) Experimental evidence for extensive tunneling of hydrogen in the lipoxygenase reaction: implications for enzyme catalysis. J. Am. Chem. Soc. 118, 10319-10320
    • (1996) J. Am. Chem. Soc. , vol.118 , pp. 10319-10320
    • Jonsson, T.1    Glickman, M.H.2    Sun, S.J.3    Klinman, J.P.4
  • 45
    • 0346725553 scopus 로고
    • Dynamic theory of proton tunneling transfer rates in solution: General formulation
    • Borgis, D. and Hynes, J. T. (1993) Dynamic theory of proton tunneling transfer rates in solution: general formulation. Chem. Phys. 170, 315-346
    • (1993) Chem. Phys. , vol.170 , pp. 315-346
    • Borgis, D.1    Hynes, J.T.2
  • 46
    • 0347866726 scopus 로고    scopus 로고
    • Activated chemistry in the presence of a strongly symmetrically coupled vibration
    • Antoniou, D. and Schwartz, S. D. (1998) Activated chemistry in the presence of a strongly symmetrically coupled vibration. J. Chem. Phys. 108, 3620-3625
    • (1998) J. Chem. Phys. , vol.108 , pp. 3620-3625
    • Antoniou, D.1    Schwartz, S.D.2
  • 47
    • 0035859446 scopus 로고    scopus 로고
    • Internal enzyme motions as a source of catalytic activity: Rate-promoting vibrations and hydrogen tunneling
    • Antoniou, D. and Schwartz, S. D. (2001) Internal enzyme motions as a source of catalytic activity: rate-promoting vibrations and hydrogen tunneling. J. Phys. Chem. B 105, 5553-5558
    • (2001) J. Phys. Chem. B , vol.105 , pp. 5553-5558
    • Antoniou, D.1    Schwartz, S.D.2
  • 48
    • 0141706648 scopus 로고    scopus 로고
    • Kinetic studies of oxygen reactivity in soybean lipoxygenase-1
    • Knapp, M. J. and Klinman, J. P. (2003) Kinetic studies of oxygen reactivity in soybean lipoxygenase-1. Biochemistry 42, 11466-11475
    • (2003) Biochemistry , vol.42 , pp. 11466-11475
    • Knapp, M.J.1    Klinman, J.P.2
  • 49
    • 0037426823 scopus 로고    scopus 로고
    • A computational method to identify residues important in creating a protein promoting vibration in enzymes
    • Mincer, J. S. and Schwartz, S. D. (2003) A computational method to identify residues important in creating a protein promoting vibration in enzymes. J. Phys. Chem. B 107, 366-371
    • (2003) J. Phys. Chem. B , vol.107 , pp. 366-371
    • Mincer, J.S.1    Schwartz, S.D.2
  • 50
    • 0037012441 scopus 로고    scopus 로고
    • Identification of a protein-promoting vibration in the reaction catalyzed by horse liver alcohol dehydrogenase
    • Caratzoulas, S., Mincer, J. S. and Schwartz, S. D. (2002) Identification of a protein-promoting vibration in the reaction catalyzed by horse liver alcohol dehydrogenase. J. Am. Chem. Soc. 124, 3270-3276
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 3270-3276
    • Caratzoulas, S.1    Mincer, J.S.2    Schwartz, S.D.3
  • 51
    • 0036305396 scopus 로고    scopus 로고
    • A new conceptual framework for enzyme catalysis: Hydrogen tunneling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes
    • Sutcliffe, M. J. and Scrutton, N. S. (2002) A new conceptual framework for enzyme catalysis: hydrogen tunneling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes. Eur. J. Biochem. 269, 3096-3102
    • (2002) Eur. J. Biochem. , vol.269 , pp. 3096-3102
    • Sutcliffe, M.J.1    Scrutton, N.S.2
  • 52
    • 0037414270 scopus 로고    scopus 로고
    • Effect of mutation on enzyme motion in dihydrofolate reductase
    • Watney, J. B., Agarwal, P. K. and Hammes-Schiffer, S. (2003) Effect of mutation on enzyme motion in dihydrofolate reductase. J. Am. Chem. Soc. 125, 3745-3750
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 3745-3750
    • Watney, J.B.1    Agarwal, P.K.2    Hammes-Schiffer, S.3
  • 53
    • 19944416878 scopus 로고    scopus 로고
    • Small temperature dependence of the kinetic isotope effect for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase
    • Pu, J. Z., Ma, S. H., Gao, J. L. and Truhlar, D. G. (2005) Small temperature dependence of the kinetic isotope effect for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase. J. Phys. Chem. B 109, 8551-8556
    • (2005) J. Phys. Chem. B , vol.109 , pp. 8551-8556
    • Pu, J.Z.1    Ma, S.H.2    Gao, J.L.3    Truhlar, D.G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.