메뉴 건너뛰기




Volumn 79, Issue 4, 2011, Pages 1089-1108

Protein rigidity and thermophilic adaptation

Author keywords

Enzyme activity; Flexibility; Network; Protein engineering; Rigidity theory; Thermostability

Indexed keywords

3 ISOPROPYLMALATE DEHYDROGENASE; BACTERIAL ENZYME; PROTEINASE; THERMOLYSIN LIKE PROTEASE; UNCLASSIFIED DRUG;

EID: 79952487469     PISSN: 08873585     EISSN: 10970134     Source Type: Journal    
DOI: 10.1002/prot.22946     Document Type: Article
Times cited : (123)

References (143)
  • 1
    • 0032438190 scopus 로고    scopus 로고
    • The stability of proteins in extreme environments
    • Jaenicke R, Böhm G. The stability of proteins in extreme environments. Curr Opin Struct Biol 1998; 8: 738-748.
    • (1998) Curr Opin Struct Biol , vol.8 , pp. 738-748
    • Jaenicke, R.1    Böhm, G.2
  • 3
    • 0034973280 scopus 로고    scopus 로고
    • Review: protein function at thermal extremes: balancing stability and flexibility
    • Fields PA. Review: protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A: Comp Physiol 2001; 129: 417-431.
    • (2001) Comp Biochem Physiol A: Comp Physiol , vol.129 , pp. 417-431
    • Fields, P.1
  • 5
    • 16244419351 scopus 로고    scopus 로고
    • Recent progress towards the application of hyperthermophiles and their enzymes
    • Atomi H. Recent progress towards the application of hyperthermophiles and their enzymes. Curr Opin Chem Biol 2005; 9: 166-173.
    • (2005) Curr Opin Chem Biol , vol.9 , pp. 166-173
    • Atomi, H.1
  • 6
    • 34147150667 scopus 로고    scopus 로고
    • Potential and utilization of thermophiles and thermostable enzymes in biorefining
    • Turner P, Mamo G, Karlsson EN. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 2007; 6: 1-23.
    • (2007) Microb Cell Fact , vol.6 , pp. 1-23
    • Turner, P.1    Mamo, G.2    Karlsson, E.3
  • 10
    • 0029099960 scopus 로고
    • Engineering thermostability-lessons from thermophilic proteins
    • Russell RJM, Taylor GL. Engineering thermostability-lessons from thermophilic proteins. Curr Opin Biotechnol 1995; 6: 370-374.
    • (1995) Curr Opin Biotechnol , vol.6 , pp. 370-374
    • Russell, R.1    Taylor, G.2
  • 11
    • 34047138077 scopus 로고    scopus 로고
    • Better library design: data-driven protein engineering
    • Chaparro-Riggers JF, Polizzi KM, Bommarius AS. Better library design: data-driven protein engineering. Biotechnol J 2007; 2: 180-191.
    • (2007) Biotechnol J , vol.2 , pp. 180-191
    • Chaparro-Riggers, J.1    Polizzi, K.2    Bommarius, A.3
  • 12
    • 33745726737 scopus 로고    scopus 로고
    • Lessons in stability from thermophilic proteins
    • Razvi A, Scholtz JM. Lessons in stability from thermophilic proteins. Protein Sci 2006; 15: 1569-1578.
    • (2006) Protein Sci , vol.15 , pp. 1569-1578
    • Razvi, A.1    Scholtz, J.2
  • 13
    • 24644472817 scopus 로고    scopus 로고
    • Physics and evolution of thermophilic adaptation
    • Berezovsky IN, Shakhnovich EI. Physics and evolution of thermophilic adaptation. Proc Natl Acad Sci USA 2005; 102: 12742-12747.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 12742-12747
    • Berezovsky, I.1    Shakhnovich, E.2
  • 14
    • 33846519263 scopus 로고    scopus 로고
    • Protein and DNA sequence determinants of thermophilic adaptation
    • Zeldovich KB, Berezovsky IN, Shakhnovich EI. Protein and DNA sequence determinants of thermophilic adaptation. PloS Comput Biol 2007; 3: 62-72.
    • (2007) PloS Comput Biol , vol.3 , pp. 62-72
    • Zeldovich, K.1    Berezovsky, I.2    Shakhnovich, E.3
  • 15
    • 32044454841 scopus 로고    scopus 로고
    • Effective factors in thermostability of thermophilic proteins
    • Sadeghi M, Naderi-Manesh H, Zarrabi M, Ranjbar B. Effective factors in thermostability of thermophilic proteins. Biophys Chem 2006; 119: 256-270.
    • (2006) Biophys Chem , vol.119 , pp. 256-270
    • Sadeghi, M.1    Naderi-Manesh, H.2    Zarrabi, M.3    Ranjbar, B.4
  • 16
    • 0032715527 scopus 로고    scopus 로고
    • Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins
    • Gromiha MM, Oobatake M, Sarai A. Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys Chem 1999; 82: 51-67.
    • (1999) Biophys Chem , vol.82 , pp. 51-67
    • Gromiha, M.1    Oobatake, M.2    Sarai, A.3
  • 17
    • 0034017055 scopus 로고    scopus 로고
    • Factors enhancing protein thermostability
    • Kumar S, Tsai CJ, Nussinov R. Factors enhancing protein thermostability. Protein Eng 2000; 13: 179-191.
    • (2000) Protein Eng , vol.13 , pp. 179-191
    • Kumar, S.1    Tsai, C.2    Nussinov, R.3
  • 18
    • 0036568335 scopus 로고    scopus 로고
    • Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes
    • Gianese G, Bossa F, Pascarella S. Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins 2002; 47: 236-249.
    • (2002) Proteins , vol.47 , pp. 236-249
    • Gianese, G.1    Bossa, F.2    Pascarella, S.3
  • 19
    • 30844449653 scopus 로고    scopus 로고
    • Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima
    • Robinson-Rechavi M, Alibes A, Godzik A. Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima. J Mol Biol 2006; 356: 547-557.
    • (2006) J Mol Biol , vol.356 , pp. 547-557
    • Robinson-Rechavi, M.1    Alibes, A.2    Godzik, A.3
  • 20
    • 0039116206 scopus 로고    scopus 로고
    • Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey
    • Szilagyi A, Závodszky P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 2000; 8: 493-504.
    • (2000) Structure , vol.8 , pp. 493-504
    • Szilagyi, A.1    Závodszky, P.2
  • 21
    • 0029932580 scopus 로고    scopus 로고
    • Analysis of protein conformational characteristics related to thermostability
    • Querol E, Perez-Pons JA, Mozo-Villarias A. Analysis of protein conformational characteristics related to thermostability. Prot Eng 1996; 9: 265-271.
    • (1996) Prot Eng , vol.9 , pp. 265-271
    • Querol, E.1    Perez-Pons, J.2    Mozo-Villarias, A.3
  • 22
    • 0011186093 scopus 로고    scopus 로고
    • Protein thermal stability: hydrogen bonds or internal packing?
