-
1
-
-
46049101837
-
-
Nii H, et al. A 45 nm high performance bulk logic platform technology (CMOS6) using ultra high NA (1.07) immersion lithography with hybrid dual-damascene structure and porous low-k BEOL. In: IEDM Tech Dig; 2006. p. 685-8.
-
Nii H, et al. A 45 nm high performance bulk logic platform technology (CMOS6) using ultra high NA (1.07) immersion lithography with hybrid dual-damascene structure and porous low-k BEOL. In: IEDM Tech Dig; 2006. p. 685-8.
-
-
-
-
2
-
-
50349093509
-
-
.
-
.
-
-
-
-
3
-
-
50249185641
-
-
Mistry K, et al. A 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. In: IEDM Tech Dig; 2007. p. 247-50.
-
Mistry K, et al. A 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. In: IEDM Tech Dig; 2007. p. 247-50.
-
-
-
-
4
-
-
0036927652
-
-
Hoyt JL, et al. Strained silicon MOSFET technology. In: IEDM Tech Dig; 2002. p. 23-6.
-
Hoyt JL, et al. Strained silicon MOSFET technology. In: IEDM Tech Dig; 2002. p. 23-6.
-
-
-
-
5
-
-
3242671509
-
-
Ghani T, et al. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. In: IEDM Tech Dig; 2003. p. 978-80.
-
Ghani T, et al. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. In: IEDM Tech Dig; 2003. p. 978-80.
-
-
-
-
6
-
-
17344377630
-
-
Ootsuka F, et al. A highly dense, high-performance 130 nm node CMOS technology for large scale system-on-a-chip application. In: IEDM Tech Dig; 2000. p. 575-8.
-
Ootsuka F, et al. A highly dense, high-performance 130 nm node CMOS technology for large scale system-on-a-chip application. In: IEDM Tech Dig; 2000. p. 575-8.
-
-
-
-
7
-
-
21644452652
-
-
Yang HS, et al. Dual stress liner for high performance sub-45 nm gate length SOI CMOS manufacturing. In: IEDM Tech Dig; 2004. p. 1075-7.
-
Yang HS, et al. Dual stress liner for high performance sub-45 nm gate length SOI CMOS manufacturing. In: IEDM Tech Dig; 2004. p. 1075-7.
-
-
-
-
8
-
-
4544382132
-
-
Chen CH, et al. Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65 nm high-performance strained-si device application. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 56-57.
-
Chen CH, et al. Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65 nm high-performance strained-si device application. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 56-57.
-
-
-
-
9
-
-
46049091002
-
-
Sleight JW, et al. Challenges and opportunities for high performance 32 nm CMOS technology. In: IEDM Tech Dig; 2006. p. 697-700.
-
Sleight JW, et al. Challenges and opportunities for high performance 32 nm CMOS technology. In: IEDM Tech Dig; 2006. p. 697-700.
-
-
-
-
10
-
-
33846276277
-
-
Oishi A, et al. High performance CMOSFET technology for 45 nm generation and scalability of stress-induced mobility enhancement technique. In: IEDM Tech Dig; 2005. p. 229-32.
-
Oishi A, et al. High performance CMOSFET technology for 45 nm generation and scalability of stress-induced mobility enhancement technique. In: IEDM Tech Dig; 2005. p. 229-32.
-
-
-
-
11
-
-
0043060338
-
10-15 nm Ultrashallow junction formation by flash-lamp annealing
-
Itoh T., et al. 10-15 nm Ultrashallow junction formation by flash-lamp annealing. Jpn J Appl Phys 41 (2002) 2394-2398
-
(2002)
Jpn J Appl Phys
, vol.41
, pp. 2394-2398
-
-
Itoh, T.1
-
12
-
-
4544244756
-
-
Shima A, et al. Ultra-shallow junction formation by non-melt laser spike annealing for 50-nm gate CMOS. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 174-5.
-
Shima A, et al. Ultra-shallow junction formation by non-melt laser spike annealing for 50-nm gate CMOS. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 174-5.
-
-
-
-
13
-
-
4544361502
-
-
Oishi A, et al. High performance CMOSFET technology for 45 nm generation. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 166-7.
-
Oishi A, et al. High performance CMOSFET technology for 45 nm generation. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 166-7.
-
-
-
-
14
-
-
46049112056
-
-
Josse E, et al. A cost-effective low power platform for the 45-nm technology node. In: IEDM Tech Dig; 2006. p. 693-6.
-
Josse E, et al. A cost-effective low power platform for the 45-nm technology node. In: IEDM Tech Dig; 2006. p. 693-6.
-
-
-
-
15
-
-
50249091603
-
-
Miyashita T, et al. High-performance and low-power bulk logic platform utilizing FET specific multiple-stressors with highly enhanced strain and full-porous low-k interconnects for 45-nm CMOS technology. In: IEDM Tech Dig; 2007. p. 251-4.
-
Miyashita T, et al. High-performance and low-power bulk logic platform utilizing FET specific multiple-stressors with highly enhanced strain and full-porous low-k interconnects for 45-nm CMOS technology. In: IEDM Tech Dig; 2007. p. 251-4.
-
-
-
-
16
-
-
21644435201
-
-
Komoda T, et al. Mobility improvement for 45 nm node by combination of optimized stress control and channel orientation design. In: IEDM Tech Dig; 2004. p. 217-20.
-
Komoda T, et al. Mobility improvement for 45 nm node by combination of optimized stress control and channel orientation design. In: IEDM Tech Dig; 2004. p. 217-20.
