메뉴 건너뛰기




Volumn 1, Issue , 2007, Pages 220-247

The 26S Proteasome

Author keywords

20S proteasome; 26S proteasome; Physiological aspects; Proteasome activators; Proteasome biogenesis; Protein degradation; Protein inhibitors of the proteasome; Proteolysis by the 26S proteasome; Substrate recognition by proteasomes

Indexed keywords


EID: 69949122631     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9783527619320.ch9     Document Type: Chapter
Times cited : (3)

References (174)
  • 1
    • 0242551536 scopus 로고    scopus 로고
    • Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover
    • Reed, S. I. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol 2003, 4, 855-64.
    • (2003) Nat Rev Mol Cell Biol , vol.4 , pp. 855-864
    • Reed, S.I.1
  • 2
    • 0037233286 scopus 로고    scopus 로고
    • Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis
    • Bashir, T. and Pagano, M. Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis. Adv Cancer Res 2003, 88, 101-44.
    • (2003) Adv Cancer Res , vol.88 , pp. 101-144
    • Bashir, T.1    Pagano, M.2
  • 3
    • 0037712997 scopus 로고    scopus 로고
    • The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins
    • Vierstra, R. D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 2003, 8, 135-42.
    • (2003) Trends Plant Sci , vol.8 , pp. 135-142
    • Vierstra, R.D.1
  • 4
    • 0035924590 scopus 로고    scopus 로고
    • Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation
    • Campbell, D. S. and Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 2001, 32, 1013-1026.
    • (2001) Neuron , vol.32 , pp. 1013-1026
    • Campbell, D.S.1    Holt, C.E.2
  • 6
    • 0037335034 scopus 로고    scopus 로고
    • How the ubiquitin-proteasome system controls transcription
    • Muratani, M. and Tansey, W. P. How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 2003, 4, 192-201.
    • (2003) Nat Rev Mol Cell Biol , vol.4 , pp. 192-201
    • Muratani, M.1    Tansey, W.P.2
  • 7
    • 0037123605 scopus 로고    scopus 로고
    • Emerging roles of ubiquitin in transcription regulation
    • Conaway, R. C., Brower, C. S., and Conaway, J. W. Emerging roles of ubiquitin in transcription regulation. Science 2002, 296, 1254-8.
    • (2002) Science , vol.296 , pp. 1254-1258
    • Conaway, R.C.1    Brower, C.S.2    Conaway, J.W.3
  • 8
    • 0141729263 scopus 로고    scopus 로고
    • Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation
    • Lipford, J. R. and Deshaies, R. J. Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nat Cell Biol 2003, 5, 845-50.
    • (2003) Nat Cell Biol , vol.5 , pp. 845-850
    • Lipford, J.R.1    Deshaies, R.J.2
  • 9
    • 0041837510 scopus 로고    scopus 로고
    • Nuclear and unclear functions of SUMO
    • Seeler, J. S. and Dejean, A. Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 2003, 4, 690-9.
    • (2003) Nat Rev Mol Cell Biol , vol.4 , pp. 690-699
    • Seeler, J.S.1    Dejean, A.2
  • 10
    • 0038434056 scopus 로고    scopus 로고
    • A superfamily of protein tags: ubiquitin, SUMO and related modifiers
    • Schwartz, D. C. and Hochstrasser, M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci 2003, 28, 321-8.
    • (2003) Trends Biochem Sci , vol.28 , pp. 321-328
    • Schwartz, D.C.1    Hochstrasser, M.2
  • 12
    • 0344442779 scopus 로고    scopus 로고
    • Transcriptional regulation by histone ubiquitination and deubiquitination
    • Zhang, Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 2003, 17, 2733-40.
    • (2003) Genes Dev , vol.17 , pp. 2733-2740
    • Zhang, Y.1
  • 13
    • 0034644474 scopus 로고    scopus 로고
    • Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitinconjugating enzyme complex and a unique polyubiquitin chain
    • Deng, L. et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitinconjugating enzyme complex and a unique polyubiquitin chain. Cell 2000, 103, 351-361.
    • (2000) Cell , vol.103 , pp. 351-361
    • Deng, L.1
  • 14
    • 0141442586 scopus 로고    scopus 로고
    • Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins
    • Hicke, L. and Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 2003, 19, 141-72.
    • (2003) Annu Rev Cell Dev Biol , vol.19 , pp. 141-172
    • Hicke, L.1    Dunn, R.2
  • 17
    • 0029126356 scopus 로고
    • Homology in structural organization between E. coli ClpAP protease the eukaryotic 26S proteasome
    • Kessel, M. et al. Homology in structural organization between E. coli ClpAP protease the eukaryotic 26S proteasome. J Mol Biol 1995, 250, 587-594.
    • (1995) J Mol Biol , vol.250 , pp. 587-594
    • Kessel, M.1
  • 18
    • 0029042511 scopus 로고
    • Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution
    • Lowe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 1995, 268, 533-539.
    • (1995) Science , vol.268 , pp. 533-539
    • Lowe, J.1
  • 19
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2.4 A resolution
    • Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997, 386, 463-471.
    • (1997) Nature , vol.386 , pp. 463-471
    • Groll, M.1
  • 20
    • 0036103598 scopus 로고    scopus 로고
    • The structure of the mammalian 20S proteasome at 2.75 A resolution
    • Unno, M. et al. The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure (Camb) 2002, 10, 609-18.
    • (2002) Structure (Camb) , vol.10 , pp. 609-618
    • Unno, M.1
  • 21
    • 0025944084 scopus 로고
    • The multicatalytic proteinase (prosome, proteasome): comparison of the eukaryotic and archaebacterial enzyme
    • Dahlmann, B. et al. The multicatalytic proteinase (prosome, proteasome): comparison of the eukaryotic and archaebacterial enzyme. Biomed Biochim Acta 1991, 50, 465-9.
    • (1991) Biomed Biochim Acta , vol.50 , pp. 465-469
    • Dahlmann, B.1
  • 23
    • 0029060166 scopus 로고
    • Proteasome from Thermoplasma acidophilum: a threonine protease
    • Seemuller, E. et al. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 1995, 268, 579-582.
    • (1995) Science , vol.268 , pp. 579-582
    • Seemuller, E.1
  • 24
    • 0029033981 scopus 로고
    • Inhibition of proteasome activities and subunitspecific amino-terminal threonine modification by lactacystin
    • Fenteany, G. et al. Inhibition of proteasome activities and subunitspecific amino-terminal threonine modification by lactacystin. Science 1995, 268, 726-731.
    • (1995) Science , vol.268 , pp. 726-731
    • Fenteany, G.1
  • 25
    • 0033621047 scopus 로고    scopus 로고
    • Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo anti-inflammatory activity
    • Meng, L. et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo anti-inflammatory activity. Proc. Natl. Acad. Sci. USA 1999, 96, 10403-10408.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 10403-10408
    • Meng, L.1
  • 26
    • 0031010398 scopus 로고    scopus 로고
    • Covalent modification of the active site threonine of proteasomal b subunits and the Escherichia coli homolg HsIV by a new class of inhibitors
    • Bogyo, M. et al. Covalent modification of the active site threonine of proteasomal b subunits and the Escherichia coli homolg HsIV by a new class of inhibitors. Proc. Natl. Acad. Sci. USA 1997, 94, 6629-6634.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 6629-6634
    • Bogyo, M.1
  • 27
    • 0345447210 scopus 로고    scopus 로고
    • Velcade: U.S. FDAapproval for the treatment of multiple myeloma progressing on prior therapy
    • Kane, R. C., Bross, P. F., Farrell, A. T., and Pazdur, R. Velcade: U.S. FDAapproval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 2003, 8, 508-13.
    • (2003) Oncologist , vol.8 , pp. 508-513
    • Kane, R.C.1    Bross, P.F.2    Farrell, A.T.3    Pazdur, R.4
  • 28
    • 0036852231 scopus 로고    scopus 로고
    • Viral interference with antigen presentation
    • Yewdell, J. W. and Hill, A. B. Viral interference with antigen presentation. Nat Immunol 2002, 3, 1019-25.
