메뉴 건너뛰기




Volumn 5, Issue OCT, 2014, Pages

From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation

Author keywords

Functional phenotypes; Inflammation; Monocyte derived macrophages; Monocytes; Tissue resident macrophages

Indexed keywords

CD14 ANTIGEN; CD16 ANTIGEN; CHEMOKINE RECEPTOR CCR2; CHEMOKINE RECEPTOR CX3CR1; COLONY STIMULATING FACTOR 1; CX3C CHEMOKINE; FRACTALKINE; GAMMA INTERFERON; GRANULOCYTE MACROPHAGE COLONY STIMULATING FACTOR; INTERLEUKIN 13; INTERLEUKIN 1BETA; MACROPHAGE DERIVED CHEMOKINE; MONOCYTE CHEMOTACTIC PROTEIN 1; TOLL LIKE RECEPTOR; TRANSFORMING GROWTH FACTOR BETA;

EID: 85191983349     PISSN: None     EISSN: 16643224     Source Type: Journal    
DOI: 10.3389/fimmu.2014.00514     Document Type: Review
Times cited : (1471)

References (226)
  • 1
    • 33846990935 scopus 로고    scopus 로고
    • Friendly and dangerous signals: is the tissue in control?
    • Matzinger P. Friendly and dangerous signals: is the tissue in control? Nat Immunol (2007) 8:11-3. doi:10.1038/ni0107-11
    • (2007) Nat Immunol , vol.8 , pp. 11-13
    • Matzinger, P.1
  • 2
    • 47949099098 scopus 로고    scopus 로고
    • Origin and physiological roles of inflammation
    • Medzhitov R. Origin and physiological roles of inflammation. Nature (2008) 454:428-35. doi:10.1038/nature07201
    • (2008) Nature , vol.454 , pp. 428-435
    • Medzhitov, R.1
  • 3
    • 0037180812 scopus 로고    scopus 로고
    • Points of control in inflammation
    • Nathan C. Points of control in inflammation. Nature (2002) 420:846-52. doi:10.1038/nature01320
    • (2002) Nature , vol.420 , pp. 846-852
    • Nathan, C.1
  • 4
    • 0014325451 scopus 로고
    • The origin and kinetics of mononuclear phagocytes
    • van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J Exp Med (1968) 128:415-35. doi:10.1084/jem.128.3.415
    • (1968) J Exp Med , vol.128 , pp. 415-435
    • van Furth, R.1    Cohn, Z.A.2
  • 5
    • 0037769059 scopus 로고    scopus 로고
    • Monocytes heterogeneity and innate immunity
    • Taylor PR, Gordon S. Monocytes heterogeneity and innate immunity. Immunity (2003) 19:2-4. doi:10.1016/S1074-7613(03)00178-X
    • (2003) Immunity , vol.19 , pp. 2-4
    • Taylor, P.R.1    Gordon, S.2
  • 6
    • 44049092407 scopus 로고    scopus 로고
    • Discovery of a cytokine and its receptor by functional screening of the extracellular proteome
    • Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science (2008) 320:807-11. doi:10.1126/science.1154370
    • (2008) Science , vol.320 , pp. 807-811
    • Lin, H.1    Lee, E.2    Hestir, K.3    Leo, C.4    Huang, M.5    Bosch, E.6
  • 7
    • 84857618521 scopus 로고    scopus 로고
    • Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling
    • Hume DA, MacDonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood (2012) 119:1810-20. doi:10.1182/blood-2011-09-379214
    • (2012) Blood , vol.119 , pp. 1810-1820
    • Hume, D.A.1    MacDonald, K.P.2
  • 9
    • 84905093326 scopus 로고    scopus 로고
    • Homeostasis in the mononuclear phagocyte system
    • Jenkins SJ, Hume DA. Homeostasis in the mononuclear phagocyte system. Trends Immunol (2014) 35:358-67. doi:10.1016/j.it.2014.06.006
    • (2014) Trends Immunol , vol.35 , pp. 358-367
    • Jenkins, S.J.1    Hume, D.A.2
  • 10
    • 76249095169 scopus 로고    scopus 로고
    • Development of monocytes, macrophages, and dendritic cells
    • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science (2010) 327:656-61. doi:10.1126/science.1178331
    • (2010) Science , vol.327 , pp. 656-661
    • Geissmann, F.1    Manz, M.G.2    Jung, S.3    Sieweke, M.H.4    Merad, M.5    Ley, K.6
  • 11
    • 84900863347 scopus 로고    scopus 로고
    • Human dendritic cell functional specialization in steady-state and inflammation
    • Boltjes A, van Wijk F. Human dendritic cell functional specialization in steady-state and inflammation. Front Immunol (2014) 5:131. doi:10.3389/fimmu.2014.00131
    • (2014) Front Immunol , vol.5 , pp. 131
    • Boltjes, A.1    van Wijk, F.2
  • 13
    • 84888063933 scopus 로고    scopus 로고
    • Beyond stem cells: self-renewal of differentiated macrophages
    • Sieweke MH, Allen JE. Beyond stem cells: self-renewal of differentiated macrophages. Science (2013) 342:1242974. doi:10.1126/science.1242974
    • (2013) Science , vol.342 , pp. 1242974
    • Sieweke, M.H.1    Allen, J.E.2
  • 14
    • 84908653357 scopus 로고    scopus 로고
    • M1 and M2 macrophages: the chicken and the egg of immunity
    • Mills CD, Ley K. M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun (2014) 6(6). doi:10.1159/000364945
    • (2014) J Innate Immun , vol.6 , Issue.6
    • Mills, C.D.1    Ley, K.2
  • 15
    • 0034624828 scopus 로고    scopus 로고
    • A clonogenic common myeloid progenitor that gives rise to all myeloid lineages
    • Akashi K, Trever D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature (2000) 404:193-7. doi:10.1038/35004599
    • (2000) Nature , vol.404 , pp. 193-197
    • Akashi, K.1    Trever, D.2    Miyamoto, T.3    Weissman, I.L.4
  • 16
    • 30344444770 scopus 로고    scopus 로고
    • A clonogenic bone marrow progenitor specific for macrophages and dendritic cells
    • Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science (2006) 311:83-7. doi:10.1126/science.1117729
    • (2006) Science , vol.311 , pp. 83-87
    • Fogg, D.K.1    Sibon, C.2    Miled, C.3    Jung, S.4    Aucouturier, P.5    Littman, D.R.6
  • 19
    • 36448994709 scopus 로고    scopus 로고
    • Local self-renewal can sustain CNS microglia maintenance and function throughout adult life
    • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci (2007) 10:1538-43. doi:10.1038/nn2014
    • (2007) Nat Neurosci , vol.10 , pp. 1538-1543
    • Ajami, B.1    Bennett, J.L.2    Krieger, C.3    Tetzlaff, W.4    Rossi, F.M.5
  • 20
    • 46249090513 scopus 로고    scopus 로고
    • Colony-stimulating factor in inflammation and autoimmunity
    • Hamilton JA. Colony-stimulating factor in inflammation and autoimmunity. Nat Rev Immunol (2008) 8:533-44. doi:10.1038/nri2356
    • (2008) Nat Rev Immunol , vol.8 , pp. 533-544
    • Hamilton, J.A.1
  • 22
    • 0020078038 scopus 로고
    • Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy
    • Tushinski RJ, Oliver IT, Guilbert LJ, Tynan PW, Warner JR, Stanley ER. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell (1982) 28:71-81. doi:10.1016/0092-8674(82)90376-2
    • (1982) Cell , vol.28 , pp. 71-81
    • Tushinski, R.J.1    Oliver, I.T.2    Guilbert, L.J.3    Tynan, P.W.4    Warner, J.R.5    Stanley, E.R.6
  • 23
    • 84859407607 scopus 로고    scopus 로고
    • Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R
    • Ma X, Lin WY, Chen Y, Stawicki S, Mukhyala K, Wu Y, et al. Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. Structure (2012) 20:676-87. doi:10.1016/j.str.2012.02.010
    • (2012) Structure , vol.20 , pp. 676-687
    • Ma, X.1    Lin, W.Y.2    Chen, Y.3    Stawicki, S.4    Mukhyala, K.5    Wu, Y.6
  • 24
    • 84864152036 scopus 로고    scopus 로고
    • IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
    • Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol (2012) 13:753-60. doi:10.1038/ni.2360
    • (2012) Nat Immunol , vol.13 , pp. 753-760
    • Wang, Y.1    Szretter, K.J.2    Vermi, W.3    Gilfillan, S.4    Rossini, C.5    Cella, M.6
  • 25
    • 0019171406 scopus 로고
    • The nature and action of granulocyte-macrophage colony stimulating factors
    • Burgess AW, Metcalf D. The nature and action of granulocyte-macrophage colony stimulating factors. Blood (1980) 56:947-58.