    • Vogt G, Argos P. Protein thermal stability: hydrogen bonds or internal packing? Fold Des 1997; 2: S40-S46.
    • (1997) Fold Des , vol.2
    • Vogt, G.1    Argos, P.2
  • 23
    • 0029893110 scopus 로고    scopus 로고
    • Thermozymes: identifying molecular determinants of protein structural and functional stability
    • Vieille C, Zeikus JG. Thermozymes: identifying molecular determinants of protein structural and functional stability. Trends Biotechnol 1996; 14: 183-190.
    • (1996) Trends Biotechnol , vol.14 , pp. 183-190
    • Vieille, C.1    Zeikus, J.2
  • 25
    • 0026320508 scopus 로고
    • Protein stability and molecular adaptation to extreme conditions
    • Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem 1991; 202: 715-728.
    • (1991) Eur J Biochem , vol.202 , pp. 715-728
    • Jaenicke, R.1
  • 26
    • 0031758464 scopus 로고    scopus 로고
    • Native protein fluctuations: the conformational-motion temperature and the inverse correlation of protein flexibility with protein stability
    • Tang KES, Dill KA. Native protein fluctuations: the conformational-motion temperature and the inverse correlation of protein flexibility with protein stability. J Biomol Struct Dyn 1998; 16: 397-411.
    • (1998) J Biomol Struct Dyn , vol.16 , pp. 397-411
    • Tang, K.1    Dill, K.2
  • 27
    • 0023557882 scopus 로고
    • Relationship of protein flexibility to thermostability
    • Vihinen M. Relationship of protein flexibility to thermostability. Prot Eng 1987; 1: 477-480.
    • (1987) Prot Eng , vol.1 , pp. 477-480
    • Vihinen, M.1
  • 28
    • 0025182490 scopus 로고
    • Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima
    • Wrba A, Schweiger A, Schultes V, Jaenicke R, Závodszky P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry 1990; 29: 7584-7592.
    • (1990) Biochemistry , vol.29 , pp. 7584-7592
    • Wrba, A.1    Schweiger, A.2    Schultes, V.3    Jaenicke, R.4    Závodszky, P.5
  • 29
    • 0032560505 scopus 로고    scopus 로고
    • Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins
    • Závodszky P, Kardos J, Svingor A, Petsko GA. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 1998; 95: 7406-7411.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 7406-7411
    • Závodszky, P.1    Kardos, J.2    Svingor, A.3    Petsko, G.4
  • 30
    • 0034724271 scopus 로고    scopus 로고
    • Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity?
    • Jaenicke R. Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity? Proc Natl Acad Sci USA 2000; 97: 2962-2964.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 2962-2964
    • Jaenicke, R.1
  • 31
    • 53549116738 scopus 로고    scopus 로고
    • The complex inter-relationships between protein flexibility and stability
    • Kamerzell TJ, Middaugh CR. The complex inter-relationships between protein flexibility and stability. J Pharm Sci 2008; 97: 3494-3517.
    • (2008) J Pharm Sci , vol.97 , pp. 3494-3517
    • Kamerzell, T.1    Middaugh, C.2
  • 35
    • 0037083390 scopus 로고    scopus 로고
    • Thermal unfolding molecular dynamics simulation of Escherichia coli dihydrofolate reductase: thermal stability of protein domains and unfolding pathway
    • Sham YY, Ma B, Tsai CJ, Nussinov R. Thermal unfolding molecular dynamics simulation of Escherichia coli dihydrofolate reductase: thermal stability of protein domains and unfolding pathway. Proteins 2002; 46: 308-320.
    • (2002) Proteins , vol.46 , pp. 308-320
    • Sham, Y.1    Ma, B.2    Tsai, C.3    Nussinov, R.4
  • 36
    • 33846889293 scopus 로고    scopus 로고
    • Molecular dynamics simulation of thermal unfolding of Thermatoga maritima DHFR
    • Pang JY, Allemann RK. Molecular dynamics simulation of thermal unfolding of Thermatoga maritima DHFR. Phys Chem Chem Phys 2007; 9: 711-718.
    • (2007) Phys Chem Chem Phys , vol.9 , pp. 711-718
    • Pang, J.1    Allemann, R.2
  • 37
    • 0031686334 scopus 로고    scopus 로고
    • Identification of functional and unfolding motions of cutinase as obtained from molecular dynamics computer simulations
    • Creveld LD, Amadei A, van Schaik RC, Pepermans HAM, de Vlieg J, Berendsen HJC. Identification of functional and unfolding motions of cutinase as obtained from molecular dynamics computer simulations. Proteins 1998; 33: 253-264.
    • (1998) Proteins , vol.33 , pp. 253-264
    • Creveld, L.1    Amadei, A.2    van Schaik, R.3    Pepermans, H.4    de Vlieg, J.5    Berendsen, H.6
  • 38
    • 0028331255 scopus 로고
    • Normal mode analysis of protein dynamics
    • Case DA. Normal mode analysis of protein dynamics. Curr Opin Struct Biol 1994; 4: 285-290.
    • (1994) Curr Opin Struct Biol , vol.4 , pp. 285-290
    • Case, D.1
  • 39
    • 45849122854 scopus 로고    scopus 로고
    • Protein unfolding behavior studied by elastic network model
    • Su JG, Li CH, Hao R, Chen WZ, Wang CX. Protein unfolding behavior studied by elastic network model. Biophys J 2008; 94: 4586-4596.
    • (2008) Biophys J , vol.94 , pp. 4586-4596
    • Su, J.1    Li, C.2    Hao, R.3    Chen, W.4    Wang, C.5
  • 40
    • 33646799407 scopus 로고    scopus 로고
    • Multiscale modeling of macromolecular conformational changes combining concepts from rigidity and elastic network theory
    • Ahmed A, Gohlke H. Multiscale modeling of macromolecular conformational changes combining concepts from rigidity and elastic network theory. Proteins 2006; 63: 1038-1051.
    • (2006) Proteins , vol.63 , pp. 1038-1051
    • Ahmed, A.1    Gohlke, H.2
  • 41
    • 33748448490 scopus 로고    scopus 로고
    • A natural coarse graining for simulating large biomolecular motion
    • Gohlke H, Thorpe MF. A natural coarse graining for simulating large biomolecular motion. Biophys J 2006; 91: 2115-2120.
    • (2006) Biophys J , vol.91 , pp. 2115-2120
    • Gohlke, H.1    Thorpe, M.2
  • 42
    • 61649103550 scopus 로고    scopus 로고
    • Exploiting the link between protein rigidity and thermostability for data-driven protein engineering
    • Radestock S, Gohlke H. Exploiting the link between protein rigidity and thermostability for data-driven protein engineering. Eng Life Sci 2008; 8: 507-522.
    • (2008) Eng Life Sci , vol.8 , pp. 507-522
    • Radestock, S.1    Gohlke, H.2
  • 43
    • 0035427398 scopus 로고    scopus 로고
    • Protein flexibility predictions using graph theory
    • Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF. Protein flexibility predictions using graph theory. Proteins 2001; 44: 150-165.