    • (2002) Nat Immunol , vol.3 , pp. 1019-1025
    • Yewdell, J.W.1    Hill, A.B.2
  • 29
    • 0036777957 scopus 로고    scopus 로고
    • The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides
    • Goldberg, A. L., Cascio, P., Saric, T., and Rock, K. L. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 2002, 39, 147-64.
    • (2002) Mol Immunol , vol.39 , pp. 147-164
    • Goldberg, A.L.1    Cascio, P.2    Saric, T.3    Rock, K.L.4
  • 30
    • 0027399243 scopus 로고
    • Peptides naturally presented by MHC class I molecules
    • Rammensee, H.-G., Falk, K., and Rötzschke, O. Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 1993, 11, 213-244.
    • (1993) Annu. Rev. Immunol. , vol.11 , pp. 213-244
    • Rammensee, H.-G.1    Falk, K.2    Rötzschke, O.3
  • 31
    • 0037010120 scopus 로고    scopus 로고
    • AAA{thorn} proteins and substrate recognition, it all depends on their partner in crime
    • Dougan, D. A., Mogk, A., Zeth, K., Turgay, K., and Bukau, B. AAA{thorn} proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett 2002, 529, 6-10.
    • (2002) FEBS Lett , vol.529 , pp. 6-10
    • Dougan, D.A.1    Mogk, A.2    Zeth, K.3    Turgay, K.4    Bukau, B.5
  • 33
    • 0031927996 scopus 로고    scopus 로고
    • 26S proteasome structure revealed by three-dimensional electron microscopy
    • Walz, J. et al. 26S proteasome structure revealed by three-dimensional electron microscopy. J Struct Biol 1998, 121, 19-29.
    • (1998) J Struct Biol , vol.121 , pp. 19-29
    • Walz, J.1
  • 34
    • 0032483546 scopus 로고    scopus 로고
    • A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and elF3
    • Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and elF3. Cell 1998, 94, 615-623.
    • (1998) Cell , vol.94 , pp. 615-623
    • Glickman, M.H.1
  • 35
    • 0034725525 scopus 로고    scopus 로고
    • Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome
    • Kapelari, B. et al. Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome. J Mol Biol 2000, 300, 1169-78.
    • (2000) J Mol Biol , vol.300 , pp. 1169-1178
    • Kapelari, B.1
  • 36
  • 37
    • 0031001763 scopus 로고    scopus 로고
    • Specific interactions between ATPase subunits of the 26S protease
    • Richmond, C., Gorbea, C., and Rechsteiner, M. Specific interactions between ATPase subunits of the 26S protease. J. Biol. Chem. 1997, 272, 13403-13411.
    • (1997) J. Biol. Chem. , vol.272 , pp. 13403-13411
    • Richmond, C.1    Gorbea, C.2    Rechsteiner, M.3
  • 38
    • 0032168508 scopus 로고    scopus 로고
    • Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome
    • Rubin, D. M., Glickman, M. H., Larsen, C. N., Dhruvakumar, S., and Finley, D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 1998, 17, 4909-4919.
    • (1998) EMBO J. , vol.17 , pp. 4909-4919
    • Rubin, D.M.1    Glickman, M.H.2    Larsen, C.N.3    Dhruvakumar, S.4    Finley, D.5
  • 40
    • 0142091549 scopus 로고    scopus 로고
    • Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA{thorn} ATPase domains
    • Lee, S. Y. et al. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA{thorn} ATPase domains. Genes Dev 2003, 17, 2552-63.
    • (2003) Genes Dev , vol.17 , pp. 2552-2563
    • Lee, S.Y.1
  • 41
    • 0035242489 scopus 로고    scopus 로고
    • Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking
    • Hartmann-Petersen, R., Tanaka, K., and Hendil, K. B. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch Biochem Biophys 2001, 386, 89-94.
    • (2001) Arch Biochem Biophys , vol.386 , pp. 89-94
    • Hartmann-Petersen, R.1    Tanaka, K.2    Hendil, K.B.3
  • 43
    • 0141426637 scopus 로고    scopus 로고
    • COP9 signalosome: a multifunctional regulator of SCF and other cullinbased ubiquitin ligases
    • Cope, G. A. and Deshaies, R. J. COP9 signalosome: a multifunctional regulator of SCF and other cullinbased ubiquitin ligases. Cell 2003, 114, 663-71.
    • (2003) Cell , vol.114 , pp. 663-671
    • Cope, G.A.1    Deshaies, R.J.2
  • 44
    • 1542713819 scopus 로고    scopus 로고
    • The COP9 signalosome: an alternative lid for the 26S proteasome?
    • Li, L. and Deng, X. W. The COP9 signalosome: an alternative lid for the 26S proteasome? Trends Cell Biol 2003, 13, 507-9.
    • (2003) Trends Cell Biol , vol.13 , pp. 507-509
    • Li, L.1    Deng, X.W.2
  • 45
    • 0033976299 scopus 로고    scopus 로고
    • Regulatory subunit interactions of the 26S proteasome, a complex problem
    • Ferrell, K., Wilkinson, C. R., Dubiel, W., and Gordon, C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci 2000, 25, 83-8.
    • (2000) Trends Biochem Sci , vol.25 , pp. 83-88
    • Ferrell, K.1    Wilkinson, C.R.2    Dubiel, W.3    Gordon, C.4
  • 46
    • 0037126632 scopus 로고    scopus 로고
    • Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome
    • Fu, H., Reis, N., Lee, Y., Glickman, M. H., and Vierstra, R. D. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. Embo J 2001, 20, 7096-107.
    • (2001) Embo J , vol.20 , pp. 7096-7107
    • Fu, H.1    Reis, N.2    Lee, Y.3    Glickman, M.H.4    Vierstra, R.D.5
  • 47
    • 0035841193 scopus 로고    scopus 로고
    • Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome
    • Cagney, G., Uetz, P., and Fields, S. Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome. Physiol Genomics 2001, 7, 27-34.
    • (2001) Physiol Genomics , vol.7 , pp. 27-34
    • Cagney, G.1    Uetz, P.2    Fields, S.3
  • 48
    • 0034774617 scopus 로고    scopus 로고
    • A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome
    • Davy, A. et al. A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep 2001, 2, 821-8.
    • (2001) EMBO Rep , vol.2 , pp. 821-828
    • Davy, A.1
  • 49
    • 0037131242 scopus 로고    scopus 로고
    • Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1
    • Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 2002, 298, 608-11.
    • (2002) Science , vol.298 , pp. 608-611
    • Cope, G.A.1
  • 50
    • 0032826785 scopus 로고    scopus 로고
    • Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast
    • Bailly, E. and Reed, S. I. Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast. Mol Cell Biol 1999, 19, 6872-90.
    • (1999) Mol Cell Biol , vol.19 , pp. 6872-6890
    • Bailly, E.1    Reed, S.I.2
  • 51
    • 0037174991 scopus 로고    scopus 로고
    • S9, a 19 S proteasome subunit interacting with ubiquitinated NF-kappaB2/p100
    • Fong, A., Zhang, M., Neely, J., and Sun, S. C. S9, a 19 S proteasome subunit interacting with ubiquitinated NF-kappaB2/p100. J Biol Chem 2002, 277, 40697-702.
    • (2002) J Biol Chem , vol.277 , pp. 40697-40702
    • Fong, A.1    Zhang, M.2    Neely, J.3    Sun, S.C.4
  • 52
    • 0028235965 scopus 로고
    • A 26S protease subunit that binds ubiquitin conjugates
    • Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. A 26S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 1994, 269, 7059-7061.
    • (1994) J. Biol. Chem. , vol.269 , pp. 7059-7061
    • Deveraux, Q.1    Ustrell, V.2    Pickart, C.3    Rechsteiner, M.4
  • 53
    • 0029806477 scopus 로고    scopus 로고
    • The Multiubiquitin-Chain-Binding Protein Mcb1 Is a Component of the 26S Proteasome in Saccharomyces cerevisiae and Plays a Nonessentail, Substrate-Specific Role in Protein Turnover
    • van Nocker, S. et al. The Multiubiquitin-Chain-Binding Protein Mcb1 Is a Component of the 26S Proteasome in Saccharomyces cerevisiae and Plays a Nonessentail, Substrate-Specific Role in Protein Turnover. Mol. Cell Biol. 1996, 16, 6020-6028.