    • (1980) Blood , vol.56 , pp. 947-958
    • Burgess, A.W.1    Metcalf, D.2
  • 26
    • 0025897015 scopus 로고
    • Molecular physiology of granulocyte-macrophage colony stimulating factor
    • Gasson J. Molecular physiology of granulocyte-macrophage colony stimulating factor. Blood (1991) 77:1131-45.
    • (1991) Blood , vol.77 , pp. 1131-1145
    • Gasson, J.1
  • 27
    • 42649108339 scopus 로고    scopus 로고
    • Monocyte-mediated defense against microbial pathogens
    • Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol (2008) 26:421-52. doi:10.1146/annurev.immunol.26.021607.090326
    • (2008) Annu Rev Immunol , vol.26 , pp. 421-452
    • Serbina, N.V.1    Jia, T.2    Hohl, T.M.3    Pamer, E.G.4
  • 28
    • 65549165389 scopus 로고    scopus 로고
    • In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses
    • Evans HG, Gullick NJ, Kelly S, Pitzalis C, Lord GM, Kirkham BW, et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc Natl Acad Sci U S A (2009) 106:6232-7. doi:10.1073/pnas.0808144106
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 6232-6237
    • Evans, H.G.1    Gullick, N.J.2    Kelly, S.3    Pitzalis, C.4    Lord, G.M.5    Kirkham, B.W.6
  • 29
    • 84888081111 scopus 로고    scopus 로고
    • On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells
    • Avraham-Davidi I, Yona S, Grunewald M, Landsman L, Cochain C, Silvestre JS, et al. On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J Exp Med (2013) 210:2611-25. doi:10.1084/jem.20120690
    • (2013) J Exp Med , vol.210 , pp. 2611-2625
    • Avraham-Davidi, I.1    Yona, S.2    Grunewald, M.3    Landsman, L.4    Cochain, C.5    Silvestre, J.S.6
  • 30
    • 0024450489 scopus 로고
    • Identification and characterization of a novel monocyte subpopulation in human peripheral blood
    • Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood (1989) 74:2527-34.
    • (1989) Blood , vol.74 , pp. 2527-2534
    • Passlick, B.1    Flieger, D.2    Ziegler-Heitbrock, H.W.3
  • 31
    • 77958185103 scopus 로고    scopus 로고
    • Nomenclature of monocytes and dendritic cells in blood
    • Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood (2010) 116:e74-80. doi:10.1182/blood-2010-02-258558
    • (2010) Blood , vol.116 , pp. e74-e80
    • Ziegler-Heitbrock, L.1    Ancuta, P.2    Crowe, S.3    Dalod, M.4    Grau, V.5    Hart, D.N.6
  • 33
    • 68549135403 scopus 로고    scopus 로고
    • Identification of novel functional differences in monocyte subsets using proteomic and transcriptomic methods
    • Zhao C, Zhang H, Wong WC, Sem X, Han H, Ong SM, et al. Identification of novel functional differences in monocyte subsets using proteomic and transcriptomic methods. J Proteome Res (2009) 8:4028-38. doi:10.1021/pr900364p
    • (2009) J Proteome Res , vol.8 , pp. 4028-4038
    • Zhao, C.1    Zhang, H.2    Wong, W.C.3    Sem, X.4    Han, H.5    Ong, S.M.6
  • 34
    • 70349563347 scopus 로고    scopus 로고
    • Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets
    • Ancuta P, Liu KY, Misra V, Wacleche VS, Gosselin A, Zhou X, et al. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets. BMC Genomics (2009) 10:403. doi:10.1186/1471-2164-10-403
    • (2009) BMC Genomics , vol.10 , pp. 403
    • Ancuta, P.1    Liu, K.Y.2    Misra, V.3    Wacleche, V.S.4    Gosselin, A.5    Zhou, X.6
  • 35
    • 77957020717 scopus 로고    scopus 로고
    • Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
    • Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity (2010) 33:375-86. doi:10.1016/j.immuni.2010.08.012
    • (2010) Immunity , vol.33 , pp. 375-386
    • Cros, J.1    Cagnard, N.2    Woollard, K.3    Patey, N.4    Zhang, S.Y.5    Senechal, B.6
  • 36
    • 80051567423 scopus 로고    scopus 로고
    • Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets
    • Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood (2011) 118:e16-31. doi:10.1182/blood-2010-12-326355
    • (2011) Blood , vol.118 , pp. e16-e31
    • Wong, K.L.1    Tai, J.J.2    Wong, W.C.3    Han, H.4    Sem, X.5    Yeap, W.H.6
  • 37
    • 80053181958 scopus 로고    scopus 로고
    • SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset
    • Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood (2011) 118:e50-61. doi:10.1182/blood-2011-01-326827
    • (2011) Blood , vol.118 , pp. e50-e61
    • Zawada, A.M.1    Rogacev, K.S.2    Rotter, B.3    Winter, P.4    Marell, R.R.5    Fliser, D.6
  • 38
    • 84860241752 scopus 로고    scopus 로고
    • Transcript profiling of CD16-positive monocytes reveals a unique molecular fingerprint
    • Frankenberger M, Hofer TP, Marei A, Dayyani F, Schewe S, Strasser C, et al. Transcript profiling of CD16-positive monocytes reveals a unique molecular fingerprint. Eur J Immunol (2012) 42:957-74. doi:10.1002/eji.201141907
    • (2012) Eur J Immunol , vol.42 , pp. 957-974
    • Frankenberger, M.1    Hofer, T.P.2    Marei, A.3    Dayyani, F.4    Schewe, S.5    Strasser, C.6
  • 39
    • 27144486151 scopus 로고    scopus 로고
    • Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms
    • Barnes M, Freudenberg J, Thompson S, Aronow B, Pavlidis P. Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Res (2005) 33:5914-23. doi:10.1093/nar/gki890
    • (2005) Nucleic Acids Res , vol.33 , pp. 5914-5923
    • Barnes, M.1    Freudenberg, J.2    Thompson, S.3    Aronow, B.4    Pavlidis, P.5
  • 40
    • 84883719725 scopus 로고    scopus 로고
    • Toward a refined definition of monocyte subsets
    • Ziegler-Heitbrock L, Hofer TP. Toward a refined definition of monocyte subsets. Front Immunol (2013) 4:23. doi:10.3389/fimmu.2013.00023
    • (2013) Front Immunol , vol.4 , pp. 23
    • Ziegler-Heitbrock, L.1    Hofer, T.P.2
  • 41
    • 84866734182 scopus 로고    scopus 로고
    • The three human monocyte subsets: implications for health and disease
    • Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol Res (2012) 53:41-57. doi:10.1007/s12026-012-8297-3
    • (2012) Immunol Res , vol.53 , pp. 41-57
    • Wong, K.L.1    Yeap, W.H.2    Tai, J.J.3    Ong, S.M.4    Dang, T.M.5    Wong, S.C.6
  • 42
    • 77449102329 scopus 로고    scopus 로고
    • Comparison of gene expression profiles between human and mouse monocyte subsets
    • Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger R, Hoffman R, et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood (2010) 115:e10-9. doi:10.1182/blood-2009-07-235028
    • (2010) Blood , vol.115 , pp. e10-e19
    • Ingersoll, M.A.1    Spanbroek, R.2    Lottaz, C.3    Gautier, E.L.4    Frankenberger, R.5    Hoffman, R.6
  • 43
    • 0037963473 scopus 로고    scopus 로고
    • Blood monocytes consist of two principal subsets with distinct migratory properties
    • Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity (2003) 19:71-82. doi:10.1016/S1074-7613(03)00174-2
    • (2003) Immunity , vol.19 , pp. 71-82
    • Geissmann, F.1    Jung, S.2    Littman, D.R.3
  • 44
    • 34147164049 scopus 로고    scopus 로고
    • Critical roles for CCR2 and MPC-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites
    • Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, et al. Critical roles for CCR2 and MPC-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest (2007) 117:902-9. doi:10.1172/JCI29919
    • (2007) J Clin Invest , vol.117 , pp. 902-909
    • Tsou, C.L.1    Peters, W.2    Si, Y.3    Slaymaker, S.4    Aslanian, A.M.5    Weisberg, S.P.6