    • (2001) Proteins , vol.44 , pp. 150-165
    • Jacobs, D.1    Rader, A.2    Kuhn, L.3    Thorpe, M.4
  • 44
    • 0025370815 scopus 로고
    • Dominant forces in protein folding
    • Dill KA. Dominant forces in protein folding. Biochemistry 1990; 29: 7133-7155.
    • (1990) Biochemistry , vol.29 , pp. 7133-7155
    • Dill, K.1
  • 46
    • 0242720597 scopus 로고    scopus 로고
    • Uncovering network systems within protein structures
    • Greene LH, Higman VA. Uncovering network systems within protein structures. J Mol Biol 2003; 334: 781-791.
    • (2003) J Mol Biol , vol.334 , pp. 781-791
    • Greene, L.1    Higman, V.2
  • 47
    • 27744521303 scopus 로고    scopus 로고
    • Counting out to the flexibility of molecules
    • Whiteley W. Counting out to the flexibility of molecules. Phys Biol 2005; 2: S116-S126.
    • (2005) Phys Biol , vol.2
    • Whiteley, W.1
  • 48
    • 0032493601 scopus 로고    scopus 로고
    • Generic rigidity in three-dimensional bond-bending networks
    • Jacobs DJ. Generic rigidity in three-dimensional bond-bending networks. J Phys A: Math Gen 1998; 31: 6653-6668.
    • (1998) J Phys A: Math Gen , vol.31 , pp. 6653-6668
    • Jacobs, D.1
  • 49
    • 0036888379 scopus 로고    scopus 로고
    • Identifying protein folding cores from the evolution of flexible regions during unfolding
    • Hespenheide BM, Rader AJ, Thorpe MF, Kuhn LA. Identifying protein folding cores from the evolution of flexible regions during unfolding. J Mol Graph Mod 2002; 21: 195-207.
    • (2002) J Mol Graph Mod , vol.21 , pp. 195-207
    • Hespenheide, B.1    Rader, A.2    Thorpe, M.3    Kuhn, L.4
  • 51
    • 0343742614 scopus 로고    scopus 로고
    • Automated design of the surface positions of protein helices
    • Dahiyat BI, Gordon DB, Mayo SL. Automated design of the surface positions of protein helices. Protein Sci 1997; 6: 1333-1337.
    • (1997) Protein Sci , vol.6 , pp. 1333-1337
    • Dahiyat, B.1    Gordon, D.2    Mayo, S.3
  • 52
  • 53
    • 0021093473 scopus 로고
    • Continuous deformations in random networks
    • Thorpe MF. Continuous deformations in random networks. J Non-Cryst Solids 1983; 57: 355-370.
    • (1983) J Non-Cryst Solids , vol.57 , pp. 355-370
    • Thorpe, M.1
  • 54
    • 0003610874 scopus 로고
    • Introduction to percolation theory
    • London: Taylor and Francis.
    • Stauffer D, Aharony A. Introduction to percolation theory. London: Taylor and Francis; 1994.
    • (1994)
    • Stauffer, D.1    Aharony, A.2
  • 55
    • 0036013593 scopus 로고    scopus 로고
    • Statistical mechanics of complex networks
    • Albert R, Barabási AL. Statistical mechanics of complex networks. Rev Mod Phys 2002; 74: 47-97.
    • (2002) Rev Mod Phys , vol.74 , pp. 47-97
    • Albert, R.1    Barabási, A.2
  • 56
    • 0001575543 scopus 로고    scopus 로고
    • Cluster size diversity, percolation, and complex systems
    • Tsang IR, Tsang IJ. Cluster size diversity, percolation, and complex systems. Phys Rev E 1999; 60: 2684-2698.
    • (1999) Phys Rev E , vol.60 , pp. 2684-2698
    • Tsang, I.1    Tsang, I.2
  • 57
    • 0003156161 scopus 로고
    • Entropic analysis of random morphologies
    • Andraud C, Beghdadi A, Lafait J. Entropic analysis of random morphologies. Phys A 1994; 207: 208-212.
    • (1994) Phys A , vol.207 , pp. 208-212
    • Andraud, C.1    Beghdadi, A.2    Lafait, J.3
  • 58
    • 0035807038 scopus 로고    scopus 로고
    • Activity and stability of a thermostable α-amylase compared to its mesophilic homologue: mechanisms of thermal adaptation
    • Fitter J, Herrmann R, Dencher NA, Blume A, Hauss T. Activity and stability of a thermostable α-amylase compared to its mesophilic homologue: mechanisms of thermal adaptation. Biochemistry 2001; 40: 10723-10731.
    • (2001) Biochemistry , vol.40 , pp. 10723-10731
    • Fitter, J.1    Herrmann, R.2    Dencher, N.3    Blume, A.4    Hauss, T.5
  • 59
    • 0035098779 scopus 로고    scopus 로고
    • Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability
    • Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001; 65: 1-43.
    • (2001) Microbiol Mol Biol Rev , vol.65 , pp. 1-43
    • Vieille, C.1    Zeikus, G.2
  • 60
    • 3042806330 scopus 로고    scopus 로고
    • Change in protein flexibility upon complex formation: analysis of Ras-Raf using molecular dynamics and a molecular framework approach
    • Gohlke H, Kuhn LA, Case DA. Change in protein flexibility upon complex formation: analysis of Ras-Raf using molecular dynamics and a molecular framework approach. Proteins 2004; 56: 322-337.
    • (2004) Proteins , vol.56 , pp. 322-337
    • Gohlke, H.1    Kuhn, L.2    Case, D.3
  • 61
    • 0031567156 scopus 로고    scopus 로고
    • Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus
    • Wallon G, Kryger G, Lovett ST, Oshima T, Ringe D, Petsko GA. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus. J Mol Biol 1997; 266: 1016-1031.
    • (1997) J Mol Biol , vol.266 , pp. 1016-1031
    • Wallon, G.1    Kryger, G.2    Lovett, S.3    Oshima, T.4    Ringe, D.5    Petsko, G.6
  • 62
    • 0028853604 scopus 로고
    • Ligand-induced changes in the conformation of 3-isopropylmalate dehydrogenase from Thermus thermophilus
    • Kadono S, Sakurai M, Moriyama H, Sato M, Hayashi Y, Oshima T, Tanaka N. Ligand-induced changes in the conformation of 3-isopropylmalate dehydrogenase from Thermus thermophilus. J Biochem 1995; 118: 745-752.
    • (1995) J Biochem , vol.118 , pp. 745-752
    • Kadono, S.1    Sakurai, M.2    Moriyama, H.3    Sato, M.4    Hayashi, Y.5    Oshima, T.6    Tanaka, N.7
  • 63
    • 0003845223 scopus 로고    scopus 로고
    • The PyMOL molecular graphics system
    • Palo Alto, CA: DeLano Scientific.