    • (1996) Mol. Cell Biol. , vol.16 , pp. 6020-6028
    • Van Nocker, S.1
  • 54
    • 0037147328 scopus 로고    scopus 로고
    • What curves alphasolenoids? Evidence for an alphahelical toroid structure of Rpn1 and Rpn2 proteins of the 26S proteasome
    • Kajava, A. V. What curves alphasolenoids? Evidence for an alphahelical toroid structure of Rpn1 and Rpn2 proteins of the 26S proteasome. J Biol Chem 2002, 277, 49791-8.
    • (2002) J Biol Chem , vol.277 , pp. 49791-49798
    • Kajava, A.V.1
  • 55
    • 0036713383 scopus 로고    scopus 로고
    • Proteasome subunit Rpn1 binds ubiquitin-like protein domains
    • Elsasser, S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 2002, 4, 725-30.
    • (2002) Nat Cell Biol , vol.4 , pp. 725-730
    • Elsasser, S.1
  • 56
    • 0036382885 scopus 로고    scopus 로고
    • Identification of ubiquitin-like protein-binding subunits of the 26S proteasome
    • Saeki, Y., Sone, T., Toh-e, A., and Yokosawa, H. Identification of ubiquitin-like protein-binding subunits of the 26S proteasome. Biochem Biophys Res Commun 2002, 296, 813-9.
    • (2002) Biochem Biophys Res Commun , vol.296 , pp. 813-819
    • Saeki, Y.1    Sone, T.2    Toh-e, A.3    Yokosawa, H.4
  • 57
    • 0037129213 scopus 로고    scopus 로고
    • A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal
    • Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L., and Pickart, C. M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 2002, 416, 763-7.
    • (2002) Nature , vol.416 , pp. 763-767
    • Lam, Y.A.1    Lawson, T.G.2    Velayutham, M.3    Zweier, J.L.4    Pickart, C.M.5
  • 58
    • 0028365076 scopus 로고
    • Activation of the multicatalytic protease. The 11 S regulator and 20S ATPase complexes contain distinct 30-kilodalton subunits
    • Hoffman, L. and Rechsteiner, M. Activation of the multicatalytic protease. The 11 S regulator and 20S ATPase complexes contain distinct 30-kilodalton subunits. J. Biol. Chem. 1994, 269, 16890-16895.
    • (1994) J. Biol. Chem. , vol.269 , pp. 16890-16895
    • Hoffman, L.1    Rechsteiner, M.2
  • 59
    • 0033176770 scopus 로고    scopus 로고
    • The base of the proteasome regulatory particle exhibits chaperone-like activity
    • Braun, B. C. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1999, 1, 221-6.
    • (1999) Nat Cell Biol , vol.1 , pp. 221-226
    • Braun, B.C.1
  • 60
    • 0034090632 scopus 로고    scopus 로고
    • Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26S proteasome
    • Strickland, E., Hakala, K., Thomas, P. J., and DeMartino, G. N. Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26S proteasome. J Biol Chem 2000, 275, 5565-72.
    • (2000) J Biol Chem , vol.275 , pp. 5565-5572
    • Strickland, E.1    Hakala, K.2    Thomas, P.J.3    DeMartino, G.N.4
  • 61
    • 0037178895 scopus 로고    scopus 로고
    • Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26S proteasome
    • Liu, C. W. et al. Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26S proteasome. J Biol Chem 2002, 277, 26815-20.
    • (2002) J Biol Chem , vol.277 , pp. 26815-26820
    • Liu, C.W.1
  • 62
    • 0037134015 scopus 로고    scopus 로고
    • Recruitment of a 19S proteasome subcomplex to an activated promoter
    • Gonzalez, F., Delahodde, A., Kodadek, T., and Johnston, S. A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 2002, 296, 548-50.
    • (2002) Science , vol.296 , pp. 548-550
    • Gonzalez, F.1    Delahodde, A.2    Kodadek, T.3    Johnston, S.A.4
  • 63
    • 0026539795 scopus 로고
    • Multiple forms of the 20 S multicatalytic and the 26S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate
    • Hoffman, L., Pratt, G., and Rechsteiner, M. Multiple forms of the 20 S multicatalytic and the 26S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate. J. Biol. Chem. 1992, 267, 22362-22368.
    • (1992) J. Biol. Chem. , vol.267 , pp. 22362-22368
    • Hoffman, L.1    Pratt, G.2    Rechsteiner, M.3
  • 64
    • 0033791447 scopus 로고    scopus 로고
    • Proteasomal proteomics: identification of nucleotidesensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
    • Verma, R. et al. Proteasomal proteomics: identification of nucleotidesensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 2000, 11, 3425-39.
    • (2000) Mol Biol Cell , vol.11 , pp. 3425-3439
    • Verma, R.1
  • 65
    • 0347087494 scopus 로고    scopus 로고
    • Complementary roles for rpn11 and ubp6 in deubiquitination and proteolysis by the proteasome
    • Guterman, A. and Glickman, M. H. Complementary roles for rpn11 and ubp6 in deubiquitination and proteolysis by the proteasome. J Biol Chem 2004, 279, 1729-38.
    • (2004) J Biol Chem , vol.279 , pp. 1729-1738
    • Guterman, A.1    Glickman, M.H.2
  • 66
    • 0037821846 scopus 로고    scopus 로고
    • Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes
    • Meiners, S. et al. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem 2003, 278, 21517-25.
    • (2003) J Biol Chem , vol.278 , pp. 21517-21525
    • Meiners, S.1
  • 67
    • 0034683236 scopus 로고    scopus 로고
    • Protein targeting (Nobel lecture)
    • Blobel, G. Protein targeting (Nobel lecture). Chembiochem 2000, 1, 86-102.
    • (2000) Chembiochem , vol.1 , pp. 86-102
    • Blobel, G.1
  • 68
    • 0030200110 scopus 로고    scopus 로고
    • PEST sequences and regulation by proteolysis
    • Rechsteiner, M. and Rogers, S. W. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 1996, 21, 267-271.
    • (1996) Trends Biochem. Sci. , vol.21 , pp. 267-271
    • Rechsteiner, M.1    Rogers, S.W.2
  • 69
    • 0029861143 scopus 로고    scopus 로고
    • The N-end rule: Functions, mysteries, uses
    • Varshavsky, A. The N-end rule: Functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 1996, 93, 12142-12149.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 12142-12149
    • Varshavsky, A.1
  • 70
    • 0037009374 scopus 로고    scopus 로고
    • Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes
    • Zur, A. and Brandeis, M. Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes. Embo J 2002, 21, 4500-10.
    • (2002) Embo J , vol.21 , pp. 4500-4510
    • Zur, A.1    Brandeis, M.2
  • 71
    • 0037834898 scopus 로고    scopus 로고
    • Ubiquitinindependent proteolytic functions of the proteasome
    • Orlowski, M. and Wilk, S. Ubiquitinindependent proteolytic functions of the proteasome. Arch Biochem Biophys 2003, 415, 1-5.
    • (2003) Arch Biochem Biophys , vol.415 , pp. 1-5
    • Orlowski, M.1    Wilk, S.2
  • 72
    • 0038239701 scopus 로고    scopus 로고
    • Selective degradation of oxidatively modified protein substrates by the proteasome
    • Grune, T., Merker, K., Sandig, G., and Davies, K. J. Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 2003, 305, 709-18.
    • (2003) Biochem Biophys Res Commun , vol.305 , pp. 709-718
    • Grune, T.1    Merker, K.2    Sandig, G.3    Davies, K.J.4
  • 73
    • 0041706156 scopus 로고    scopus 로고
    • A proteomics approach to understanding protein ubiquitination
    • Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003, 21, 921-6.