  • 45
    • 34547728312 scopus 로고    scopus 로고
    • Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior
    • Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science (2007) 317:666-70. doi:10.1126/science.1142883
    • (2007) Science , vol.317 , pp. 666-670
    • Auffray, C.1    Fogg, D.2    Garfa, M.3    Elain, G.4    Join-Lambert, O.5    Kayal, S.6
  • 46
    • 84908260822 scopus 로고    scopus 로고
    • Reprint of: monocyte subsets in man and other species
    • Ziegler-Heitbrock L. Reprint of: monocyte subsets in man and other species. Cell Immunol (2014). doi:10.1016/j.cellimm.2014.06.008
    • (2014) Cell Immunol
    • Ziegler-Heitbrock, L.1
  • 47
    • 1642406217 scopus 로고    scopus 로고
    • Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response
    • Sunderkötter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol (2004) 172:4410-7. doi:10.4049/jimmunol.172.7.4410
    • (2004) J Immunol , vol.172 , pp. 4410-4417
    • Sunderkötter, C.1    Nikolic, T.2    Dillon, M.J.3    Van Rooijen, N.4    Stehling, M.5    Drevets, D.A.6
  • 48
    • 84872765982 scopus 로고    scopus 로고
    • Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis
    • Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity (2013) 38:79-91. doi:10.1016/j.immuni.2012.12.001
    • (2013) Immunity , vol.38 , pp. 79-91
    • Yona, S.1    Kim, K.W.2    Wolf, Y.3    Mildner, A.4    Varol, D.5    Breker, M.6
  • 49
    • 33846408655 scopus 로고    scopus 로고
    • Monocytes give rise to mucosal, but not splenic, conventional dendritic cells
    • Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med (2007) 204:171-80. doi:10.1084/jem.20061011
    • (2007) J Exp Med , vol.204 , pp. 171-180
    • Varol, C.1    Landsman, L.2    Fogg, D.K.3    Greenshtein, L.4    Gildor, B.5    Margalit, R.6
  • 50
    • 78149462163 scopus 로고    scopus 로고
    • An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation
    • MacDonald KP, Palmer JS, Cronau S, Seppanen E, Olver S, Raffelt NC, et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood (2010) 116:3955-63. doi:10.1182/blood-2010-02-266296
    • (2010) Blood , vol.116 , pp. 3955-3963
    • MacDonald, K.P.1    Palmer, J.S.2    Cronau, S.3    Seppanen, E.4    Olver, S.5    Raffelt, N.C.6
  • 51
    • 84876207357 scopus 로고    scopus 로고
    • Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal
    • Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G, et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell (2013) 153:362-75. doi:10.1016/j.cell.2013.03.010
    • (2013) Cell , vol.153 , pp. 362-375
    • Carlin, L.M.1    Stamatiades, E.G.2    Auffray, C.3    Hanna, R.N.4    Glover, L.5    Vizcay-Barrena, G.6
  • 52
    • 80051959957 scopus 로고    scopus 로고
    • The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes
    • Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol (2011) 12:778-85. doi:10.1038/ni.2063
    • (2011) Nat Immunol , vol.12 , pp. 778-785
    • Hanna, R.N.1    Carlin, L.M.2    Hubbeling, H.G.3    Nackiewicz, D.4    Green, A.M.5    Punt, J.A.6
  • 53
    • 84888370511 scopus 로고    scopus 로고
    • Tissue LyC6- macrophages are generated in the absence of circulating LyC6- monocytes and Nur77 in a model of muscle regeneration
    • Varga T, Mounier R, Gogolak P, Poliska S, Chazaud B, Nagy L. Tissue LyC6- macrophages are generated in the absence of circulating LyC6- monocytes and Nur77 in a model of muscle regeneration. J Immunol (2013) 191:5695-701. doi:10.4049/jimmunol.1301445
    • (2013) J Immunol , vol.191 , pp. 5695-5701
    • Varga, T.1    Mounier, R.2    Gogolak, P.3    Poliska, S.4    Chazaud, B.5    Nagy, L.6
  • 54
    • 80355146868 scopus 로고    scopus 로고
    • Monocyte recruitment during infection and inflammation
    • Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol (2011) 11:762-74. doi:10.1038/nri3070
    • (2011) Nat Rev Immunol , vol.11 , pp. 762-774
    • Shi, C.1    Pamer, E.G.2
  • 55
    • 68149119072 scopus 로고    scopus 로고
    • Identification of splenic reservoir monocytes and their deployment to inflammatory sites
    • Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science (2009) 325:612-6. doi:10.1126/science.1175202
    • (2009) Science , vol.325 , pp. 612-616
    • Swirski, F.K.1    Nahrendorf, M.2    Etzrodt, M.3    Wildgruber, M.4    Cortez-Retamozo, V.5    Panizzi, P.6
  • 56
    • 84885573359 scopus 로고    scopus 로고
    • Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes
    • Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science (2013) 341:1483-8. doi:10.1126/science.1240636
    • (2013) Science , vol.341 , pp. 1483-1488
    • Nguyen, K.D.1    Fentress, S.J.2    Qiu, Y.3    Yun, K.4    Cox, J.S.5    Chawla, A.6
  • 57
    • 84876349699 scopus 로고    scopus 로고
    • Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors
    • Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol (2013) 6:498-510. doi:10.1038/mi.2012.89
    • (2013) Mucosal Immunol , vol.6 , pp. 498-510
    • Bain, C.C.1    Scott, C.L.2    Uronen-Hansson, H.3    Gudjonsson, S.4    Jansson, O.5    Grip, O.6
  • 58
    • 84856815290 scopus 로고    scopus 로고
    • Inflammation switches the differentiation program of Ly6Chi monocytes from anti-inflammatory macrophages to inflammatory dendritic cells in the colon
    • Rivollier A, He J, Kole A, Valatas V, Kelsall BL. Inflammation switches the differentiation program of Ly6Chi monocytes from anti-inflammatory macrophages to inflammatory dendritic cells in the colon. J Exp Med (2012) 209:139-55. doi:10.1084/jem.20101387
    • (2012) J Exp Med , vol.209 , pp. 139-155
    • Rivollier, A.1    He, J.2    Kole, A.3    Valatas, V.4    Kelsall, B.L.5
  • 59
    • 51049092467 scopus 로고    scopus 로고
    • Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans
    • Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med (2008) 205:2139-49. doi:10.1084/jem.20080414
    • (2008) J Exp Med , vol.205 , pp. 2139-2149
    • Jaensson, E.1    Uronen-Hansson, H.2    Pabst, O.3    Eksteen, B.4    Tian, J.5    Coombes, J.L.6
  • 60
    • 84887616366 scopus 로고    scopus 로고
    • Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin
    • Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C, et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity (2013) 39:925-38. doi:10.1016/j.immuni.2013.10.004
    • (2013) Immunity , vol.39 , pp. 925-938
    • Tamoutounour, S.1    Guilliams, M.2    Montanana Sanchis, F.3    Liu, H.4    Terhorst, D.5    Malosse, C.6
  • 61
    • 84890907345 scopus 로고    scopus 로고
    • Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection
    • Abtin A, Jain R, Mitchell AJ, Roediger B, Brzoska AJ, Tikoo S, et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat Immunol (2014) 15:45-53. doi:10.1038/ni.2769
    • (2014) Nat Immunol , vol.15 , pp. 45-53
    • Abtin, A.1    Jain, R.2    Mitchell, A.J.3    Roediger, B.4    Brzoska, A.J.5    Tikoo, S.6
  • 62
    • 84892450644 scopus 로고    scopus 로고
    • Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation
    • Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity (2014) 40:91-104. doi:10.1016/j.immuni.2013.11.019
    • (2014) Immunity , vol.40 , pp. 91-104
    • Epelman, S.1    Lavine, K.J.2    Beaudin, A.E.3    Sojka, D.K.4    Carrero, J.A.5    Calderon, B.6
  • 63
    • 84885454468 scopus 로고    scopus 로고
    • Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF
    • Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med (2013) 210:1977-92. doi:10.1084/jem.20131199
    • (2013) J Exp Med , vol.210 , pp. 1977-1992
    • Guilliams, M.1    De Kleer, I.2    Henri, S.3    Post, S.4    Vanhoutte, L.5    De Prijck, S.6
  • 64
    • 84884352076 scopus 로고    scopus 로고
    • Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes
    • Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, Johnson TE, et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity (2013) 39:599-610. doi:10.1016/j.immuni.2013.08.007
    • (2013) Immunity , vol.39 , pp. 599-610
    • Jakubzick, C.1    Gautier, E.L.2    Gibbings, S.L.3    Sojka, D.K.4    Schlitzer, A.5    Johnson, T.E.6
  • 65
    • 84907939190 scopus 로고    scopus 로고
    • Osteoblast and osteocyte: games without frontiers
    • Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys (2014) 561C:3-12. doi:10.1016/j.abb.2014.05.003
    • (2014) Arch Biochem Biophys , vol.561 C , pp. 3-12
    • Capulli, M.1    Paone, R.2    Rucci, N.3
  • 66
    • 84905560371 scopus 로고    scopus 로고
    • Osteoclasts: more than "bone eaters"
    • Charles JF, Aliprantis AO. Osteoclasts: more than "bone eaters". Trends Mol Med (2014) 20:449-59. doi:10.1016/j.molmed.2014.06.001
    • (2014) Trends Mol Med , vol.20 , pp. 449-459
    • Charles, J.F.1    Aliprantis, A.O.2
  • 67
    • 84873828600 scopus 로고    scopus 로고
    • Osteoclast migration, differentiation and function: novel therapeutic target for rheumatic diseases
    • Kikuta J, Ishii M. Osteoclast migration, differentiation and function: novel therapeutic target for rheumatic diseases. Rheumatology (Oxford) (2013) 52:226-34. doi:10.1093/rheumatology/kes259
    • (2013) Rheumatology (Oxford) , vol.52 , pp. 226-234
    • Kikuta, J.1    Ishii, M.2
  • 68
    • 0037673945 scopus 로고    scopus 로고
    • Osteoclast differentiation and activation
    • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature (2003) 423:337-42. doi:10.1038/nature01658
    • (2003) Nature , vol.423 , pp. 337-342
    • Boyle, W.J.1    Simonet, W.S.2    Lacey, D.L.3
  • 69
    • 0036092801 scopus 로고    scopus 로고
    • Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects
    • Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood (2002) 99:111-20. doi:10.1182/blood.V99.1.111
    • (2002) Blood , vol.99 , pp. 111-120
    • Dai, X.M.1    Ryan, G.R.2    Hapel, A.J.3    Dominguez, M.G.4    Russell, R.G.5    Kapp, S.6
  • 70
    • 0032864471 scopus 로고    scopus 로고
    • Human osteoclasts derive from CD14-positive monocytes
    • Massey HM, Flanagan AM. Human osteoclasts derive from CD14-positive monocytes. Br J Haematol (1999) 106:167-70. doi:10.1046/j.1365-2141.1999.01491.x
    • (1999) Br J Haematol , vol.106 , pp. 167-170
    • Massey, H.M.1    Flanagan, A.M.2
  • 72
    • 0032495975 scopus 로고    scopus 로고
    • Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures
    • Matsuzaki K, Udagawa N, Takahashi N, Yamaguchi K, Yasuda H, Shima N, et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochem Biophys Res Commun (1998) 246:199-204. doi:10.1006/bbrc.1998.8586
    • (1998) Biochem Biophys Res Commun , vol.246 , pp. 199-204
    • Matsuzaki, K.1    Udagawa, N.2    Takahashi, N.3    Yamaguchi, K.4    Yasuda, H.5    Shima, N.6
  • 73
    • 0032323347 scopus 로고    scopus 로고
    • Commitment and differentiation of stem cells to the osteoclast lineage
    • Hayashi S, Yamane T, Miyamoto A, Hemmi H, Tagaya H, Tanio Y, et al. Commitment and differentiation of stem cells to the osteoclast lineage. Biochem Cell Biol (1998) 76:911-22. doi:10.1139/o98-099
    • (1998) Biochem Cell Biol , vol.76 , pp. 911-922
    • Hayashi, S.1    Yamane, T.2    Miyamoto, A.3    Hemmi, H.4    Tagaya, H.5    Tanio, Y.6
  • 74
    • 84867740805 scopus 로고    scopus 로고
    • Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
    • Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol (2012) 13:1118-28. doi:10.1038/ni.2419
    • (2012) Nat Immunol , vol.13 , pp. 1118-1128
    • Gautier, E.L.1    Shay, T.2    Miller, J.3    Greter, M.4    Jakubzick, C.5    Ivanov, S.6
  • 75
    • 0014775274 scopus 로고
    • Origin and kinetics of monocytes and macrophages
    • van Furth R. Origin and kinetics of monocytes and macrophages. Semin Hematol (1970) 7:125-41.
    • (1970) Semin Hematol , vol.7 , pp. 125-141
    • van Furth, R.1
  • 77
    • 0014885698 scopus 로고
    • The origin and fate of the monocyte
    • Volkman A. The origin and fate of the monocyte. Ser Haematol (1970) 3:69-92.
    • (1970) Ser Haematol , vol.3 , pp. 69-92
    • Volkman, A.1
  • 78
    • 0014384750 scopus 로고
    • The function of the monocytes
    • Volkman A. The function of the monocytes. Bibl Haematol (1968) 29:86-97.
    • (1968) Bibl Haematol , vol.29 , pp. 86-97
    • Volkman, A.1
  • 79
    • 84904401883 scopus 로고    scopus 로고
    • Origin and function of tissue macrophages
    • Epelman S, Lavine KJ, Randolph GJ. Origin and function of tissue macrophages. Immunity (2014) 41:21-35. doi:10.1016/j.immuni.2014.06.013
    • (2014) Immunity , vol.41 , pp. 21-35
    • Epelman, S.1    Lavine, K.J.2    Randolph, G.J.3
  • 80
    • 39349096526 scopus 로고    scopus 로고
    • Hematopoiesis: an evolving paradigm for stem cell biology
    • Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell (2008) 132:631-44. doi:10.1016/j.cell.2008.01.025
    • (2008) Cell , vol.132 , pp. 631-644
    • Orkin, S.H.1    Zon, L.I.2
  • 81
    • 34247896991 scopus 로고    scopus 로고
    • Ontogeny of the hematopoietic system
    • Cumano A, Godin I. Ontogeny of the hematopoietic system. Annu Rev Immunol (2007) 25:745-85. doi:10.1146/annurev.immunol.25.022106.141538
    • (2007) Annu Rev Immunol , vol.25 , pp. 745-785
    • Cumano, A.1    Godin, I.2
  • 82
    • 21444446678 scopus 로고    scopus 로고
    • Embryonic development of the human hematopoietic system
    • Tavian M, Péault B. Embryonic development of the human hematopoietic system. Int J Dev Biol (2005) 49:243-50. doi:10.1387/ijdb.041957mt
    • (2005) Int J Dev Biol , vol.49 , pp. 243-250
    • Tavian, M.1    Péault, B.2
  • 83
    • 0022631913 scopus 로고
    • Electron microscopic studies of macrophages in early human yolk sacs
    • Enzan H. Electron microscopic studies of macrophages in early human yolk sacs. Acta Pathol Jpn (1986) 36:49-64.
    • (1986) Acta Pathol Jpn , vol.36 , pp. 49-64
    • Enzan, H.1
  • 84
    • 0022474620 scopus 로고
    • Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac - liver transition
    • Migliaccio G, Migliaccio AR, Petti S, Mavilio F, Russo G, Lazzaro D, et al. Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac - liver transition. J Clin Invest (1986) 78:51-60. doi:10.1172/JCI112572
    • (1986) J Clin Invest , vol.78 , pp. 51-60
    • Migliaccio, G.1    Migliaccio, A.R.2    Petti, S.3    Mavilio, F.4    Russo, G.5    Lazzaro, D.6
  • 85
    • 0024533561 scopus 로고
    • Differentiation, maturation, and proliferation of macrophages in the mouse yolk sac: a light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study
    • Takahashi K, Yamamura F, Naito M. Differentiation, maturation, and proliferation of macrophages in the mouse yolk sac: a light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study. J Leukoc Biol (1989) 45:87-96.