    • DeLano WL. The PyMOL molecular graphics system. Palo Alto, CA: DeLano Scientific; 2002.
    • (2002)
    • Delano, W.1
  • 64
    • 0035709685 scopus 로고    scopus 로고
    • High thermal stability of 3-isopropylmalate dehydrogenase from Thermus thermophilus resulting from low delta Cp of unfolding
    • Motono C, Oshima T, Yamagishi A. High thermal stability of 3-isopropylmalate dehydrogenase from Thermus thermophilus resulting from low delta Cp of unfolding. Protein Eng 2001; 14: 961-966.
    • (2001) Protein Eng , vol.14 , pp. 961-966
    • Motono, C.1    Oshima, T.2    Yamagishi, A.3
  • 65
    • 0033604873 scopus 로고    scopus 로고
    • Urea-induced unfolding and conformational stability of 3-isopropylmalate dehydrogenase from the thermophile Thermus thermophilus and its mesophilic counterpart from Escherichia coli
    • Motono C, Yamagishi A, Oshima T. Urea-induced unfolding and conformational stability of 3-isopropylmalate dehydrogenase from the thermophile Thermus thermophilus and its mesophilic counterpart from Escherichia coli. Biochemistry 1999; 38: 1332-1337.
    • (1999) Biochemistry , vol.38 , pp. 1332-1337
    • Motono, C.1    Yamagishi, A.2    Oshima, T.3
  • 66
    • 0031935580 scopus 로고    scopus 로고
    • Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution
    • Akanuma S, Yamagishi A, Tanaka N, Oshima T. Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from Bacillus subtilis by experimental evolution. Prot Sci 1998; 7: 698-705.
    • (1998) Prot Sci , vol.7 , pp. 698-705
    • Akanuma, S.1    Yamagishi, A.2    Tanaka, N.3    Oshima, T.4
  • 67
    • 0035259956 scopus 로고    scopus 로고
    • Selection of stabilized 3-isopropylmalate dehydrogenase of Saccharomyces cerevisiae using the host-vector system of an extreme thermophile, Thermus thermophilus
    • Tamakoshi M, Nakano Y, Kakizawa S, Yamagishi A, Oshima T. Selection of stabilized 3-isopropylmalate dehydrogenase of Saccharomyces cerevisiae using the host-vector system of an extreme thermophile, Thermus thermophilus. Extremophiles 2001; 5: 17-22.
    • (2001) Extremophiles , vol.5 , pp. 17-22
    • Tamakoshi, M.1    Nakano, Y.2    Kakizawa, S.3    Yamagishi, A.4    Oshima, T.5
  • 68
    • 0141482397 scopus 로고    scopus 로고
    • Increased thermal stability against irreversible inactivation of 3-isopropylmalate dehydrogenase induced by decreased van der Waals volume at the subunit interface
    • Ohkuri T, Yamagishi A. Increased thermal stability against irreversible inactivation of 3-isopropylmalate dehydrogenase induced by decreased van der Waals volume at the subunit interface. Prot Eng 2003; 16: 615-621.
    • (2003) Prot Eng , vol.16 , pp. 615-621
    • Ohkuri, T.1    Yamagishi, A.2
  • 69
    • 0030902654 scopus 로고    scopus 로고
    • Stabilization of Escherichia coli isopropylmalate dehydrogenase by single amino acid substitution
    • Aoshima M, Oshima T. Stabilization of Escherichia coli isopropylmalate dehydrogenase by single amino acid substitution. Prot Eng 1997; 10: 249-254.
    • (1997) Prot Eng , vol.10 , pp. 249-254
    • Aoshima, M.1    Oshima, T.2
  • 70
    • 0028091179 scopus 로고
    • Hydrophobic interaction at the subunit interface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus
    • Kirino H, Aoki M, Aoshima M, Hayashi Y, Ohba M, Yamagishi A, Wakagi T, Oshima T. Hydrophobic interaction at the subunit interface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus. Eur J Biochem 1994; 220: 275-281.
    • (1994) Eur J Biochem , vol.220 , pp. 275-281
    • Kirino, H.1    Aoki, M.2    Aoshima, M.3    Hayashi, Y.4    Ohba, M.5    Yamagishi, A.6    Wakagi, T.7    Oshima, T.8
  • 71
    • 0343986414 scopus 로고    scopus 로고
    • Mirror image mutations reveal the significance of an intersubunit ion cluster in the stability of 3-isopropylmalate dehydrogenase
    • Németh A, Svingor A, Pocsik M, Dobó J, Magyar C, Szilágyi A, Gál P, Zavódszky P. Mirror image mutations reveal the significance of an intersubunit ion cluster in the stability of 3-isopropylmalate dehydrogenase. FEBS Lett 2000; 468: 48-52.
    • (2000) FEBS Lett , vol.468 , pp. 48-52
    • Németh, A.1    Svingor, A.2    Pocsik, M.3    Dobó, J.4    Magyar, C.5    Szilágyi, A.6    Gál, P.7    Zavódszky, P.8
  • 72
    • 0033824928 scopus 로고    scopus 로고
    • The initial step of the thermal unfolding of 3-isopropylmalate dehydrogenase detected by the temperature-jump Laue method
    • Hori T, Moriyama H, Kawaguchi J, Hayashi-Iwasaki Y, Oshima T, Tanaka N. The initial step of the thermal unfolding of 3-isopropylmalate dehydrogenase detected by the temperature-jump Laue method. Prot Eng 2000; 13: 527-533.
    • (2000) Prot Eng , vol.13 , pp. 527-533
    • Hori, T.1    Moriyama, H.2    Kawaguchi, J.3    Hayashi-Iwasaki, Y.4    Oshima, T.5    Tanaka, N.6
  • 73
    • 0030028478 scopus 로고    scopus 로고
    • Further stabilization of 3-isopropylmalate dehydrogenase of an extreme thermophile, Thermus thermophilus, by a suppressor mutation method
    • Kotsuka T, Akanuma S, Tomuro M, Yamagishi A, Oshima T. Further stabilization of 3-isopropylmalate dehydrogenase of an extreme thermophile, Thermus thermophilus, by a suppressor mutation method. J Bacteriol 1996; 178: 723-727.
    • (1996) J Bacteriol , vol.178 , pp. 723-727
    • Kotsuka, T.1    Akanuma, S.2    Tomuro, M.3    Yamagishi, A.4    Oshima, T.5
  • 74
    • 0035830685 scopus 로고    scopus 로고
    • Thermostabilization of a chimeric enzyme by residue substitutions: four amino acid residues in loop regions are responsible for the thermostability of Thermus thermophilus isopropylmalate dehydrogenase
    • Numata K, Hayashi-Iwasaki Y, Kawaguchi J, Sakurai M, Moriyama H, Tanaka N, Oshima T. Thermostabilization of a chimeric enzyme by residue substitutions: four amino acid residues in loop regions are responsible for the thermostability of Thermus thermophilus isopropylmalate dehydrogenase. Biochim Biophys Acta 2001; 1545: 174-183.