    • (2003) Nat Biotechnol , vol.21 , pp. 921-926
    • Peng, J.1
  • 74
    • 0042317328 scopus 로고    scopus 로고
    • The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin
    • Wu-Baer, F., Lagrazon, K., Yuan, W., and Baer, R. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J Biol Chem 2003, 278, 34743-6.
    • (2003) J Biol Chem , vol.278 , pp. 34743-34746
    • Wu-Baer, F.1    Lagrazon, K.2    Yuan, W.3    Baer, R.4
  • 75
    • 0028847989 scopus 로고
    • A ubiquitin mutant with specific defects in DNA repair and multiubiquitination
    • Spence, J., Sadis, S., Haas, A. L., and Finley, D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 1995, 15, 1265-1273.
    • (1995) Mol Cell Biol , vol.15 , pp. 1265-1273
    • Spence, J.1    Sadis, S.2    Haas, A.L.3    Finley, D.4
  • 76
    • 0033048856 scopus 로고    scopus 로고
    • NH4{thorn}-induced down-regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains
    • Springael, J. Y., Galan, J. M., Haguenauer-Tsapis, R., and Andre, B. NH4{thorn}-induced down-regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. J Cell Sci 1999, 112 (Pt 9), 1375-83.
    • (1999) J Cell Sci , vol.112 , Issue.PART 9 , pp. 1375-1383
    • Springael, J.Y.1    Galan, J.M.2    Haguenauer-Tsapis, R.3    Andre, B.4
  • 77
    • 0037195907 scopus 로고    scopus 로고
    • Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome
    • Alberti, S. et al. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem 2002, 277, 45920-7.
    • (2002) J Biol Chem , vol.277 , pp. 45920-45927
    • Alberti, S.1
  • 78
    • 0024514688 scopus 로고
    • A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein
    • Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 1989, 243, 1576-1583.
    • (1989) Science , vol.243 , pp. 1576-1583
    • Chau, V.1
  • 79
    • 0029119522 scopus 로고
    • A proteolytic pathway that recognizes ubiquitin as a degradation signal
    • Johnson, E. S., Ma, P. C., Ota, I. M., and Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 1995, 270, 17442-17456.
    • (1995) J. Biol. Chem. , vol.270 , pp. 17442-17456
    • Johnson, E.S.1    Ma, P.C.2    Ota, I.M.3    Varshavsky, A.4
  • 80
    • 0034602845 scopus 로고    scopus 로고
    • Recognition of the polyubiquitin proteolytic signal
    • Thrower, J. S., Hoffman, L., Rechsteiner, M., and Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000, 19, 94-102.
    • (2000) EMBO J. , vol.19 , pp. 94-102
    • Thrower, J.S.1    Hoffman, L.2    Rechsteiner, M.3    Pickart, C.M.4
  • 81
    • 0032489524 scopus 로고    scopus 로고
    • Characterization of two polyubiquitin binding sites in the 26S protease subunit 5a
    • Young, P., Deveraux, Q., Beal, R., Pickart, C., and Rechsteiner, M. Characterization of two polyubiquitin binding sites in the 26S protease subunit 5a. J. Biol. Chem. 1998, 273, 5461-5467.
    • (1998) J. Biol. Chem. , vol.273 , pp. 5461-5467
    • Young, P.1    Deveraux, Q.2    Beal, R.3    Pickart, C.4    Rechsteiner, M.5
  • 82
    • 0035369556 scopus 로고    scopus 로고
    • A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems
    • Hofmann, K. and Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci 2001, 26, 347-50.
    • (2001) Trends Biochem Sci , vol.26 , pp. 347-350
    • Hofmann, K.1    Falquet, L.2
  • 83
    • 0141625302 scopus 로고    scopus 로고
    • Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation
    • Swanson, K. A., Kang, R. S., Stamenova, S. D., Hicke, L., and Radhakrishnan, I. Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. Embo J 2003, 22, 4597-606.
    • (2003) Embo J , vol.22 , pp. 4597-4606
    • Swanson, K.A.1    Kang, R.S.2    Stamenova, S.D.3    Hicke, L.4    Radhakrishnan, I.5
  • 84
    • 0141625301 scopus 로고    scopus 로고
    • Structural determinants for the binding of ubiquitin-like domains to the proteasome
    • Mueller, T. D. and Feigon, J. Structural determinants for the binding of ubiquitin-like domains to the proteasome. Embo J 2003, 22, 4634-45.
    • (2003) Embo J , vol.22 , pp. 4634-4645
    • Mueller, T.D.1    Feigon, J.2
  • 85
    • 0141480905 scopus 로고    scopus 로고
    • Binding surface mapping of intra-and interdomain interactions among hHR23B, ubiquitin, and polyubiquitin binding site 2 of S5a
    • Ryu, K. S. et al. Binding surface mapping of intra-and interdomain interactions among hHR23B, ubiquitin, and polyubiquitin binding site 2 of S5a. J Biol Chem 2003, 278, 36621-7.
    • (2003) J Biol Chem , vol.278 , pp. 36621-36627
    • Ryu, K.S.1
  • 87
    • 0036295955 scopus 로고    scopus 로고
    • Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis
    • Saeki, Y., Saitoh, A., Toh-e, A., and Yokosawa, H. Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis. Biochem Biophys Res Commun 2002, 293, 986-92.
    • (2002) Biochem Biophys Res Commun , vol.293 , pp. 986-992
    • Saeki, Y.1    Saitoh, A.2    Toh-e, A.3    Yokosawa, H.4
  • 88
    • 0033600798 scopus 로고    scopus 로고
    • Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26S proteasome
    • Hiyama, H. et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26S proteasome. J Biol Chem 1999, 274, 28019-25.
    • (1999) J Biol Chem , vol.274 , pp. 28019-28025
    • Hiyama, H.1
  • 89
    • 0037368598 scopus 로고    scopus 로고
    • Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain
    • Sakata, E. et al. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep 2003, 4, 301-6.
    • (2003) EMBO Rep , vol.4 , pp. 301-306
    • Sakata, E.1
  • 90
    • 0141632772 scopus 로고    scopus 로고
    • The ubiquitinassociated domain of hPLIC-2 interacts with the proteasome
    • Kleijnen, M. F., Alarcon, R. M., and Howley, P. M. The ubiquitinassociated domain of hPLIC-2 interacts with the proteasome. Mol Biol Cell 2003, 14, 3868-75.
    • (2003) Mol Biol Cell , vol.14 , pp. 3868-3875
    • Kleijnen, M.F.1    Alarcon, R.M.2    Howley, P.M.3
  • 91
    • 0036904663 scopus 로고    scopus 로고
    • UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis
    • Xie, Y. and Varshavsky, A. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nat Cell Biol 2002, 4, 1003-7.
    • (2002) Nat Cell Biol , vol.4 , pp. 1003-1007
    • Xie, Y.1    Varshavsky, A.2
  • 92
    • 0242298321 scopus 로고    scopus 로고
    • Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein
    • Corn, P. G., McDonald, E. R., 3rd, Herman, J. G., and El-Deiry, W. S. Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein. Nat Genet 2003, 35, 229-37.
    • (2003) Nat Genet , vol.35 , pp. 229-237
    • Corn, P.G.1    McDonald III, E.R.2    Herman, J.G.3    El-Deiry, W.S.4
  • 93
    • 0032879814 scopus 로고    scopus 로고
    • Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae
    • Lambertson, D., Chen, L., and Madura, K. Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 1999, 153, 69-79.
    • (1999) Genetics , vol.153 , pp. 69-79
    • Lambertson, D.1    Chen, L.2    Madura, K.3
  • 94
    • 0026714435 scopus 로고
    • Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination
    • Murakami, Y. et al. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 1992, 360, 597-9.
    • (1992) Nature , vol.360 , pp. 597-599
    • Murakami, Y.1
  • 95
    • 0033623850 scopus 로고    scopus 로고
    • Proteasome turnover of p21Cip1 does not require p21Cip1 ubiquitination
    • Sheaff, R. J. et al. Proteasome turnover of p21Cip1 does not require p21Cip1 ubiquitination. Molec. Cell. 2000, 5, 403-410.