-
-
-
-
17
-
-
28244470765
-
-
Matsunaga N, et al. BEOL process integration technology for 45 nm node porous low-k/copper interconnects. In: Proc of IITC; 2005. p. 6-8.
-
Matsunaga N, et al. BEOL process integration technology for 45 nm node porous low-k/copper interconnects. In: Proc of IITC; 2005. p. 6-8.
-
-
-
-
18
-
-
8644276426
-
-
Nakamura N, et al. A plasma damage resistant ultra low-k hybrid dielectric structure for 45 nm node copper dual-damascene interconnects. In: Proc of IITC; 2004. p. 228-30.
-
Nakamura N, et al. A plasma damage resistant ultra low-k hybrid dielectric structure for 45 nm node copper dual-damascene interconnects. In: Proc of IITC; 2004. p. 228-30.
-
-
-
-
19
-
-
35148890831
-
-
2. In: Proc of SPIE; 2007. p. 6520-8.
-
2. In: Proc of SPIE; 2007. p. 6520-8.
-
-
-
-
20
-
-
21644450501
-
-
Watanabe T, et al. Impact of Hf concentration on performance and reliability for HfSiON-CMOSFET. In: IEDM Tech Dig; 2004. p. 507-10.
-
Watanabe T, et al. Impact of Hf concentration on performance and reliability for HfSiON-CMOSFET. In: IEDM Tech Dig; 2004. p. 507-10.
-
-
-
-
21
-
-
47749097705
-
-
2 6 T-SRAM bitcell. In: IEDM Tech Dig; 2007. p. 267-70.
-
2 6 T-SRAM bitcell. In: IEDM Tech Dig; 2007. p. 267-70.
-
-
-
-
22
-
-
36448952970
-
-
Chudzik M, et al. High-performance high-k/metal gate for 45 nm CMOS and beyond with gate-first processing. In: Dig of Tech Papers, Symp on VLSI Tech; 2007. p. 194-5.
-
Chudzik M, et al. High-performance high-k/metal gate for 45 nm CMOS and beyond with gate-first processing. In: Dig of Tech Papers, Symp on VLSI Tech; 2007. p. 194-5.
-
-
-
-
23
-
-
46049097584
-
-
Tsuchiya Y, et al. Practical work function tuning based on physical and chemical nature of interfacial impurity in Ni-FUSI/SiON and HfSiON systems. In: IEDM Tech Dig; 2006. p. 231-4.
-
Tsuchiya Y, et al. Practical work function tuning based on physical and chemical nature of interfacial impurity in Ni-FUSI/SiON and HfSiON systems. In: IEDM Tech Dig; 2006. p. 231-4.
-
-
-
-
24
-
-
50249149576
-
-
Wu SY, et al. A 32 nm CMOS low power SoC platform technology for foundry applications with functional high density SRAM. In: IEDM Tech Dig; 2007. p. 263-6.
-
Wu SY, et al. A 32 nm CMOS low power SoC platform technology for foundry applications with functional high density SRAM. In: IEDM Tech Dig; 2007. p. 263-6.
-
-
-
-
25
-
-
54249088505
-
-
Yasutake N, et al. A high performance pMOSFET with two-step recessed SiGe-S/D structure for 32 nm node and beyond. In: Proc of ESSDERC; 2006. p. 77-80.
-
Yasutake N, et al. A high performance pMOSFET with two-step recessed SiGe-S/D structure for 32 nm node and beyond. In: Proc of ESSDERC; 2006. p. 77-80.
-
-
-
-
26
-
-
50249085516
-
-
y barrier layer for 32 nm-node. In: Proc of IITC; 2006. p. 216-18.
-
y barrier layer for 32 nm-node. In: Proc of IITC; 2006. p. 216-18.
-
-
-
-
27
-
-
33745127020
-
-
2 Conventional Bulk 6T-SRAM bit-cells for 45 nm node low cost - general purpose applications. In: Dig of Tech Papers, Symp on VLSI Tech; 2005. p. 130-1.
-
2 Conventional Bulk 6T-SRAM bit-cells for 45 nm node low cost - general purpose applications. In: Dig of Tech Papers, Symp on VLSI Tech; 2005. p. 130-1.
-
-
-
-
28
-
-
4544276950
-
-
Yasutake N, et al. A hp 22 nm node low operating power (LOP) technology with sub-10 nm gate length planar bulk CMOS devices. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 84-5.
-
Yasutake N, et al. A hp 22 nm node low operating power (LOP) technology with sub-10 nm gate length planar bulk CMOS devices. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 84-5.
-
-
-
-
29
-
-
33644640188
-
-
Chang L, et al. Stable SRAM cell design for the 32 nm node and beyon. In: Dig Tech Papers, Symp on VLSI Tech; 2005. p. 128-9.
-
Chang L, et al. Stable SRAM cell design for the 32 nm node and beyon. In: Dig Tech Papers, Symp on VLSI Tech; 2005. p. 128-9.
-
-
-
-
30
-
-
33745118352
-
-
Takeyama Y, et al. A low leakage SRAM macro with replica cell biasing scheme. In: Dig of Tech Papers, Symp on VLSI Circ; 2005. p. 166-7.
-
Takeyama Y, et al. A low leakage SRAM macro with replica cell biasing scheme. In: Dig of Tech Papers, Symp on VLSI Circ; 2005. p. 166-7.
-
-
-
|