    • (2001) Biochim Biophys Acta , vol.1545 , pp. 174-183
    • Numata, K.1    Hayashi-Iwasaki, Y.2    Kawaguchi, J.3    Sakurai, M.4    Moriyama, H.5    Tanaka, N.6    Oshima, T.7
  • 75
    • 0033226828 scopus 로고    scopus 로고
    • Studies on interdomain interaction of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus, by constructing chimeric enzymes
    • Numata K, Hayashiiwasaki Y, Yutani K, Oshima T. Studies on interdomain interaction of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus, by constructing chimeric enzymes. Extremophiles 1999; 3: 259-262.
    • (1999) Extremophiles , vol.3 , pp. 259-262
    • Numata, K.1    Hayashiiwasaki, Y.2    Yutani, K.3    Oshima, T.4
  • 76
    • 0028986679 scopus 로고
    • Thermal stability of chimeric isopropylmalate dehydrogenase genes constructed from a thermophile and a mesophile
    • Numata K, Muro M, Akutsu N, Nosoh Y, Yamagishi A, Oshima T. Thermal stability of chimeric isopropylmalate dehydrogenase genes constructed from a thermophile and a mesophile. Prot Eng 1995; 8: 39-43.
    • (1995) Prot Eng , vol.8 , pp. 39-43
    • Numata, K.1    Muro, M.2    Akutsu, N.3    Nosoh, Y.4    Yamagishi, A.5    Oshima, T.6
  • 78
    • 0026334204 scopus 로고
    • 3-Dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution
    • Imada K, Sato M, Tanaka N, Katsube Y, Matsuura Y, Oshima T. 3-Dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution. J Mol Biol 1991; 222: 725-738.
    • (1991) J Mol Biol , vol.222 , pp. 725-738
    • Imada, K.1    Sato, M.2    Tanaka, N.3    Katsube, Y.4    Matsuura, Y.5    Oshima, T.6
  • 79
    • 0030785695 scopus 로고    scopus 로고
    • Effect of polar side chains at position 172 on thermal stability of 3-isopropylmalate dehydrogenase from Thermus thermophilus
    • Akanuma S, Qu CX, Yamagishi A, Tanaka N, Oshima T. Effect of polar side chains at position 172 on thermal stability of 3-isopropylmalate dehydrogenase from Thermus thermophilus. FEBS Lett 1997; 410: 141-144.
    • (1997) FEBS Lett , vol.410 , pp. 141-144
    • Akanuma, S.1    Qu, C.2    Yamagishi, A.3    Tanaka, N.4    Oshima, T.5
  • 80
    • 0031015603 scopus 로고    scopus 로고
    • A mutation at the interface between domains causes rearrangement of domains in 3-isopropylmalate dehydrogenase
    • Qu CX, Akanuma S, Moriyama H, Tanaka N, Oshima T. A mutation at the interface between domains causes rearrangement of domains in 3-isopropylmalate dehydrogenase. Prot Eng 1997; 10: 45-52.
    • (1997) Prot Eng , vol.10 , pp. 45-52
    • Qu, C.1    Akanuma, S.2    Moriyama, H.3    Tanaka, N.4    Oshima, T.5
  • 81
    • 0029154808 scopus 로고
    • Screening of stable proteins in an extreme thermophile, Thermus thermophilus
    • Tamakoshi M, Yamagishi A, Oshima T. Screening of stable proteins in an extreme thermophile, Thermus thermophilus. Mol Microbiol 1995; 16: 1031-1036.
    • (1995) Mol Microbiol , vol.16 , pp. 1031-1036
    • Tamakoshi, M.1    Yamagishi, A.2    Oshima, T.3
  • 82
    • 0029908683 scopus 로고    scopus 로고
    • Spontaneous tandem sequence duplications reverse the thermal stability of carboxyl-terminal modified 3-isopropylmalate dehydrogenase
    • Akanuma S, Yamagishi A, Tanaka N, Oshima T. Spontaneous tandem sequence duplications reverse the thermal stability of carboxyl-terminal modified 3-isopropylmalate dehydrogenase. J Bacteriol 1996; 178: 6300-6304.
    • (1996) J Bacteriol , vol.178 , pp. 6300-6304
    • Akanuma, S.1    Yamagishi, A.2    Tanaka, N.3    Oshima, T.4
  • 83
    • 0034018098 scopus 로고    scopus 로고
    • Crystal structures of 3-isopropylmalate dehydrogenases with mutations at the C-terminus: crystallographic analyses of structure-stability relationships
    • Nurachman Z, Akanuma S, Sato T, Oshima T, Tanaka N. Crystal structures of 3-isopropylmalate dehydrogenases with mutations at the C-terminus: crystallographic analyses of structure-stability relationships. Prot Eng 2000; 13: 253-258.
    • (2000) Prot Eng , vol.13 , pp. 253-258
    • Nurachman, Z.1    Akanuma, S.2    Sato, T.3    Oshima, T.4    Tanaka, N.5
  • 84
    • 58149103584 scopus 로고    scopus 로고
    • The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential
    • Adekoya OA, Sylte I. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Chem Biol Drug Des 2009; 73: 7-16.
    • (2009) Chem Biol Drug Des , vol.73 , pp. 7-16
    • Adekoya, O.1    Sylte, I.2
  • 85
    • 0020647833 scopus 로고
    • The unfolding mechanism of thermolysin
    • Corbett RJ, Roche RS. The unfolding mechanism of thermolysin. Biopolymers 1983; 22: 101-105.
    • (1983) Biopolymers , vol.22 , pp. 101-105
    • Corbett, R.1    Roche, R.2
  • 86
    • 0023038088 scopus 로고
    • A new way of enhancing the thermostability of proteases
    • Imanaka T, Shibazaki M, Takagi M. A new way of enhancing the thermostability of proteases. Nature 1986; 324: 695-697.
    • (1986) Nature , vol.324 , pp. 695-697
    • Imanaka, T.1    Shibazaki, M.2    Takagi, M.3
  • 89
    • 0027410087 scopus 로고
    • Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines
    • Hardy F, Vriend G, Veltman OR, Vandervinne B, Venema G, Eijsink VGH. Stabilization of Bacillus stearothermophilus neutral protease by introduction of prolines. FEBS Lett 1993; 317: 89-92.
    • (1993) FEBS Lett , vol.317 , pp. 89-92
    • Hardy, F.1    Vriend, G.2    Veltman, O.3    Vandervinne, B.4    Venema, G.5    Eijsink, V.6
  • 91
    • 0025734135 scopus 로고
    • A highly thermostable neutral protease from Bacillus caldolyticus-cloning and expression of the gene in Bacillus subtilis and characterization of the gene product
    • van den Burg B, Enequist HG, Vanderhaar ME, Eijsink VGH, Stulp BK, Venema G. A highly thermostable neutral protease from Bacillus caldolyticus-cloning and expression of the gene in Bacillus subtilis and characterization of the gene product. J Bacteriol 1991; 173: 4107-4115.