    • (2000) Molec. Cell. , vol.5 , pp. 403-410
    • Sheaff, R.J.1
  • 96
    • 0345701307 scopus 로고    scopus 로고
    • Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate
    • Zhang, M., Pickart, C. M., and Coffino, P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. Embo J 2003, 22, 1488-96.
    • (2003) Embo J , vol.22 , pp. 1488-1496
    • Zhang, M.1    Pickart, C.M.2    Coffino, P.3
  • 97
    • 0037398130 scopus 로고    scopus 로고
    • Proteasomal interactors control activities as diverse as the cell cycle and glutaminergic neurotransmission
    • Rezvani, K. et al. Proteasomal interactors control activities as diverse as the cell cycle and glutaminergic neurotransmission. Biochem Soc Trans 2003, 31, 470-3.
    • (2003) Biochem Soc Trans , vol.31 , pp. 470-473
    • Rezvani, K.1
  • 98
    • 0035872863 scopus 로고    scopus 로고
    • A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome
    • Touitou, R. et al. A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome. Embo J 2001, 20, 2367-75.
    • (2001) Embo J , vol.20 , pp. 2367-2375
    • Touitou, R.1
  • 99
    • 0038219632 scopus 로고    scopus 로고
    • Ras promotes p21(Waf1/Cip1) protein stability via a cyclin D1-imposed block in proteasomemediated degradation
    • Coleman, M. L., Marshall, C. J., and Olson, M. F. Ras promotes p21(Waf1/Cip1) protein stability via a cyclin D1-imposed block in proteasomemediated degradation. Embo J 2003, 22, 2036-46.
    • (2003) Embo J , vol.22 , pp. 2036-2046
    • Coleman, M.L.1    Marshall, C.J.2    Olson, M.F.3
  • 100
    • 0032850746 scopus 로고    scopus 로고
    • ATP-Dependent inactivation and sequestration of ornithine decarboxylase by the 26S proteasome are prerequisites for degradation
    • Murakami, Y., Matsufuji, S., Hayashi, S. I., Tanahashi, N., and Tanaka, K. ATP-Dependent inactivation and sequestration of ornithine decarboxylase by the 26S proteasome are prerequisites for degradation. Mol Cell Biol 1999, 19, 7216-27.
    • (1999) Mol Cell Biol , vol.19 , pp. 7216-7227
    • Murakami, Y.1    Matsufuji, S.2    Hayashi, S.I.3    Tanahashi, N.4    Tanaka, K.5
  • 101
    • 0037076507 scopus 로고    scopus 로고
    • Cdc48-Ufd1-Npl4: stuck in the middle with Ub
    • Bays, N. W. and Hampton, R. Y. Cdc48-Ufd1-Npl4: stuck in the middle with Ub. Curr Biol 2002, 12, R366-71.
    • (2002) Curr Biol , vol.12
    • Bays, N.W.1    Hampton, R.Y.2
  • 102
    • 0242573090 scopus 로고    scopus 로고
    • NSF and p97/VCP: similar at first, different at last
    • Brunger, A. T. and DeLaBarre, B. NSF and p97/VCP: similar at first, different at last. FEBS Lett 2003, 555, 126-33.
    • (2003) FEBS Lett , vol.555 , pp. 126-133
    • Brunger, A.T.1    DeLaBarre, B.2
  • 103
    • 0036136901 scopus 로고    scopus 로고
    • AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulumassociated protein degradation
    • Rabinovich, E., Kerem, A., Frohlich, K. U., Diamant, N., and Bar-Nun, S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulumassociated protein degradation. Mol Cell Biol 2002, 22, 626-34.
    • (2002) Mol Cell Biol , vol.22 , pp. 626-634
    • Rabinovich, E.1    Kerem, A.2    Frohlich, K.U.3    Diamant, N.4    Bar-Nun, S.5
  • 104
    • 18544394748 scopus 로고    scopus 로고
    • RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasomedependent proteolysis
    • Wojcik, C., Yano, M., and DeMartino, G. N. RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasomedependent proteolysis. J Cell Sci 2004, 117, 281-92.
    • (2004) J Cell Sci , vol.117 , pp. 281-292
    • Wojcik, C.1    Yano, M.2    DeMartino, G.N.3
  • 105
    • 0032079522 scopus 로고    scopus 로고
    • Involvement of heat shock protein 90 in the degradation of mutant insulin receptors by the proteasome
    • Imamura, T. et al. Involvement of heat shock protein 90 in the degradation of mutant insulin receptors by the proteasome. J Biol Chem 1998, 273, 11183-8.
    • (1998) J Biol Chem , vol.273 , pp. 11183-11188
    • Imamura, T.1
  • 106
    • 0141592584 scopus 로고    scopus 로고
    • Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD
    • Taxis, C. et al. Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J Biol Chem 2003, 278, 35903-13.
    • (2003) J Biol Chem , vol.278 , pp. 35903-35913
    • Taxis, C.1
  • 107
    • 2942668310 scopus 로고    scopus 로고
    • Regulated interaction between polypeptide chain elongation factor-1 complex with the 26S proteasome during Xenopus oocyte maturation
    • Tokumoto, T. et al. Regulated interaction between polypeptide chain elongation factor-1 complex with the 26S proteasome during Xenopus oocyte maturation. BMC Biochem 2003, 4, 6.
    • (2003) BMC Biochem , vol.4 , pp. 6
    • Tokumoto, T.1
  • 108
    • 0033553474 scopus 로고    scopus 로고
    • Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease
    • Gonciarz-Swiatek, M. et al. Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease. J Biol Chem 1999, 274, 13999-4005.
    • (1999) J Biol Chem , vol.274 , pp. 13999-14005
    • Gonciarz-Swiatek, M.1
  • 109
    • 0041465001 scopus 로고    scopus 로고
    • Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX
    • Studemann, A. et al. Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. Embo J 2003, 22, 4111-20.
    • (2003) Embo J , vol.22 , pp. 4111-4120
    • Studemann, A.1
  • 110
    • 0345687188 scopus 로고    scopus 로고
    • Distinct peptide signals in the UmuD and UmuD0 subunits of UmuD/D0 mediate tethering and substrate processing by the ClpXP protease
    • Neher, S. B., Sauer, R. T., and Baker, T. A. Distinct peptide signals in the UmuD and UmuD0 subunits of UmuD/D0 mediate tethering and substrate processing by the ClpXP protease. Proc Natl Acad Sci USA 2003, 100, 13219-24.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 13219-13224
    • Neher, S.B.1    Sauer, R.T.2    Baker, T.A.3
  • 111
    • 0037756792 scopus 로고    scopus 로고
    • Context of multiubiquitin chain attachment influences the rate of Sic1 degradation
    • Petroski, M. D. and Deshaies, R. J. Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. Mol Cell 2003, 11, 1435-44.
    • (2003) Mol Cell , vol.11 , pp. 1435-1444
    • Petroski, M.D.1    Deshaies, R.J.2
  • 112
    • 0035266072 scopus 로고    scopus 로고
    • ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
    • Lee, C., Schwartz, M. P., Prakash, S., Iwakura, M., and Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol Cell 2001, 7, 627-37.
    • (2001) Mol Cell , vol.7 , pp. 627-637
    • Lee, C.1    Schwartz, M.P.2    Prakash, S.3    Iwakura, M.4    Matouschek, A.5
  • 113
    • 0037143697 scopus 로고    scopus 로고
    • ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence
    • Hoskins, J. R., Yanagihara, K., Mizuuchi, K., and Wickner, S. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc Natl Acad Sci USA 2002, 99, 11037-42.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 11037-11042
    • Hoskins, J.R.1    Yanagihara, K.2    Mizuuchi, K.3    Wickner, S.4
  • 114
    • 0037144567 scopus 로고    scopus 로고
    • Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel
    • Lee, C., Prakash, S., and Matouschek, A. Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel. J Biol Chem 2002, 277, 34760-5.
