메뉴 건너뛰기




Volumn 52, Issue 9, 2008, Pages 1266-1273

45 nm/32 nm CMOS - Challenge and perspective

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRON BEAM LITHOGRAPHY; METALS; TECHNOLOGICAL FORECASTING; TECHNOLOGY;

EID: 50349099157     PISSN: 00381101     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sse.2008.04.034     Document Type: Article
Times cited : (27)

References (30)
  • 1
    • 46049101837 scopus 로고    scopus 로고
    • Nii H, et al. A 45 nm high performance bulk logic platform technology (CMOS6) using ultra high NA (1.07) immersion lithography with hybrid dual-damascene structure and porous low-k BEOL. In: IEDM Tech Dig; 2006. p. 685-8.
    • Nii H, et al. A 45 nm high performance bulk logic platform technology (CMOS6) using ultra high NA (1.07) immersion lithography with hybrid dual-damascene structure and porous low-k BEOL. In: IEDM Tech Dig; 2006. p. 685-8.
  • 2
    • 50349093509 scopus 로고    scopus 로고
    • .
    • .
  • 3
    • 50249185641 scopus 로고    scopus 로고
    • Mistry K, et al. A 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. In: IEDM Tech Dig; 2007. p. 247-50.
    • Mistry K, et al. A 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. In: IEDM Tech Dig; 2007. p. 247-50.
  • 4
    • 0036927652 scopus 로고    scopus 로고
    • Hoyt JL, et al. Strained silicon MOSFET technology. In: IEDM Tech Dig; 2002. p. 23-6.
    • Hoyt JL, et al. Strained silicon MOSFET technology. In: IEDM Tech Dig; 2002. p. 23-6.
  • 5
    • 3242671509 scopus 로고    scopus 로고
    • Ghani T, et al. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. In: IEDM Tech Dig; 2003. p. 978-80.
    • Ghani T, et al. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. In: IEDM Tech Dig; 2003. p. 978-80.
  • 6
    • 17344377630 scopus 로고    scopus 로고
    • Ootsuka F, et al. A highly dense, high-performance 130 nm node CMOS technology for large scale system-on-a-chip application. In: IEDM Tech Dig; 2000. p. 575-8.
    • Ootsuka F, et al. A highly dense, high-performance 130 nm node CMOS technology for large scale system-on-a-chip application. In: IEDM Tech Dig; 2000. p. 575-8.
  • 7
    • 21644452652 scopus 로고    scopus 로고
    • Yang HS, et al. Dual stress liner for high performance sub-45 nm gate length SOI CMOS manufacturing. In: IEDM Tech Dig; 2004. p. 1075-7.
    • Yang HS, et al. Dual stress liner for high performance sub-45 nm gate length SOI CMOS manufacturing. In: IEDM Tech Dig; 2004. p. 1075-7.
  • 8
    • 4544382132 scopus 로고    scopus 로고
    • Chen CH, et al. Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65 nm high-performance strained-si device application. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 56-57.
    • Chen CH, et al. Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65 nm high-performance strained-si device application. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 56-57.
  • 9
    • 46049091002 scopus 로고    scopus 로고
    • Sleight JW, et al. Challenges and opportunities for high performance 32 nm CMOS technology. In: IEDM Tech Dig; 2006. p. 697-700.
    • Sleight JW, et al. Challenges and opportunities for high performance 32 nm CMOS technology. In: IEDM Tech Dig; 2006. p. 697-700.
  • 10
    • 33846276277 scopus 로고    scopus 로고
    • Oishi A, et al. High performance CMOSFET technology for 45 nm generation and scalability of stress-induced mobility enhancement technique. In: IEDM Tech Dig; 2005. p. 229-32.