    • (1989) J Leukoc Biol , vol.45 , pp. 87-96
    • Takahashi, K.1    Yamamura, F.2    Naito, M.3
  • 86
    • 84876775203 scopus 로고    scopus 로고
    • Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
    • Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity (2013) 38:792-804. doi:10.1016/j.immuni.2013.04.004
    • (2013) Immunity , vol.38 , pp. 792-804
    • Hashimoto, D.1    Chow, A.2    Noizat, C.3    Teo, P.4    Beasley, M.B.5    Leboeuf, M.6
  • 87
    • 78149360132 scopus 로고    scopus 로고
    • Fate mapping analysis reveals that adult microglia derive from primitive macrophages
    • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science (2010) 330:841-5. doi:10.1126/science.1194637
    • (2010) Science , vol.330 , pp. 841-845
    • Ginhoux, F.1    Greter, M.2    Leboeuf, M.3    Nandi, S.4    See, P.5    Gokhan, S.6
  • 88
    • 84875892857 scopus 로고    scopus 로고
    • Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways
    • Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci (2013) 16:273-80. doi:10.1038/nn.3318
    • (2013) Nat Neurosci , vol.16 , pp. 273-280
    • Kierdorf, K.1    Erny, D.2    Goldmann, T.3    Sander, V.4    Schulz, C.5    Perdiguero, E.G.6
  • 89
    • 84864298329 scopus 로고    scopus 로고
    • Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
    • Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med (2012) 209:1167-81. doi:10.1084/jem.20120340
    • (2012) J Exp Med , vol.209 , pp. 1167-1181
    • Hoeffel, G.1    Wang, Y.2    Greter, M.3    See, P.4    Teo, P.5    Malleret, B.6
  • 90
    • 84901358607 scopus 로고    scopus 로고
    • Monocytes and macrophages: development pathways and tissue homeostasis
    • Ginhoux F, Jung S. Monocytes and macrophages: development pathways and tissue homeostasis. Nat Rev Immunol (2014) 14:392-404. doi:10.1038/nri3671
    • (2014) Nat Rev Immunol , vol.14 , pp. 392-404
    • Ginhoux, F.1    Jung, S.2
  • 91
    • 84876800337 scopus 로고    scopus 로고
    • Macrophages biology in development, homeostasis and disease
    • Wynn TA, Chawla A, Polland JW. Macrophages biology in development, homeostasis and disease. Nature (2013) 496:445-55. doi:10.1038/nature12034
    • (2013) Nature , vol.496 , pp. 445-455
    • Wynn, T.A.1    Chawla, A.2    Polland, J.W.3
  • 94
    • 79951693243 scopus 로고    scopus 로고
    • The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency
    • Bigley V, Haniffa M, Doulatov S, Wang XN, Dickinson R, McGovern N, et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med (2011) 208:227-34. doi:10.1084/jem.20101459
    • (2011) J Exp Med , vol.208 , pp. 227-234
    • Bigley, V.1    Haniffa, M.2    Doulatov, S.3    Wang, X.N.4    Dickinson, R.5    McGovern, N.6
  • 95
    • 84876745670 scopus 로고    scopus 로고
    • Macrophages in Marseille
    • Randolph GJ. Macrophages in Marseille. Immunity (2013) 38:619-21. doi:10.1016/j.immuni.2013.04.002
    • (2013) Immunity , vol.38 , pp. 619-621
    • Randolph, G.J.1
  • 96
    • 70449393651 scopus 로고    scopus 로고
    • MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages
    • Aziz A, Soucie S, Sarrazin S, Sieweke MH. MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. Science (2009) 326:867-71. doi:10.1126/science.1176056
    • (2009) Science , vol.326 , pp. 867-871
    • Aziz, A.1    Soucie, S.2    Sarrazin, S.3    Sieweke, M.H.4
  • 97
    • 0023266724 scopus 로고
    • Further evidence for the self-reproducing capacity of Langerhans cells in human skin
    • Czernielewski JM, Demarchez M. Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J Invest Dermatol (1987) 88:17-20. doi:10.1111/1523-1747.ep12464659
    • (1987) J Invest Dermatol , vol.88 , pp. 17-20
    • Czernielewski, J.M.1    Demarchez, M.2
  • 98
    • 10344255626 scopus 로고    scopus 로고
    • Turnover of epidermal Langerhans' cells
    • Kanitakis J, Petruzzo P, Dubernard JM. Turnover of epidermal Langerhans' cells. N Engl J Med (2004) 351:2661-2. doi:10.1056/NEJM200412163512523
    • (2004) N Engl J Med , vol.351 , pp. 2661-2662
    • Kanitakis, J.1    Petruzzo, P.2    Dubernard, J.M.3
  • 99
    • 0036906526 scopus 로고    scopus 로고
    • Langerhans cells renew in the skin throughout life under steady-state conditions
    • Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol (2002) 3:1135-41. doi:10.1038/ni852
    • (2002) Nat Immunol , vol.3 , pp. 1135-1141
    • Merad, M.1    Manz, M.G.2    Karsunky, H.3    Wagers, A.4    Peters, W.5    Charo, I.6
  • 100
    • 79960706327 scopus 로고    scopus 로고
    • A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation
    • Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur J Immunol (2011) 41:2155-64. doi:10.1002/eji.201141817
    • (2011) Eur J Immunol , vol.41 , pp. 2155-2164
    • Davies, L.C.1    Rosas, M.2    Smith, P.J.3    Fraser, D.J.4    Jones, S.A.5    Taylor, P.R.6
  • 101
    • 0021279892 scopus 로고
    • The proliferation kinetics of pulmonary alveolar macrophages
    • Coggle JE, Tarling JD. The proliferation kinetics of pulmonary alveolar macrophages. J Leukoc Biol (1984) 35:317-27.
    • (1984) J Leukoc Biol , vol.35 , pp. 317-327
    • Coggle, J.E.1    Tarling, J.D.2
  • 102
    • 79958715229 scopus 로고    scopus 로고
    • Local macrophages proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation
    • Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, et al. Local macrophages proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science (2011) 332:1284-8. doi:10.1126/science.1204351
    • (2011) Science , vol.332 , pp. 1284-1288
    • Jenkins, S.J.1    Ruckerl, D.2    Cook, P.C.3    Jones, L.H.4    Finkelman, F.D.5    van Rooijen, N.6
  • 103
    • 84886816349 scopus 로고    scopus 로고
    • IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1
    • Jenkins SJ, Ruckerl D, Thomas GD, Hewitson JP, Duncan S, Brombacher F, et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J Exp Med (2013) 210:2477-91. doi:10.1084/jem.20121999
    • (2013) J Exp Med , vol.210 , pp. 2477-2491
    • Jenkins, S.J.1    Ruckerl, D.2    Thomas, G.D.3    Hewitson, J.P.4    Duncan, S.5    Brombacher, F.6
  • 104
    • 34248155236 scopus 로고    scopus 로고
    • Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis
    • Hibbs ML, Quilici C, Kountouri N, Seymour JF, Armes JE, Burgess AW, et al. Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis. J Immunol (2007) 178:6435-43. doi:10.4049/jimmunol.178.10.6435
    • (2007) J Immunol , vol.178 , pp. 6435-6443
    • Hibbs, M.L.1    Quilici, C.2    Kountouri, N.3    Seymour, J.F.4    Armes, J.E.5    Burgess, A.W.6
  • 105
    • 30044448462 scopus 로고    scopus 로고
    • Colony-stimulating factor-1 in immunity and inflammation
    • Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol (2006) 18:39-48. doi:10.1016/j.coi.2005.11.006
    • (2006) Curr Opin Immunol , vol.18 , pp. 39-48
    • Chitu, V.1    Stanley, E.R.2
  • 106
    • 84878738380 scopus 로고    scopus 로고
    • Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation
    • Davies LC, Rosas M, Jenkins SJ, Liao CT, Scurr MJ, Brombacher F, et al. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun (2013) 4:1886. doi:10.1038/ncomms2877
    • (2013) Nat Commun , vol.4 , pp. 1886
    • Davies, L.C.1    Rosas, M.2    Jenkins, S.J.3    Liao, C.T.4    Scurr, M.J.5    Brombacher, F.6
  • 107
    • 54449093241 scopus 로고    scopus 로고
    • Differentiation and heterogeneity in the mononuclear phagocyte system
    • Hume DA. Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol (2008) 1:432-41. doi:10.1038/mi.2008.36
    • (2008) Mucosal Immunol , vol.1 , pp. 432-441
    • Hume, D.A.1
  • 108
    • 80052621954 scopus 로고    scopus 로고
    • Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1
    • Tagliani E, Shi C, Nancy P, Tay CS, Pamer EG, Erlebacher A. Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med (2011) 208:1901-16. doi:10.1084/jem.20110866
    • (2011) J Exp Med , vol.208 , pp. 1901-1916
    • Tagliani, E.1    Shi, C.2    Nancy, P.3    Tay, C.S.4    Pamer, E.G.5    Erlebacher, A.6
  • 109
    • 0035412388 scopus 로고    scopus 로고
    • Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis
    • Ryan GR, Dai XM, Dominguez MG, Tong W, Chuan F, Chisholm O, et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood (2001) 98:74-84. doi:10.1182/blood.V98.1.74
    • (2001) Blood , vol.98 , pp. 74-84
    • Ryan, G.R.1    Dai, X.M.2    Dominguez, M.G.3    Tong, W.4    Chuan, F.5    Chisholm, O.6
  • 110
    • 0034748924 scopus 로고    scopus 로고
    • GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1
    • Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA, Trapnell BC. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity (2001) 15:557-67. doi:10.1016/S1074-7613(01)00218-7
    • (2001) Immunity , vol.15 , pp. 557-567
    • Shibata, Y.1    Berclaz, P.Y.2    Chroneos, Z.C.3    Yoshida, M.4    Whitsett, J.A.5    Trapnell, B.C.6
  • 111
    • 0029785039 scopus 로고    scopus 로고
    • Effect of intraperitoneal administration of granulocyte/macrophage-colony-stimulating factor in rats on omental milky-spot composition and tumoricidal activity in vivo and in vitro
    • Koenen HJ, Smit MJ, Simmelink MM, Schuurman B, Beelen RH, Meijer S. Effect of intraperitoneal administration of granulocyte/macrophage-colony-stimulating factor in rats on omental milky-spot composition and tumoricidal activity in vivo and in vitro. Cancer Immunol Immunother (1996) 42:310-6. doi:10.1007/s002620050288
    • (1996) Cancer Immunol Immunother , vol.42 , pp. 310-316
    • Koenen, H.J.1    Smit, M.J.2    Simmelink, M.M.3    Schuurman, B.4    Beelen, R.H.5    Meijer, S.6
  • 112
    • 0028000668 scopus 로고
    • Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization
    • Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood (1994) 84:1737-46.