    • (2002) J Biol Chem , vol.277 , pp. 34760-34765
    • Lee, C.1    Prakash, S.2    Matouschek, A.3
  • 115
    • 0037248908 scopus 로고    scopus 로고
    • ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation
    • Benaroudj, N., Zwickl, P., Seemuller, E., Baumeister, W., and Goldberg, A. L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol Cell 2003, 11, 69-78.
    • (2003) Mol Cell , vol.11 , pp. 69-78
    • Benaroudj, N.1    Zwickl, P.2    Seemuller, E.3    Baumeister, W.4    Goldberg, A.L.5
  • 116
    • 0042329502 scopus 로고    scopus 로고
    • Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA{thorn} degradation machine
    • Kenniston, J. A., Baker, T. A., Fernandez, J. M., and Sauer, R. T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA{thorn} degradation machine. Cell 2003, 114, 511-20.
    • (2003) Cell , vol.114 , pp. 511-520
    • Kenniston, J.A.1    Baker, T.A.2    Fernandez, J.M.3    Sauer, R.T.4
  • 117
    • 0035957317 scopus 로고    scopus 로고
    • ClpA mediates directional translocation of substrate proteins into the ClpP protease
    • Reid, B. G., Fenton, W. A., Horwich, A. L., and Weber-Ban, E. U. ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc Natl Acad Sci USA 2001, 98, 3768-72.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 3768-3772
    • Reid, B.G.1    Fenton, W.A.2    Horwich, A.L.3    Weber-Ban, E.U.4
  • 118
    • 0034635172 scopus 로고    scopus 로고
    • Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed
    • Dillingham, M. S., Wigley, D. B., and Webb, M. R. Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 2000, 39, 205-12.
    • (2000) Biochemistry , vol.39 , pp. 205-212
    • Dillingham, M.S.1    Wigley, D.B.2    Webb, M.R.3
  • 119
    • 0035423032 scopus 로고    scopus 로고
    • The 'sequential allosteric ring'mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin
    • Llorca, O. et al. The 'sequential allosteric ring'mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin. Embo J 2001, 20, 4065-75.
    • (2001) Embo J , vol.20 , pp. 4065-4075
    • Llorca, O.1
  • 120
    • 0037219192 scopus 로고    scopus 로고
    • A rotary pumping model for helicase function of MCM proteins at a distance from replication forks
    • Laskey, R. A. and Madine, M. A. A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep 2003, 4, 26-30.
    • (2003) EMBO Rep , vol.4 , pp. 26-30
    • Laskey, R.A.1    Madine, M.A.2
  • 121
    • 0037351068 scopus 로고    scopus 로고
    • Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals
    • Flynn, J. M., Neher, S. B., Kim, Y. I., Sauer, R. T., and Baker, T. A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 2003, 11, 671-83.
    • (2003) Mol Cell , vol.11 , pp. 671-683
    • Flynn, J.M.1    Neher, S.B.2    Kim, Y.I.3    Sauer, R.T.4    Baker, T.A.5
  • 122
    • 0027980321 scopus 로고
    • The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B.
    • Palombella, V. J., Rando, O. J., Goldberg, A. L., and Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994, 78, 773-785.
    • (1994) Cell , vol.78 , pp. 773-785
    • Palombella, V.J.1    Rando, O.J.2    Goldberg, A.L.3    Maniatis, T.4
  • 123
    • 0035073644 scopus 로고    scopus 로고
    • Mechanisms of ubiquitin-mediated, limited processing of the NF-kappaB1 precursor protein p105
    • Ciechanover, A. et al. Mechanisms of ubiquitin-mediated, limited processing of the NF-kappaB1 precursor protein p105. Biochimie 2001, 83, 341-9.
    • (2001) Biochimie , vol.83 , pp. 341-349
    • Ciechanover, A.1
  • 124
    • 1542305655 scopus 로고    scopus 로고
    • Repeat sequence of Epstein-Barr virus EBNA1 protein interrupts proteasome substrate processing
    • Zhang, M. and Coffino, P. Repeat sequence of Epstein-Barr virus EBNA1 protein interrupts proteasome substrate processing. J Biol Chem 2004, 279, 8635-8641.
    • (2004) J Biol Chem , vol.279 , pp. 8635-8641
    • Zhang, M.1    Coffino, P.2
  • 125
    • 0034268493 scopus 로고    scopus 로고
    • Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasomedependent processing
    • Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasomedependent processing. Cell 2000, 102, 577-86.
    • (2000) Cell , vol.102 , pp. 577-586
    • Hoppe, T.1
  • 126
    • 0037155196 scopus 로고    scopus 로고
    • Analysis of Drosophila 26S proteasome using RNA interference
    • Wojcik, C. and DeMartino, G. N. Analysis of Drosophila 26S proteasome using RNA interference. J Biol Chem 2002, 277, 6188-97.
    • (2002) J Biol Chem , vol.277 , pp. 6188-6197
    • Wojcik, C.1    DeMartino, G.N.2
  • 127
    • 0037444494 scopus 로고    scopus 로고
    • Deletion of proteasomal subunit S5a/Rpn10/p54 causes lethality, multiple mitotic defects and overexpression of proteasomal genes in Drosophila melanogaster
    • Szlanka, T. et al. Deletion of proteasomal subunit S5a/Rpn10/p54 causes lethality, multiple mitotic defects and overexpression of proteasomal genes in Drosophila melanogaster. J Cell Sci 2003, 116, 1023-33.
    • (2003) J Cell Sci , vol.116 , pp. 1023-1033
    • Szlanka, T.1
  • 128
    • 0033004441 scopus 로고    scopus 로고
    • Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
    • Mannhaupt, G., Schnall, R., Karpov, V., Vetter, I., and Feldmann, H. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 1999, 450, 27-34.
    • (1999) FEBS Lett , vol.450 , pp. 27-34
    • Mannhaupt, G.1    Schnall, R.2    Karpov, V.3    Vetter, I.4    Feldmann, H.5
  • 129
    • 0035853037 scopus 로고    scopus 로고
    • RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit
    • Xie, Y. and Varshavsky, A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA 2001, 98, 3056-61.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 3056-3061
    • Xie, Y.1    Varshavsky, A.2
  • 130
    • 0033168717 scopus 로고    scopus 로고
    • Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly
    • Arendt, C. S. and Hochstrasser, M. Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. Embo J 1999, 18, 3575-85.
    • (1999) Embo J , vol.18 , pp. 3575-3585
    • Arendt, C.S.1    Hochstrasser, M.2
  • 131
    • 0030880547 scopus 로고    scopus 로고
    • Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits
    • Nandi, D., Woodward, E., Ginsburg, D. B., and Monaco, J. J. Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits. Embo J 1997, 16, 5363-75.
    • (1997) Embo J , vol.16 , pp. 5363-5375
    • Nandi, D.1    Woodward, E.2    Ginsburg, D.B.3    Monaco, J.J.4
  • 132
    • 0033854415 scopus 로고    scopus 로고
    • Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly
    • Griffin, T. A., Slack, J. P., McCluskey, T. S., Monaco, J. J., and Colbert, R. A. Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Mol Cell Biol Res Commun 2000, 3, 212-7.
    • (2000) Mol Cell Biol Res Commun , vol.3 , pp. 212-217
    • Griffin, T.A.1    Slack, J.P.2    McCluskey, T.S.3    Monaco, J.J.4    Colbert, R.A.5
  • 133
    • 0032548998 scopus 로고    scopus 로고
    • Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly
    • Ramos, P. C., Hockendorff, J., Johnson, E. S., Varshavsky, A., and Dohmen, R. J. Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 1998, 92, 489-99.
    • (1998) Cell , vol.92 , pp. 489-499
    • Ramos, P.C.1    Hockendorff, J.2    Johnson, E.S.3    Varshavsky, A.4    Dohmen, R.J.5
  • 134
    • 0037470220 scopus 로고    scopus 로고
    • Rpn6p, a proteasome subunit from Saccharomyces cerevisiae, is essential for the assembly and activity of the 26S proteasome
    • Santamaria, P. G., Finley, D., Ballesta, J. P., and Remacha, M. Rpn6p, a proteasome subunit from Saccharomyces cerevisiae, is essential for the assembly and activity of the 26S proteasome. J Biol Chem 2003, 278, 6687-95.