    • Oishi A, et al. High performance CMOSFET technology for 45 nm generation and scalability of stress-induced mobility enhancement technique. In: IEDM Tech Dig; 2005. p. 229-32.
  • 11
    • 0043060338 scopus 로고    scopus 로고
    • 10-15 nm Ultrashallow junction formation by flash-lamp annealing
    • Itoh T., et al. 10-15 nm Ultrashallow junction formation by flash-lamp annealing. Jpn J Appl Phys 41 (2002) 2394-2398
    • (2002) Jpn J Appl Phys , vol.41 , pp. 2394-2398
    • Itoh, T.1
  • 12
    • 4544244756 scopus 로고    scopus 로고
    • Shima A, et al. Ultra-shallow junction formation by non-melt laser spike annealing for 50-nm gate CMOS. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 174-5.
    • Shima A, et al. Ultra-shallow junction formation by non-melt laser spike annealing for 50-nm gate CMOS. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 174-5.
  • 13
    • 4544361502 scopus 로고    scopus 로고
    • Oishi A, et al. High performance CMOSFET technology for 45 nm generation. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 166-7.
    • Oishi A, et al. High performance CMOSFET technology for 45 nm generation. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 166-7.
  • 14
    • 46049112056 scopus 로고    scopus 로고
    • Josse E, et al. A cost-effective low power platform for the 45-nm technology node. In: IEDM Tech Dig; 2006. p. 693-6.
    • Josse E, et al. A cost-effective low power platform for the 45-nm technology node. In: IEDM Tech Dig; 2006. p. 693-6.
  • 15
    • 50249091603 scopus 로고    scopus 로고
    • Miyashita T, et al. High-performance and low-power bulk logic platform utilizing FET specific multiple-stressors with highly enhanced strain and full-porous low-k interconnects for 45-nm CMOS technology. In: IEDM Tech Dig; 2007. p. 251-4.
    • Miyashita T, et al. High-performance and low-power bulk logic platform utilizing FET specific multiple-stressors with highly enhanced strain and full-porous low-k interconnects for 45-nm CMOS technology. In: IEDM Tech Dig; 2007. p. 251-4.
  • 16
    • 21644435201 scopus 로고    scopus 로고
    • Komoda T, et al. Mobility improvement for 45 nm node by combination of optimized stress control and channel orientation design. In: IEDM Tech Dig; 2004. p. 217-20.
    • Komoda T, et al. Mobility improvement for 45 nm node by combination of optimized stress control and channel orientation design. In: IEDM Tech Dig; 2004. p. 217-20.
  • 17
    • 28244470765 scopus 로고    scopus 로고
    • Matsunaga N, et al. BEOL process integration technology for 45 nm node porous low-k/copper interconnects. In: Proc of IITC; 2005. p. 6-8.
    • Matsunaga N, et al. BEOL process integration technology for 45 nm node porous low-k/copper interconnects. In: Proc of IITC; 2005. p. 6-8.
  • 18
    • 8644276426 scopus 로고    scopus 로고
    • Nakamura N, et al. A plasma damage resistant ultra low-k hybrid dielectric structure for 45 nm node copper dual-damascene interconnects. In: Proc of IITC; 2004. p. 228-30.
    • Nakamura N, et al. A plasma damage resistant ultra low-k hybrid dielectric structure for 45 nm node copper dual-damascene interconnects. In: Proc of IITC; 2004. p. 228-30.
  • 19
    • 35148890831 scopus 로고    scopus 로고
    • 2. In: Proc of SPIE; 2007. p. 6520-8.
    • 2. In: Proc of SPIE; 2007. p. 6520-8.
  • 20
    • 21644450501 scopus 로고    scopus 로고
    • Watanabe T, et al. Impact of Hf concentration on performance and reliability for HfSiON-CMOSFET. In: IEDM Tech Dig; 2004. p. 507-10.