    • (1991) J Bacteriol , vol.173 , pp. 4107-4115
    • van den Burg, B.1    Enequist, H.2    Vanderhaar, M.3    Eijsink, V.4    Stulp, B.5    Venema, G.6
  • 92
    • 0030963842 scopus 로고    scopus 로고
    • Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases
    • Veltman OR, Vriend G, Hardy F, Mansfeld J, van den Burg B, Venema G, Eijsink VGH. Mutational analysis of a surface area that is critical for the thermal stability of thermolysin-like proteases. Eur J Biochem 1997; 248: 433-440.
    • (1997) Eur J Biochem , vol.248 , pp. 433-440
    • Veltman, O.1    Vriend, G.2    Hardy, F.3    Mansfeld, J.4    van den Burg, B.5    Venema, G.6    Eijsink, V.7
  • 93
    • 0030447116 scopus 로고    scopus 로고
    • Analysis of structural determinants of the stability of thermolysin-like proteases by molecular modelling and site-directed mutagenesis
    • Veltman OR, Vriend G, Middelhoven PJ, van den Burg B, Venema G, Eijsink VGH. Analysis of structural determinants of the stability of thermolysin-like proteases by molecular modelling and site-directed mutagenesis. Prot Eng 1996; 9: 1181-1189.
    • (1996) Prot Eng , vol.9 , pp. 1181-1189
    • Veltman, O.1    Vriend, G.2    Middelhoven, P.3    van den Burg, B.4    Venema, G.5    Eijsink, V.6
  • 97
    • 0026514503 scopus 로고
    • Increasing the thermostability of a neutral protease by replacing positively charged amino-acids in the N-terminal turn of alpha-helices
    • Eijsink VGH, Vriend G, Vandenburg B, Vanderzee JR, Venema G. Increasing the thermostability of a neutral protease by replacing positively charged amino-acids in the N-terminal turn of alpha-helices. Prot Eng 1992; 5: 165-170.
    • (1992) Prot Eng , vol.5 , pp. 165-170
    • Eijsink, V.1    Vriend, G.2    Vandenburg, B.3    Vanderzee, J.4    Venema, G.5
  • 98
    • 0026665438 scopus 로고
    • Effects of changing the interaction between subdomains on the thermostability of Bacillus neutral proteases
    • Eijsink VGH, Vriend G, Vandervinne B, Hazes B, Vandenburg B, Venema G. Effects of changing the interaction between subdomains on the thermostability of Bacillus neutral proteases. Proteins 1992; 14: 224-236.
    • (1992) Proteins , vol.14 , pp. 224-236
    • Eijsink, V.1    Vriend, G.2    Vandervinne, B.3    Hazes, B.4    Vandenburg, B.5    Venema, G.6
  • 99
    • 0026728020 scopus 로고
    • Cumulative stabilizing effects of glycine to alanine substitutions in Bacillus subtilis neutral protease
    • Margarit I, Campagnoli S, Frigerio F, Grandi G, Defilippis V, Fontana A. Cumulative stabilizing effects of glycine to alanine substitutions in Bacillus subtilis neutral protease. Prot Eng 1992; 5: 543-550.
    • (1992) Prot Eng , vol.5 , pp. 543-550
    • Margarit, I.1    Campagnoli, S.2    Frigerio, F.3    Grandi, G.4    Defilippis, V.5    Fontana, A.6
  • 100
    • 33749258005 scopus 로고    scopus 로고
    • Modeling virus self-assembly pathways: avoiding dynamics using geometric constraint decomposition
    • Sitharam M, Agbandje-McKenna M. Modeling virus self-assembly pathways: avoiding dynamics using geometric constraint decomposition. J Comput Biol 2006; 13: 1232-1265.
    • (2006) J Comput Biol , vol.13 , pp. 1232-1265
    • Sitharam, M.1    Agbandje-Mckenna, M.2
  • 101
    • 30344476409 scopus 로고    scopus 로고
    • Conserved quantitative stability/flexibility relationships (QSFR) in an orthologous RNase H pair
    • Livesay DR, Jacobs DJ. Conserved quantitative stability/flexibility relationships (QSFR) in an orthologous RNase H pair. Proteins 2006; 62: 130-143.
    • (2006) Proteins , vol.62 , pp. 130-143
    • Livesay, D.1    Jacobs, D.2
  • 102
    • 51749092455 scopus 로고    scopus 로고
    • Hydrogen bond networks determine emergent mechanical and thermodynamic properties across a protein family
    • Livesay DR, Huynh DH, Dallakyan S, Jacobs DJ. Hydrogen bond networks determine emergent mechanical and thermodynamic properties across a protein family. Chem Cent J 2008; 2: 1-20.
    • (2008) Chem Cent J , vol.2 , pp. 1-20
    • Livesay, D.1    Huynh, D.2    Dallakyan, S.3    Jacobs, D.4
  • 103
    • 0002353040 scopus 로고
    • Temperature adaptation of enzymes-biological optimization through structure-function compromises
    • Somero GN. Temperature adaptation of enzymes-biological optimization through structure-function compromises. Annu Rev Ecol Syst 1978; 9: 1-29.
    • (1978) Annu Rev Ecol Syst , vol.9 , pp. 1-29
    • Somero, G.1
  • 104
    • 0033598719 scopus 로고    scopus 로고
    • Structural distribution of stability in a thermophilic enzyme
    • Hollien J, Marqusee S. Structural distribution of stability in a thermophilic enzyme. Proc Natl Acad Sci USA 1999; 96: 13674-13678.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 13674-13678
    • Hollien, J.1    Marqusee, S.2
  • 105
    • 0036295079 scopus 로고    scopus 로고
    • Comparison of the folding processes of T. thermophilus and E. coli ribonucleases H
    • Hollien J, Marqusee S. Comparison of the folding processes of T. thermophilus and E. coli ribonucleases H. J Mol Biol 2002; 316: 327-340.
    • (2002) J Mol Biol , vol.316 , pp. 327-340
    • Hollien, J.1    Marqusee, S.2
  • 106
    • 0033865067 scopus 로고    scopus 로고
    • Structural equilibrium fluctuations in mesophilic and thermophilic alpha-amylase
    • Fitter J, Heberle J. Structural equilibrium fluctuations in mesophilic and thermophilic alpha-amylase. Biophys J 2000; 79: 1629-1636.
    • (2000) Biophys J , vol.79 , pp. 1629-1636
    • Fitter, J.1    Heberle, J.2
  • 107
    • 0034724392 scopus 로고    scopus 로고
    • Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature
    • Hernandez G, Jenney FE, Adams MWW, LeMaster DM. Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature. Proc Natl Acad Sci USA 2000; 97: 3166-3170.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 3166-3170
    • Hernandez, G.1    Jenney, F.2    Adams, M.3    Lemaster, D.4
  • 108
    • 0035807865 scopus 로고    scopus 로고
    • Reduced temperature dependence of collective conformational opening in a hyperthermophile rubredoxin
    • Hernandez G, LeMaster DM. Reduced temperature dependence of collective conformational opening in a hyperthermophile rubredoxin. Biochemistry 2001; 40: 14384-14391.