    • (1994) Blood , vol.84 , pp. 1737-1746
    • Lieschke, G.J.1    Grail, D.2    Hodgson, G.3    Metcalf, D.4    Stanley, E.5    Cheers, C.6
  • 113
    • 0028236526 scopus 로고
    • Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology
    • Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A (1994) 91:5592-6. doi:10.1073/pnas.91.12.5592
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 5592-5596
    • Stanley, E.1    Lieschke, G.J.2    Grail, D.3    Metcalf, D.4    Hodgson, G.5    Gall, J.A.6
  • 114
    • 0035340358 scopus 로고    scopus 로고
    • Bone marrow-derived macrophages grown in GM-CSF or M-CSF differ in their ability to produce IL-12 and to induce IFN-gamma production after stimulation with Trypanosoma cruzi antigens
    • Tadokoro CE, de Almeida Abrahamsohn I. Bone marrow-derived macrophages grown in GM-CSF or M-CSF differ in their ability to produce IL-12 and to induce IFN-gamma production after stimulation with Trypanosoma cruzi antigens. Immunol Lett (2001) 77:31-8. doi:10.1016/S0165-2478(01)00197-3
    • (2001) Immunol Lett , vol.77 , pp. 31-38
    • Tadokoro, C.E.1    de Almeida Abrahamsohn, I.2
  • 115
    • 79956152607 scopus 로고    scopus 로고
    • The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF
    • El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol (2011) 12:568-75. doi:10.1038/ni.2031
    • (2011) Nat Immunol , vol.12 , pp. 568-575
    • El-Behi, M.1    Ciric, B.2    Dai, H.3    Yan, Y.4    Cullimore, M.5    Safavi, F.6
  • 116
    • 69449085100 scopus 로고    scopus 로고
    • GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling
    • Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol (2009) 86:411-21. doi:10.1189/jlb.1108702
    • (2009) J Leukoc Biol , vol.86 , pp. 411-421
    • Fleetwood, A.J.1    Dinh, H.2    Cook, A.D.3    Hertzog, P.J.4    Hamilton, J.A.5
  • 117
    • 34247124840 scopus 로고    scopus 로고
    • Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation
    • Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol (2007) 178:5245-52. doi:10.4049/jimmunol.178.8.5245
    • (2007) J Immunol , vol.178 , pp. 5245-5252
    • Fleetwood, A.J.1    Lawrence, T.2    Hamilton, J.A.3    Cook, A.D.4
  • 118
    • 12144288237 scopus 로고    scopus 로고
    • Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria
    • Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A (2004) 101:4560-5. doi:10.1073/pnas.0400983101
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 4560-4565
    • Verreck, F.A.1    de Boer, T.2    Langenberg, D.M.3    Hoeve, M.A.4    Kramer, M.5    Vaisberg, E.6
  • 119
    • 33750813483 scopus 로고    scopus 로고
    • Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression
    • Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol (2006) 177:7303-11. doi:10.4049/jimmunol.177.10.7303
    • (2006) J Immunol , vol.177 , pp. 7303-7311
    • Martinez, F.O.1    Gordon, S.2    Locati, M.3    Mantovani, A.4
  • 120
  • 121
    • 80052633284 scopus 로고    scopus 로고
    • Synaptic pruning by microglia is necessary for normal brain development
    • Paolicelli RC. Synaptic pruning by microglia is necessary for normal brain development. Science (2011) 333:1456-8. doi:10.1126/science.1202529
    • (2011) Science , vol.333 , pp. 1456-1458
    • Paolicelli, R.C.1
  • 122
    • 84875928941 scopus 로고    scopus 로고
    • Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair
    • London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci (2013) 7:34. doi:10.3389/fncel.2013.00034
    • (2013) Front Cell Neurosci , vol.7 , pp. 34
    • London, A.1    Cohen, M.2    Schwartz, M.3
  • 123
    • 84906936512 scopus 로고    scopus 로고
    • Macrophages subsets and microglia in multiple sclerosis
    • Bogie JF, Stinissen P, Hendriks JJ. Macrophages subsets and microglia in multiple sclerosis. Acta Neurophatol (2014) 128:191-213. doi:10.1007/s00401-014-1310-2
    • (2014) Acta Neurophatol , vol.128 , pp. 191-213
    • Bogie, J.F.1    Stinissen, P.2    Hendriks, J.J.3
  • 124
    • 63149088164 scopus 로고    scopus 로고
    • Trophic macrophages in development and disease
    • Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol (2009) 9:259-70. doi:10.1038/nri2528
    • (2009) Nat Rev Immunol , vol.9 , pp. 259-270
    • Pollard, J.W.1
  • 125
    • 84907939334 scopus 로고    scopus 로고
    • Roles of osteoclasts in the control of medullary hematopoietic niches
    • Blin-Wakkach C, Rouleau M, Wakkach A. Roles of osteoclasts in the control of medullary hematopoietic niches. Arch Biochem Biophys (2014) 561C:29-37. doi:10.1016/j.abb.2014.06.032
    • (2014) Arch Biochem Biophys , vol.561 C , pp. 29-37
    • Blin-Wakkach, C.1    Rouleau, M.2    Wakkach, A.3
  • 126
    • 84890221698 scopus 로고    scopus 로고
    • Arthritis and bone loss: a hen and egg story
    • Kleyer A, Schett G. Arthritis and bone loss: a hen and egg story. Curr Opin Rheumatol (2014) 26:80-4. doi:10.1097/BOR.0000000000000007
    • (2014) Curr Opin Rheumatol , vol.26 , pp. 80-84
    • Kleyer, A.1    Schett, G.2
  • 127
    • 84901404011 scopus 로고    scopus 로고
    • Mechanisms that regulate macrophage burden in atherosclerosis
    • Randolph GJ. Mechanisms that regulate macrophage burden in atherosclerosis. Circ Res (2014) 114:1757-71. doi:10.116/CIRCRESAHA.114.301174
    • (2014) Circ Res , vol.114 , pp. 1757-1771
    • Randolph, G.J.1
  • 128
    • 37049003544 scopus 로고    scopus 로고
    • Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages
    • Klein I, Cornejo JC, Polakos NK, John B, Wuensch SA, Topham DJ, et al. Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood (2007) 110:4077-85. doi:10.1182/blood-2007-02-073841
    • (2007) Blood , vol.110 , pp. 4077-4085
    • Klein, I.1    Cornejo, J.C.2    Polakos, N.K.3    John, B.4    Wuensch, S.A.5    Topham, D.J.6
  • 129
    • 84866007988 scopus 로고    scopus 로고
    • Macrophages and systemic iron homeostasis
    • Ganz T. Macrophages and systemic iron homeostasis. J Innate Immun (2012) 4:446-53. doi:10.1159/000336423
    • (2012) J Innate Immun , vol.4 , pp. 446-453
    • Ganz, T.1
  • 130
    • 84870461648 scopus 로고    scopus 로고