    • (2003) J Biol Chem , vol.278 , pp. 6687-6695
    • Santamaria, P.G.1    Finley, D.2    Ballesta, J.P.3    Remacha, M.4
  • 135
    • 0028788228 scopus 로고
    • In vivo assembly of the proteasomal complexes, implications for antigen processing
    • Yang, Y., Früh, K., Ahn, K., and Peterson, P. A. In vivo assembly of the proteasomal complexes, implications for antigen processing. J. Biol. Chem. 1995, 270, 27687-27694.
    • (1995) J. Biol. Chem. , vol.270 , pp. 27687-27694
    • Yang, Y.1    Früh, K.2    Ahn, K.3    Peterson, P.A.4
  • 136
    • 0029892643 scopus 로고    scopus 로고
    • Phosphorylation of proteasomes in mammalian cells. Identification two phosphorylated subunits and the effect of phosphorylation on activity
    • Mason, G. G., Hendil, K. B., and Rivett, A. J. Phosphorylation of proteasomes in mammalian cells. Identification two phosphorylated subunits and the effect of phosphorylation on activity. Eur. J. Biochem. 1996, 238, 453-462.
    • (1996) Eur. J. Biochem. , vol.238 , pp. 453-462
    • Mason, G.G.1    Hendil, K.B.2    Rivett, A.J.3
  • 137
    • 0032479207 scopus 로고    scopus 로고
    • Phosphorylation of ATPase subunits of the 26S proteasome
    • Mason, G. G., Murray, R. Z., Pappin, D., and Rivett, A. J. Phosphorylation of ATPase subunits of the 26S proteasome. FEBS Lett 1998, 430, 269-74.
    • (1998) FEBS Lett , vol.430 , pp. 269-274
    • Mason, G.G.1    Murray, R.Z.2    Pappin, D.3    Rivett, A.J.4
  • 138
    • 0034681428 scopus 로고    scopus 로고
    • N(alpha)-acetylation and proteolytic activity of the yeast 20 S proteasome
    • Kimura, Y. et al. N(alpha)-acetylation and proteolytic activity of the yeast 20 S proteasome. J Biol Chem 2000, 275, 4635-9.
    • (2000) J Biol Chem , vol.275 , pp. 4635-4639
    • Kimura, Y.1
  • 139
    • 0037440462 scopus 로고    scopus 로고
    • N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome
    • Kimura, Y. et al. N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Arch Biochem Biophys 2003, 409, 341-8.
    • (2003) Arch Biochem Biophys , vol.409 , pp. 341-348
    • Kimura, Y.1
  • 140
    • 0345357692 scopus 로고    scopus 로고
    • 26S proteasome subunits are Olinked N-acetylglucosamine-modified in Drosophila melanogaster
    • Sumegi, M., Hunyadi-Gulyas, E., Medzihradszky, K. F., and Udvardy, A. 26S proteasome subunits are Olinked N-acetylglucosamine-modified in Drosophila melanogaster. Biochem Biophys Res Commun 2003, 312, 1284-9.
    • (2003) Biochem Biophys Res Commun , vol.312 , pp. 1284-1289
    • Sumegi, M.1    Hunyadi-Gulyas, E.2    Medzihradszky, K.F.3    Udvardy, A.4
  • 141
    • 1542344946 scopus 로고    scopus 로고
    • Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gammainterferon
    • Bose, S., Stratford, F. L., Broadfoot, K. I., Mason, G. G., and Rivett, A. J. Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gammainterferon. Biochem J Pt 2004, 378, 177-184.
    • (2004) Biochem J Pt , vol.378 , pp. 177-184
    • Bose, S.1    Stratford, F.L.2    Broadfoot, K.I.3    Mason, G.G.4    Rivett, A.J.5
  • 142
    • 0037101762 scopus 로고    scopus 로고
    • Assembly of the Drosophila 26S proteasome is accompanied by extensive subunit rearrangements
    • Kurucz, E. et al. Assembly of the Drosophila 26S proteasome is accompanied by extensive subunit rearrangements. Biochem J 2002, 365, 527-36.
    • (2002) Biochem J , vol.365 , pp. 527-536
    • Kurucz, E.1
  • 143
    • 0037115555 scopus 로고    scopus 로고
    • Nob1p is required for biogenesis of the 26S proteasome and degraded upon its maturation in Saccharomyces cerevisiae
    • Tone, Y. and Toh, E. A. Nob1p is required for biogenesis of the 26S proteasome and degraded upon its maturation in Saccharomyces cerevisiae. Genes Dev 2002, 16, 3142-57.
    • (2002) Genes Dev , vol.16 , pp. 3142-3157
    • Tone, Y.1    Toh, E.A.2
  • 144
    • 0037462417 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome
    • Yen, H. C., Gordon, C., and Chang, E. C. Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome. Cell 2003, 112, 207-17.
    • (2003) Cell , vol.112 , pp. 207-217
    • Yen, H.C.1    Gordon, C.2    Chang, E.C.3
  • 145
    • 0042313977 scopus 로고    scopus 로고
    • The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome
    • Imai, J., Maruya, M., Yashiroda, H., Yahara, I., and Tanaka, K. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. Embo J 2003, 22, 3557-67.
    • (2003) Embo J , vol.22 , pp. 3557-3567
    • Imai, J.1    Maruya, M.2    Yashiroda, H.3    Yahara, I.4    Tanaka, K.5
  • 146
    • 0038686574 scopus 로고    scopus 로고
    • Proteasome disassembly and downregulation is correlated with viability during stationary phase
    • Bajorek, M., Finley, D., and Glickman, M. H. Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr Biol 2003, 13, 1140-4.
    • (2003) Curr Biol , vol.13 , pp. 1140-1144
    • Bajorek, M.1    Finley, D.2    Glickman, M.H.3
  • 147
    • 0032526238 scopus 로고    scopus 로고
    • Simultaneous binding of PA28 and PA700 activators to 20 S proteasomes
    • Hendil, K. B., Khan, S. and Tanaka, K. Simultaneous binding of PA28 and PA700 activators to 20 S proteasomes. Biochem. J. 1998, 332, 749-754.
    • (1998) Biochem. J. , vol.332 , pp. 749-754
    • Hendil, K.B.1    Khan, S.2    Tanaka, K.3
  • 148
    • 0035955559 scopus 로고    scopus 로고
    • Reconstitution of hybrid proteasomes from purified PA700-20 S complexes and PA28alphabeta activator: ultrastructure and peptidase activities
    • Kopp, F., Dahlmann, B., and Kuehn, L. Reconstitution of hybrid proteasomes from purified PA700-20 S complexes and PA28alphabeta activator: ultrastructure and peptidase activities. J Mol Biol 2001, 313, 465-71.
    • (2001) J Mol Biol , vol.313 , pp. 465-471
    • Kopp, F.1    Dahlmann, B.2    Kuehn, L.3
  • 149
    • 0034640520 scopus 로고    scopus 로고
    • Hybrid proteasomes. Induction by interferongamma and contribution to ATPdependent proteolysis
    • Tanahashi, N. et al. Hybrid proteasomes. Induction by interferongamma and contribution to ATPdependent proteolysis. J. Biol. Chem. 2000, 275, 14336-14345.
    • (2000) J. Biol. Chem. , vol.275 , pp. 14336-14345
    • Tanahashi, N.1
  • 150
    • 0037013955 scopus 로고    scopus 로고
    • Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes
    • Cascio, P., Call, M., Petre, B., T., W., and Goldberg, A. L. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J. 2002, 21, 2636-2645.
    • (2002) EMBO J. , vol.21 , pp. 2636-2645
    • Cascio, P.1    Call, M.2    Petre, B.T.W.3    Goldberg, A.L.4
  • 151
    • 0033965851 scopus 로고    scopus 로고
    • The proteasome activator 11S REG (PA28) and class I antigen presentation
    • Rechsteiner, M., Realini, C., and Ustrell, V. The proteasome activator 11S REG (PA28) and class I antigen presentation. Biochem. J. 2000, 345, 1-15.