    • Watanabe T, et al. Impact of Hf concentration on performance and reliability for HfSiON-CMOSFET. In: IEDM Tech Dig; 2004. p. 507-10.
  • 21
    • 47749097705 scopus 로고    scopus 로고
    • 2 6 T-SRAM bitcell. In: IEDM Tech Dig; 2007. p. 267-70.
    • 2 6 T-SRAM bitcell. In: IEDM Tech Dig; 2007. p. 267-70.
  • 22
    • 36448952970 scopus 로고    scopus 로고
    • Chudzik M, et al. High-performance high-k/metal gate for 45 nm CMOS and beyond with gate-first processing. In: Dig of Tech Papers, Symp on VLSI Tech; 2007. p. 194-5.
    • Chudzik M, et al. High-performance high-k/metal gate for 45 nm CMOS and beyond with gate-first processing. In: Dig of Tech Papers, Symp on VLSI Tech; 2007. p. 194-5.
  • 23
    • 46049097584 scopus 로고    scopus 로고
    • Tsuchiya Y, et al. Practical work function tuning based on physical and chemical nature of interfacial impurity in Ni-FUSI/SiON and HfSiON systems. In: IEDM Tech Dig; 2006. p. 231-4.
    • Tsuchiya Y, et al. Practical work function tuning based on physical and chemical nature of interfacial impurity in Ni-FUSI/SiON and HfSiON systems. In: IEDM Tech Dig; 2006. p. 231-4.
  • 24
    • 50249149576 scopus 로고    scopus 로고
    • Wu SY, et al. A 32 nm CMOS low power SoC platform technology for foundry applications with functional high density SRAM. In: IEDM Tech Dig; 2007. p. 263-6.
    • Wu SY, et al. A 32 nm CMOS low power SoC platform technology for foundry applications with functional high density SRAM. In: IEDM Tech Dig; 2007. p. 263-6.
  • 25
    • 54249088505 scopus 로고    scopus 로고
    • Yasutake N, et al. A high performance pMOSFET with two-step recessed SiGe-S/D structure for 32 nm node and beyond. In: Proc of ESSDERC; 2006. p. 77-80.
    • Yasutake N, et al. A high performance pMOSFET with two-step recessed SiGe-S/D structure for 32 nm node and beyond. In: Proc of ESSDERC; 2006. p. 77-80.
  • 26
    • 50249085516 scopus 로고    scopus 로고
    • y barrier layer for 32 nm-node. In: Proc of IITC; 2006. p. 216-18.
    • y barrier layer for 32 nm-node. In: Proc of IITC; 2006. p. 216-18.
  • 27
    • 33745127020 scopus 로고    scopus 로고
    • 2 Conventional Bulk 6T-SRAM bit-cells for 45 nm node low cost - general purpose applications. In: Dig of Tech Papers, Symp on VLSI Tech; 2005. p. 130-1.
    • 2 Conventional Bulk 6T-SRAM bit-cells for 45 nm node low cost - general purpose applications. In: Dig of Tech Papers, Symp on VLSI Tech; 2005. p. 130-1.
  • 28
    • 4544276950 scopus 로고    scopus 로고
    • Yasutake N, et al. A hp 22 nm node low operating power (LOP) technology with sub-10 nm gate length planar bulk CMOS devices. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 84-5.
    • Yasutake N, et al. A hp 22 nm node low operating power (LOP) technology with sub-10 nm gate length planar bulk CMOS devices. In: Dig of Tech Papers, Symp on VLSI Tech; 2004. p. 84-5.
  • 29
    • 33644640188 scopus 로고    scopus 로고
    • Chang L, et al. Stable SRAM cell design for the 32 nm node and beyon. In: Dig Tech Papers, Symp on VLSI Tech; 2005. p. 128-9.
    • Chang L, et al. Stable SRAM cell design for the 32 nm node and beyon. In: Dig Tech Papers, Symp on VLSI Tech; 2005. p. 128-9.
  • 30
    • 33745118352 scopus 로고    scopus 로고
    • Takeyama Y, et al. A low leakage SRAM macro with replica cell biasing scheme. In: Dig of Tech Papers, Symp on VLSI Circ; 2005. p. 166-7.
    • Takeyama Y, et al. A low leakage SRAM macro with replica cell biasing scheme. In: Dig of Tech Papers, Symp on VLSI Circ; 2005. p. 166-7.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.