    • Role of oxidative stress and molecular changes in liver fibrosis: a review
    • Sánchez-Valle V, Chávez-Tapia NC, Uribe M, Méndez-Sánchez N. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem (2012) 19:4850-60. doi:10.2174/092986712803341520
    • (2012) Curr Med Chem , vol.19 , pp. 4850-4860
    • Sánchez-Valle, V.1    Chávez-Tapia, N.C.2    Uribe, M.3    Méndez-Sánchez, N.4
  • 132
    • 0036084395 scopus 로고    scopus 로고
    • Role of resident alveolar macrophages in leukocyte traffic into the alveolar air space of intact mice
    • Maus UA, Koay MA, Delbeck T, Mack M, Ermert M, Ermert L, et al. Role of resident alveolar macrophages in leukocyte traffic into the alveolar air space of intact mice. Am J Physiol Lung Cell Mol Physiol (2002) 282:L1245-52. doi:10.1152/ajplung.00453.2001
    • (2002) Am J Physiol Lung Cell Mol Physiol , vol.282 , pp. L1245-L1252
    • Maus, U.A.1    Koay, M.A.2    Delbeck, T.3    Mack, M.4    Ermert, M.5    Ermert, L.6
  • 133
    • 77950630228 scopus 로고    scopus 로고
    • The molecular basis of pulmonary alveolar proteinosis
    • Carey B, Trapnell BC. The molecular basis of pulmonary alveolar proteinosis. Clin Immunol (2010) 135:223-35. doi:10.1016/j.clin.2010.02.017
    • (2010) Clin Immunol , vol.135 , pp. 223-235
    • Carey, B.1    Trapnell, B.C.2
  • 134
    • 82555186955 scopus 로고    scopus 로고
    • Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis
    • Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature (2011) 480:104-8. doi:10.1038/nature10653
    • (2011) Nature , vol.480 , pp. 104-108
    • Nguyen, K.D.1    Qiu, Y.2    Cui, X.3    Goh, Y.P.4    Mwangi, J.5    David, T.6
  • 135
    • 84875830139 scopus 로고    scopus 로고
    • Intestinal macrophages: well educated exceptions from the rule
    • Zigmond E, Jung S. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol (2013) 34:162-8. doi:10.1016/j.it.2013.02.001
    • (2013) Trends Immunol , vol.34 , pp. 162-168
    • Zigmond, E.1    Jung, S.2
  • 137
    • 78649632875 scopus 로고    scopus 로고
    • Development and homeostasis of "resident" myeloid cells: the case of the Langerhans cell
    • Chorro L, Geissmann F. Development and homeostasis of "resident" myeloid cells: the case of the Langerhans cell. Trends Immunol (2010) 31:438-45. doi:10.1016/j.it.2010.09.003
    • (2010) Trends Immunol , vol.31 , pp. 438-445
    • Chorro, L.1    Geissmann, F.2
  • 138
    • 84886688737 scopus 로고    scopus 로고
    • Phenotypic transitions of macrophages orchestrate tissue repair
    • Novak ML, Koh TJ. Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol (2013) 183:1352-63. doi:10.1016/j.ajpath.2013.06.034
    • (2013) Am J Pathol , vol.183 , pp. 1352-1363
    • Novak, M.L.1    Koh, T.J.2
  • 139
    • 84866033654 scopus 로고    scopus 로고
    • Innate immune functions of macrophages subpopulations in the spleen
    • den Haan JM, Kraal G. Innate immune functions of macrophages subpopulations in the spleen. J Innate Immun (2012) 4:437-45. doi:10.1159/000335216
    • (2012) J Innate Immun , vol.4 , pp. 437-445
    • den Haan, J.M.1    Kraal, G.2
  • 140
    • 58249104981 scopus 로고    scopus 로고
    • Role of Spi-C in the development of red pulp macrophages and splenic iron homeostasis
    • Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K, Mejia C, et al. Role of Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature (2009) 457:318-21. doi:10.1038/nature07472
    • (2009) Nature , vol.457 , pp. 318-321
    • Kohyama, M.1    Ise, W.2    Edelson, B.T.3    Wilker, P.R.4    Hildner, K.5    Mejia, C.6
  • 141
    • 84901393470 scopus 로고    scopus 로고
    • The role of macrophages polarization in infectious and inflammatory diseases
    • Labonte AC, Tosello-Tramopont AC, Hahn YS. The role of macrophages polarization in infectious and inflammatory diseases. Mol Cells (2014) 37:275-85. doi:10.14348/molcells.2014.2374
    • (2014) Mol Cells , vol.37 , pp. 275-285
    • Labonte, A.C.1    Tosello-Tramopont, A.C.2    Hahn, Y.S.3
  • 142
    • 84871076444 scopus 로고    scopus 로고
    • Macrophage plasticity and polarixation in tissue repair and remodelling
    • Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarixation in tissue repair and remodelling. J Pathol (2013) 229:176-85. doi:10.1002/path.4133
    • (2013) J Pathol , vol.229 , pp. 176-185
    • Mantovani, A.1    Biswas, S.K.2    Galdiero, M.R.3    Sica, A.4    Locati, M.5
  • 143
    • 84865447381 scopus 로고    scopus 로고
    • The complexity of constitutive and inducible gene expression in mononuclear phagocytes
    • Hume DA. The complexity of constitutive and inducible gene expression in mononuclear phagocytes. J Leukoc Biol (2012) 92:433-44. doi:10.1189/jlb.0312166
    • (2012) J Leukoc Biol , vol.92 , pp. 433-444
    • Hume, D.A.1
  • 144
    • 84871669887 scopus 로고    scopus 로고
    • Tissue use resident dendritic cells and macrophages to maintain homeostasis and to regain homeostasis upon tissue injury: the immunoregulatory role of changing tissue environments
    • Lech M, Gröbmayr R, Weidenbush M, Anders HJ. Tissue use resident dendritic cells and macrophages to maintain homeostasis and to regain homeostasis upon tissue injury: the immunoregulatory role of changing tissue environments. Mediators Inflamm (2012) 2012:951390. doi:10.1155/2012/951390
    • (2012) Mediators Inflamm , vol.2012 , pp. 951390
    • Lech, M.1    Gröbmayr, R.2    Weidenbush, M.3    Anders, H.J.4
  • 145
    • 84873743410 scopus 로고    scopus 로고
    • M1 and M2 macrophages: oracles of health and disease
    • Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol (2012) 32:463-88. doi:10.1615/CritRevImmunol.v32.i6.10
    • (2012) Crit Rev Immunol , vol.32 , pp. 463-488
    • Mills, C.D.1
  • 147
    • 0031906907 scopus 로고    scopus 로고
    • Synergistic induction of MCP-1 and -2 by IL-1ß and interferons in fibroblasts and epithelial cells
    • Struyf S, Van Collie E, Paemen L, Put W, Lenaerts JP, Proost P, et al. Synergistic induction of MCP-1 and -2 by IL-1ß and interferons in fibroblasts and epithelial cells. J Leukoc Biol (1998) 36:364-72.