    • (2001) Biochemistry , vol.40 , pp. 14384-14391
    • Hernandez, G.1    Lemaster, D.2
  • 109
    • 0028774536 scopus 로고
    • Structure of 3-isopropylmalate dehydrogenase in complex with NAD+-ligand-induced loop closing and mechanism for cofactor specificity
    • Hurley JH, Dean AM. Structure of 3-isopropylmalate dehydrogenase in complex with NAD+-ligand-induced loop closing and mechanism for cofactor specificity. Structure 1994; 2: 1007-1016.
    • (1994) Structure , vol.2 , pp. 1007-1016
    • Hurley, J.1    Dean, A.2
  • 110
  • 111
    • 0036019340 scopus 로고    scopus 로고
    • Cold-adaptation mechanism of mutant enzymes of 3-isopropylmalate dehydrogenase from Thermus thermophilus
    • Suzuki T, Yasugi M, Arisaka F, Oshima T, Yamagishi A. Cold-adaptation mechanism of mutant enzymes of 3-isopropylmalate dehydrogenase from Thermus thermophilus. Prot Eng 2002; 15: 471-476.
    • (2002) Prot Eng , vol.15 , pp. 471-476
    • Suzuki, T.1    Yasugi, M.2    Arisaka, F.3    Oshima, T.4    Yamagishi, A.5
  • 112
    • 0035053960 scopus 로고    scopus 로고
    • Cold adaptation of the thermophilic enzyme 3-isopropylmalate dehydrogenase
    • Yasugi M, Amino M, Suzuki T, Oshima T, Yamagishi A. Cold adaptation of the thermophilic enzyme 3-isopropylmalate dehydrogenase. J Biochem 2001; 129: 477-484.
    • (2001) J Biochem , vol.129 , pp. 477-484
    • Yasugi, M.1    Amino, M.2    Suzuki, T.3    Oshima, T.4    Yamagishi, A.5
  • 113
    • 0034798613 scopus 로고    scopus 로고
    • Analysis of the effect of accumulation of amino acid replacements on activity of 3-isopropylmalate dehydrogenase from Thermus thermophilus
    • Yasugi M, Suzuki T, Yamagishi A, Oshima T. Analysis of the effect of accumulation of amino acid replacements on activity of 3-isopropylmalate dehydrogenase from Thermus thermophilus. Prot Eng 2001; 14: 601-607.
    • (2001) Prot Eng , vol.14 , pp. 601-607
    • Yasugi, M.1    Suzuki, T.2    Yamagishi, A.3    Oshima, T.4
  • 114
    • 0021744255 scopus 로고
    • An interactive computer-graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides
    • Hangauer DG, Monzingo AF, Matthews BW. An interactive computer-graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry 1984; 23: 5730-5741.
    • (1984) Biochemistry , vol.23 , pp. 5730-5741
    • Hangauer, D.1    Monzingo, A.2    Matthews, B.3
  • 115
    • 33845280830 scopus 로고
    • Structural basis of the action of thermolysin and related zinc peptidases
    • Matthews BW. Structural basis of the action of thermolysin and related zinc peptidases. Acc Chem Res 1988; 21: 333-340.
    • (1988) Acc Chem Res , vol.21 , pp. 333-340
    • Matthews, B.1
  • 116
    • 0028169317 scopus 로고
    • Binding to thermolysin of phenolate-containing inhibitors necessitates a revised mechanism of catalysis
    • Mock WL, Aksamawati M. Binding to thermolysin of phenolate-containing inhibitors necessitates a revised mechanism of catalysis. Biochem J 1994; 302: 57-68.
    • (1994) Biochem J , vol.302 , pp. 57-68
    • Mock, W.1    Aksamawati, M.2
  • 117
    • 0029896448 scopus 로고    scopus 로고
    • Arazoformyl dipeptide substrates for thermolysin. Confirmation of a reverse protonation catalytic mechanism
    • Mock WL, Stanford DJ. Arazoformyl dipeptide substrates for thermolysin. Confirmation of a reverse protonation catalytic mechanism. Biochemistry 1996; 35: 7369-7377.
    • (1996) Biochemistry , vol.35 , pp. 7369-7377
    • Mock, W.1    Stanford, D.2
  • 118
    • 0029075795 scopus 로고
    • The essential dynamics of thermolysin-confirmation of the hinge-bending motion and comparison of simulations in vacuum and water
    • van Aalten DMF, Amadei A, Linssen ABM, Eijsink VGH, Vriend G, Berendsen HJC. The essential dynamics of thermolysin-confirmation of the hinge-bending motion and comparison of simulations in vacuum and water. Proteins 1995; 22: 45-54.
    • (1995) Proteins , vol.22 , pp. 45-54
    • van Aalten, D.1    Amadei, A.2    Linssen, A.3    Eijsink, V.4    Vriend, G.5    Berendsen, H.6
  • 119
    • 0032515911 scopus 로고    scopus 로고
    • Probing catalytic hinge bending motions in thermolysin-like proteases by glycine to alanine mutations
    • Veltman OR, Eijsink VGH, Vriend G, de Kreij A, Venema G, van den Burg B. Probing catalytic hinge bending motions in thermolysin-like proteases by glycine to alanine mutations. Biochemistry 1998; 37: 5305-5311.
    • (1998) Biochemistry , vol.37 , pp. 5305-5311
    • Veltman, O.1    Eijsink, V.2    Vriend, G.3    de Kreij, A.4    Venema, G.5    van den Burg, B.6
  • 120
    • 0028892387 scopus 로고
    • Structural-analysis of zinc substitutions in the active-site of thermolysin
    • Holland DR, Hausrath AC, Juers D, Matthews BW. Structural-analysis of zinc substitutions in the active-site of thermolysin. Prot Sci 1995; 4: 1955-1965.
    • (1995) Prot Sci , vol.4 , pp. 1955-1965
    • Holland, D.1    Hausrath, A.2    Juers, D.3    Matthews, B.4
  • 121
    • 0026489329 scopus 로고
    • Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis
    • Holland DR, Tronrud DE, Pley HW, Flaherty KM, Stark W, Jansonius JN, Mckay DB, Matthews BW. Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis. Biochemistry 1992; 31: 11310-11316.
    • (1992) Biochemistry , vol.31 , pp. 11310-11316
    • Holland, D.1    Tronrud, D.2    Pley, H.3    Flaherty, K.4    Stark, W.5    Jansonius, J.6    Mckay, D.7    Matthews, B.8
  • 122
    • 45749110950 scopus 로고    scopus 로고
    • Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry
    • Liu YH, Konermann L. Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry. Biochemistry 2008; 47: 6342-6351.