    • (2000) Biochem. J. , vol.345 , pp. 1-15
    • Rechsteiner, M.1    Realini, C.2    Ustrell, V.3
  • 153
    • 17944369433 scopus 로고    scopus 로고
    • Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta
    • Murata, S. et al. Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta. Embo J 2001, 20, 5898-907.
    • (2001) Embo J , vol.20 , pp. 5898-5907
    • Murata, S.1
  • 154
    • 0033621341 scopus 로고    scopus 로고
    • Growth retardation in mice lacking the proteasome activator PA28gamma
    • Murata, S. et al. Growth retardation in mice lacking the proteasome activator PA28gamma. J Biol Chem 1999, 274, 38211-5.
    • (1999) J Biol Chem , vol.274 , pp. 38211-38215
    • Murata, S.1
  • 155
    • 0034597824 scopus 로고    scopus 로고
    • Structural basis for the activation of 20 S proteasomes by 11 S regulators
    • Whitby, F. G. et al. Structural basis for the activation of 20 S proteasomes by 11 S regulators. Nature 2000, 408, 115-120.
    • (2000) Nature , vol.408 , pp. 115-120
    • Whitby, F.G.1
  • 156
    • 0036646488 scopus 로고    scopus 로고
    • PA200, a nuclear proteasome activator involved in DNA repair
    • Ustrell, V., Hoffman, L., Pratt, G., and Rechsteiner, M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 2002, 21, 3403-3412.
    • (2002) EMBO J. , vol.21 , pp. 3403-3412
    • Ustrell, V.1    Hoffman, L.2    Pratt, G.3    Rechsteiner, M.4
  • 157
    • 0037050004 scopus 로고    scopus 로고
    • Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
    • Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., and Moore, L. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002, 415, 180-183.
    • (2002) Nature , vol.415 , pp. 180-183
    • Ho, Y.1    Gruhler, A.2    Heilbut, A.3    Bader, G.D.4    Moore, L.5
  • 158
    • 0037050026 scopus 로고    scopus 로고
    • Functional organization of the yeast proteome by systematic analysis of protein complexes
    • Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415, 141-7.
    • (2002) Nature , vol.415 , pp. 141-147
    • Gavin, A.C.1
  • 159
    • 0036753063 scopus 로고    scopus 로고
    • Multiple associated proteins regulate proteasome structure and function
    • Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol Cell 2002, 10, 495-507.
    • (2002) Mol Cell , vol.10 , pp. 495-507
    • Leggett, D.S.1
  • 160
    • 0034674655 scopus 로고    scopus 로고
    • cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome
    • McCutchen-Maloney, S. L. et al. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J Biol Chem 2000, 275, 18557-65.
    • (2000) J Biol Chem , vol.275 , pp. 18557-18565
    • McCutchen-Maloney, S.L.1
  • 161
    • 0037195136 scopus 로고    scopus 로고
    • PI31 is a modulator of proteasome formation and antigen processing
    • Zaiss, D. M., Standera, S., Kloetzel, P. M., and Sijts, A. J. PI31 is a modulator of proteasome formation and antigen processing. Proc Natl Acad Sci USA 2002, 99, 14344-9.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 14344-14349
    • Zaiss, D.M.1    Standera, S.2    Kloetzel, P.M.3    Sijts, A.J.4
  • 162
    • 0034107524 scopus 로고    scopus 로고
    • A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor
    • Lu, D. C. et al. A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor. Nat. Medicine 2000, 6, 397-404.
    • (2000) Nat. Medicine , vol.6 , pp. 397-404
    • Lu, D.C.1
  • 163
    • 0042848726 scopus 로고    scopus 로고
    • Proline-and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity
    • Gaczynska, M., Osmulski, P. A., Gao, Y., Post, M. J., and Simons, M. Proline-and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity. Biochemistry 2003, 42, 8663-70.
    • (2003) Biochemistry , vol.42 , pp. 8663-8670
    • Gaczynska, M.1    Osmulski, P.A.2    Gao, Y.3    Post, M.J.4    Simons, M.5
  • 164
    • 0037099735 scopus 로고    scopus 로고
    • Two distinct pathways mediated by PA28 and hsp90 in major histocompatibility complex class I antigen processing
    • Yamano, T. et al. Two distinct pathways mediated by PA28 and hsp90 in major histocompatibility complex class I antigen processing. J Exp Med 2002, 196, 185-96.
    • (2002) J Exp Med , vol.196 , pp. 185-196
    • Yamano, T.1
  • 165
    • 0141682702 scopus 로고    scopus 로고
    • Human immunodeficiency virus-1 Tat protein interacts with distinct proteasomal alpha and beta subunits
    • Apcher, G. S. et al. Human immunodeficiency virus-1 Tat protein interacts with distinct proteasomal alpha and beta subunits. FEBS Lett 2003, 553, 200-4.
    • (2003) FEBS Lett , vol.553 , pp. 200-204
    • Apcher, G.S.1
  • 166
    • 0036979090 scopus 로고    scopus 로고
    • The RTP site shared by the HIV-1 Tat protein and the 11S regulator subunit alpha is crucial for their effects on proteasome function including antigen processing
    • Huang, X. et al. The RTP site shared by the HIV-1 Tat protein and the 11S regulator subunit alpha is crucial for their effects on proteasome function including antigen processing. J Mol Biol 2002, 323, 771-82.
    • (2002) J Mol Biol , vol.323 , pp. 771-782
    • Huang, X.1
  • 167
    • 0034652222 scopus 로고    scopus 로고
    • Distribution of proteasomes and of the five proteolytic activities in rat tissues
    • Farout, L. et al. Distribution of proteasomes and of the five proteolytic activities in rat tissues. Arch Biochem Biophys 2000, 374, 207-12.
    • (2000) Arch Biochem Biophys , vol.374 , pp. 207-212
    • Farout, L.1
  • 168
    • 0034652143 scopus 로고    scopus 로고
    • Subcellular localization of proteasomes and their regulatory complexes in mammalian cells
    • Brooks, P. et al. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem. J. 2000, 346, 155-161.
    • (2000) Biochem. J. , vol.346 , pp. 155-161
    • Brooks, P.1
  • 170
    • 0037650101 scopus 로고    scopus 로고
    • Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels
    • Arabi, A., Rustum, C., Hallberg, E., and Wright, A. P. Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels. J Cell Sci 2003, 116, 1707-17.
    • (2003) J Cell Sci , vol.116 , pp. 1707-1717
    • Arabi, A.1    Rustum, C.2    Hallberg, E.3    Wright, A.P.4
  • 171
    • 0034578389 scopus 로고    scopus 로고
    • Aggresomes, inclusion bodies and protein aggregation
    • Kopito, R. R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 2000, 10, 524-30.
    • (2000) Trends Cell Biol , vol.10 , pp. 524-530
    • Kopito, R.R.1
  • 172
    • 0037401916 scopus 로고    scopus 로고
    • Intracellular localization of proteasomes
    • Wojcik, C. and DeMartino, G. N. Intracellular localization of proteasomes. Int J Biochem Cell Biol 2003, 35, 579-89.
    • (2003) Int J Biochem Cell Biol , vol.35 , pp. 579-589
    • Wojcik, C.1    DeMartino, G.N.2
  • 173
    • 0036702298 scopus 로고    scopus 로고
    • ER-associated degradation in protein quality control and cellular regulation
    • Hampton, R. Y. ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 2002, 14, 476-82.
    • (2002) Curr Opin Cell Biol , vol.14 , pp. 476-482
    • Hampton, R.Y.1
  • 174
    • 0042318739 scopus 로고    scopus 로고
    • Evolving questions and paradigm shifts in endoplasmic-reticulumassociated degradation (ERAD)
    • McCracken, A. A. and Brodsky, J. L. Evolving questions and paradigm shifts in endoplasmic-reticulumassociated degradation (ERAD). Bioessays 2003, 25, 868-77.
    • (2003) Bioessays , vol.25 , pp. 868-877
    • McCracken, A.A.1    Brodsky, J.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.