    • (2008) Biochemistry , vol.47 , pp. 6342-6351
    • Liu, Y.1    Konermann, L.2
  • 123
    • 0037013278 scopus 로고    scopus 로고
    • The effects of modifying the surface charge on the catalytic activity of a thermolysin-like protease
    • de Kreij A, van den Burg B, Venema G, Vriend G, Eijsink VG, Nielsen JE. The effects of modifying the surface charge on the catalytic activity of a thermolysin-like protease. J Biol Chem 2002; 277: 15432-15438.
    • (2002) J Biol Chem , vol.277 , pp. 15432-15438
    • de Kreij, A.1    van den Burg, B.2    Venema, G.3    Vriend, G.4    Eijsink, V.5    Nielsen, J.6
  • 124
    • 34748871409 scopus 로고    scopus 로고
    • Improving the activity and stability of thermolysin by site-directed mutagenesis
    • Yasukawa K, Inouye K. Improving the activity and stability of thermolysin by site-directed mutagenesis. Biochim Biophys Acta 2007; 1774: 1281-1288.
    • (2007) Biochim Biophys Acta , vol.1774 , pp. 1281-1288
    • Yasukawa, K.1    Inouye, K.2
  • 125
    • 41349118690 scopus 로고    scopus 로고
    • Small-world view of the amino acids that play a key role in protein folding
    • Vendruscolo M, Dokholyan NV, Paci E, Karplus M. Small-world view of the amino acids that play a key role in protein folding. Phys Rev E 2002; 65: 1-4.
    • (2002) Phys Rev E , vol.65 , pp. 1-4
    • Vendruscolo, M.1    Dokholyan, N.2    Paci, E.3    Karplus, M.4
  • 127
    • 0025789054 scopus 로고
    • Side-chain clusters in protein structures and their role in protein folding
    • Heringa J, Argos P. Side-chain clusters in protein structures and their role in protein folding. J Mol Biol 1991; 220: 151-171.
    • (1991) J Mol Biol , vol.220 , pp. 151-171
    • Heringa, J.1    Argos, P.2
  • 128
    • 0028939948 scopus 로고
    • Increasing thermal stability of subtilisin from mutations suggested by strongly interacting side-chain clusters
    • Heringa J, Argos P, Egmond MR, Devlieg J. Increasing thermal stability of subtilisin from mutations suggested by strongly interacting side-chain clusters. Prot Eng 1995; 8: 21-30.
    • (1995) Prot Eng , vol.8 , pp. 21-30
    • Heringa, J.1    Argos, P.2    Egmond, M.3    Devlieg, J.4
  • 129
    • 0033578690 scopus 로고    scopus 로고
    • Identification of side-chain clusters in protein structures by a graph spectral method
    • Kannan N, Vishveshwara S. Identification of side-chain clusters in protein structures by a graph spectral method. J Mol Biol 1999; 292: 441-464.
    • (1999) J Mol Biol , vol.292 , pp. 441-464
    • Kannan, N.1    Vishveshwara, S.2
  • 130
    • 28444453011 scopus 로고    scopus 로고
    • A network representation of protein structures: implications for protein stability
    • Brinda KV, Vishveshwara S. A network representation of protein structures: implications for protein stability. Biophys J 2005; 89: 4159-4170.
    • (2005) Biophys J , vol.89 , pp. 4159-4170
    • Brinda, K.1    Vishveshwara, S.2
  • 131
    • 18244373419 scopus 로고    scopus 로고
    • Computational thermostabilization of an enzyme
    • Korkegian A, Black ME, Baker D, Stoddard BL. Computational thermostabilization of an enzyme. Science 2005; 308: 857-860.
    • (2005) Science , vol.308 , pp. 857-860
    • Korkegian, A.1    Black, M.2    Baker, D.3    Stoddard, B.4
  • 132
    • 0034641749 scopus 로고    scopus 로고
    • Native protein sequences are close to optimal for their structures
    • Kuhlman B, Baker D. Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci USA 2000; 97: 10383-10388.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 10383-10388
    • Kuhlman, B.1    Baker, D.2
  • 133
    • 0031779918 scopus 로고    scopus 로고
    • Design, structure and stability of a hyperthermophilic protein variant
    • Malakauskas SM, Mayo SL. Design, structure and stability of a hyperthermophilic protein variant. Nat Struct Biol 1998; 5: 470-475.
    • (1998) Nat Struct Biol , vol.5 , pp. 470-475
    • Malakauskas, S.1    Mayo, S.2
  • 136
    • 0345864027 scopus 로고    scopus 로고
    • The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data
    • Porter CT, Bartlett GJ, Thornton JM. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 2004; 32: D129-D133.
    • (2004) Nucleic Acids Res , vol.32
    • Porter, C.1    Bartlett, G.2    Thornton, J.3
  • 137
    • 0033824470 scopus 로고    scopus 로고
    • DaliLite workbench for protein structure comparison
    • Holm L, Park J. DaliLite workbench for protein structure comparison. Bioinformatics 2000; 16: 566-567.
    • (2000) Bioinformatics , vol.16 , pp. 566-567
    • Holm, L.1    Park, J.2
  • 138
    • 0033614004 scopus 로고    scopus 로고
    • Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation
    • Word JM, Lovell SC, Richardson JS, Richardson DC. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 1999; 285: 1735-1747.
    • (1999) J Mol Biol , vol.285 , pp. 1735-1747
    • Word, J.1    Lovell, S.2    Richardson, J.3    Richardson, D.4
  • 139
    • 0031580199 scopus 로고    scopus 로고
    • Protein thermal stability, hydrogen bonds, and ion pairs
    • Vogt G, Woell S, Argos P. Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 1997; 269: 631-643.
    • (1997) J Mol Biol , vol.269 , pp. 631-643
    • Vogt, G.1    Woell, S.2    Argos, P.3
  • 141
    • 0000785338 scopus 로고
    • Generic rigidity percolation-the pebble game
    • Jacobs DJ, Thorpe MF. Generic rigidity percolation-the pebble game. Phys Rev Lett 1995; 75: 4051-4054.
    • (1995) Phys Rev Lett , vol.75 , pp. 4051-4054
    • Jacobs, D.1    Thorpe, M.2
  • 142
    • 0031281604 scopus 로고    scopus 로고
    • An algorithm for two-dimensional rigidity percolation: the pebble game
    • Jacobs DJ, Hendrickson B. An algorithm for two-dimensional rigidity percolation: the pebble game. J Comput Phys 1997; 137: 346-365.
    • (1997) J Comput Phys , vol.137 , pp. 346-365
    • Jacobs, D.1    Hendrickson, B.2
  • 143
    • 41149175561 scopus 로고    scopus 로고
    • Revisiting the correlation between proteins' thermoresistance and organisms' thermophilicity
    • Dehouck Y, Folch B, Rooman M. Revisiting the correlation between proteins' thermoresistance and organisms' thermophilicity. Prot Eng Des Sel 2008; 21: 275-278.
    • (2008) Prot Eng Des Sel , vol.21 , pp. 275-278
    • Dehouck, Y.1    Folch, B.2    Rooman, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.