    • (1998) J Leukoc Biol , vol.36 , pp. 364-372
    • Struyf, S.1    Van Collie, E.2    Paemen, L.3    Put, W.4    Lenaerts, J.P.5    Proost, P.6
  • 148
    • 79954591540 scopus 로고    scopus 로고
    • Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands
    • Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV, Lipuma L, et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity (2011) 34:590-601. doi:10.1016/j.immuni.2011.02.016
    • (2011) Immunity , vol.34 , pp. 590-601
    • Shi, C.1    Jia, T.2    Mendez-Ferrer, S.3    Hohl, T.M.4    Serbina, N.V.5    Lipuma, L.6
  • 149
    • 33645902493 scopus 로고    scopus 로고
    • Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
    • Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol (2006) 7:311-7. doi:10.1038/ni1309
    • (2006) Nat Immunol , vol.7 , pp. 311-317
    • Serbina, N.V.1    Pamer, E.G.2
  • 150
    • 36549033197 scopus 로고    scopus 로고
    • The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
    • Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med (2007) 204:3037-47. doi:10.1084/jem.20070885
    • (2007) J Exp Med , vol.204 , pp. 3037-3047
    • Nahrendorf, M.1    Swirski, F.K.2    Aikawa, E.3    Stangenberg, L.4    Wurdinger, T.5    Figueiredo, J.L.6
  • 151
    • 84864126835 scopus 로고    scopus 로고
    • CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair
    • Willenborg S, Lucas T, van Loo G, Knipper JA, Krieg T, Haase I, et al. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood (2012) 120:613-25. doi:10.1182/blood-2012-01-403386
    • (2012) Blood , vol.120 , pp. 613-625
    • Willenborg, S.1    Lucas, T.2    van Loo, G.3    Knipper, J.A.4    Krieg, T.5    Haase, I.6
  • 152
    • 40449127195 scopus 로고    scopus 로고
    • Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function
    • Ishida Y, Gao JL, Murphy PM. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J Immunol (2008) 180:569-79. doi:10.4049/jimmunol.180.1.569
    • (2008) J Immunol , vol.180 , pp. 569-579
    • Ishida, Y.1    Gao, J.L.2    Murphy, P.M.3
  • 153
    • 84857650277 scopus 로고    scopus 로고
    • Fractalkine: a survivor's guide: chemokines as antiapoptotic mediators
    • White GE, Greaves DR. Fractalkine: a survivor's guide: chemokines as antiapoptotic mediators. Arterioscler Thromb Vasc Biol (2012) 32:589-94. doi:10.1161/ATVBAHA.111.237412
    • (2012) Arterioscler Thromb Vasc Biol , vol.32 , pp. 589-594
    • White, G.E.1    Greaves, D.R.2
  • 154
    • 73149094288 scopus 로고    scopus 로고
    • CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis
    • Wang Y, Cui L, Gonsiorek W, Min SH, Anilkumar S, Rosenblum J, et al. CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis. J Inflamm (Lond) (2009) 6:32. doi:10.1186/1476-9255-6-32
    • (2009) J Inflamm (Lond) , vol.6 , pp. 32
    • Wang, Y.1    Cui, L.2    Gonsiorek, W.3    Min, S.H.4    Anilkumar, S.5    Rosenblum, J.6
  • 156
    • 34248997759 scopus 로고    scopus 로고
    • Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
    • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med (2007) 204:1057-69. doi:10.1084/jem.20070075
    • (2007) J Exp Med , vol.204 , pp. 1057-1069
    • Arnold, L.1    Henry, A.2    Poron, F.3    Baba-Amer, Y.4    van Rooijen, N.5    Plonquet, A.6
  • 158
    • 70349564487 scopus 로고    scopus 로고
    • Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis
    • Gautier EL, Jakubzick C, Randolph GJ. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arterioscler Thromb Vasc Biol (2009) 29:1412-8. doi:10.1161/ATVBAHA.108.180505
    • (2009) Arterioscler Thromb Vasc Biol , vol.29 , pp. 1412-1418
    • Gautier, E.L.1    Jakubzick, C.2    Randolph, G.J.3
  • 159
    • 84883800208 scopus 로고    scopus 로고
    • Local proliferation dominates lesional macrophage accumulation in atherosclerosis
    • Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med (2013) 19:1166-72. doi:10.1038/nm.3258
    • (2013) Nat Med , vol.19 , pp. 1166-1172
    • Robbins, C.S.1    Hilgendorf, I.2    Weber, G.F.3    Theurl, I.4    Iwamoto, Y.5    Figueiredo, J.L.6
  • 160
    • 73949147392 scopus 로고    scopus 로고
    • Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
    • Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B, et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med (2009) 206:3089-100. doi:10.1084/jem.20091586
    • (2009) J Exp Med , vol.206 , pp. 3089-3100
    • Chorro, L.1    Sarde, A.2    Li, M.3    Woollard, K.J.4    Chambon, P.5    Malissen, B.6
  • 161
    • 80052246111 scopus 로고    scopus 로고
    • Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool
    • Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci (2011) 14:1142-9. doi:10.1038/nn.2887
    • (2011) Nat Neurosci , vol.14 , pp. 1142-1149
    • Ajami, B.1    Bennett, J.L.2    Krieger, C.3    McNagny, K.M.4    Rossi, F.M.5
  • 162
    • 84906097515 scopus 로고    scopus 로고
    • In situ proliferation contributes to accumulation of tumor-associated macrophages in spontaneous mammary tumors
    • Tymoszuk P, Evens H, Marzola V, Wachowicz K, Wasmer MH, Datta S, et al. In situ proliferation contributes to accumulation of tumor-associated macrophages in spontaneous mammary tumors. Eur J Immunol (2014) 44:2247-62. doi:10.1002/eji.201344304
    • (2014) Eur J Immunol , vol.44 , pp. 2247-2262
    • Tymoszuk, P.1    Evens, H.2    Marzola, V.3    Wachowicz, K.4    Wasmer, M.H.5    Datta, S.6
  • 163
    • 84891890600 scopus 로고    scopus 로고
    • Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation
    • Amano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawe JC, et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab (2014) 19:162-71. doi:10.1016/j.cmet.2013.11.017
    • (2014) Cell Metab , vol.19 , pp. 162-171
    • Amano, S.U.1    Cohen, J.L.2    Vangala, P.3    Tencerova, M.4    Nicoloro, S.M.5    Yawe, J.C.6
  • 164
    • 0035727293 scopus 로고    scopus 로고
    • Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue
    • Mills CD. Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue. Crit Rev Immunol (2001) 21:399-426. doi:10.1615/CritRevImmunol.v21.i5.10
    • (2001) Crit Rev Immunol , vol.21 , pp. 399-426
    • Mills, C.D.1
  • 165
    • 84870900504 scopus 로고    scopus 로고
    • Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells
    • Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT, Friedlander G, et al. Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity (2012) 37:1076-90. doi:10.1016/j.immuni.2012.08.026
    • (2012) Immunity , vol.37 , pp. 1076-1090
    • Zigmond, E.1    Varol, C.2    Farache, J.3    Elmaliah, E.4    Satpathy, A.T.5    Friedlander, G.6
  • 166
  • 168
    • 0030937832 scopus 로고    scopus 로고
    • Nitric oxide and macrophage function
    • MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol (1997) 15:323-50. doi:10.1146/annurev.immunol.15.1.323
    • (1997) Annu Rev Immunol , vol.15 , pp. 323-350
    • MacMicking, J.1    Xie, Q.W.2    Nathan, C.3
  • 169
    • 84860896083 scopus 로고    scopus 로고
    • Pivotal advance: arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes
    • Van den Bossche J, Lamers WH, Koehler ES, Geuns JM, Alhonen L, Uimari A, et al. Pivotal advance: arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes. J Leukoc Biol (2012) 91:685-99. doi:10.1189/jlb.0911453
    • (2012) J Leukoc Biol , vol.91 , pp. 685-699
    • Van den Bossche, J.1    Lamers, W.H.2    Koehler, E.S.3    Geuns, J.M.4    Alhonen, L.5    Uimari, A.6
  • 170
    • 80355131976 scopus 로고    scopus 로고
    • Protective and pathogenic functions of macrophage subsets
    • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol (2011) 11:723-37. doi:10.1038/nri3073
    • (2011) Nat Rev Immunol , vol.11 , pp. 723-737
    • Murray, P.J.1    Wynn, T.A.2
  • 171
    • 7644231561 scopus 로고    scopus 로고
    • The chemokine system in diverse forms of macrophage activation and polarization
    • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol (2004) 25:677-86. doi:10.1016/j.it.2004.09.015
    • (2004) Trends Immunol , vol.25 , pp. 677-686
    • Mantovani, A.1    Sica, A.2    Sozzani, S.3    Allavena, P.4    Vecchi, A.5    Locati, M.6
  • 172
    • 84859464555 scopus 로고    scopus 로고
    • Orchestration of metabolism by macrophages
    • Biswas SK, Mantovani A. Orchestration of metabolism by macrophages. Cell Metab (2012) 15:432-7. doi:10.1016/j.cmet.2011.11.013
    • (2012) Cell Metab , vol.15 , pp. 432-437
    • Biswas, S.K.1    Mantovani, A.2
  • 173
    • 77956213727 scopus 로고    scopus 로고
    • Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation
    • Rodríguez-Prados JC, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol (2010) 185:605-14. doi:10.4049/jimmunol.0901698
    • (2010) J Immunol , vol.185 , pp. 605-614
    • Rodríguez-Prados, J.C.1    Través, P.G.2    Cuenca, J.3    Rico, D.4    Aragonés, J.5    Martín-Sanz, P.6
  • 174
    • 0036212849 scopus 로고    scopus 로고
    • Innate immune recognition
    • Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol (2002) 20:197-216. doi:10.1146/annurev.immunol.20.083001.084359
    • (2002) Annu Rev Immunol , vol.20 , pp. 197-216
    • Janeway Jr, C.A.1    Medzhitov, R.2
  • 175
    • 79956300649 scopus 로고    scopus 로고
    • Toll-like receptors and their crosstalk with other innate receptors in infection and immunity
    • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity (2011) 34:637-50. doi:10.1016/j.immuni.2011.05.006
    • (2011) Immunity , vol.34 , pp. 637-650
    • Kawai, T.1    Akira, S.2
  • 176
    • 0021550018 scopus 로고
    • Antigen-presenting function of the macrophage
    • Unanue ER. Antigen-presenting function of the macrophage. Annu Rev Immunol (1984) 2:395-428. doi:10.1146/annurev.iy.02.040184.002143
    • (1984) Annu Rev Immunol , vol.2 , pp. 395-428
    • Unanue, E.R.1
  • 177
    • 28544446111 scopus 로고    scopus 로고
    • Monocyte and macrophage heterogeneity
    • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol (2005) 5:953-64. doi:10.1038/nri1733
    • (2005) Nat Rev Immunol , vol.5 , pp. 953-964
    • Gordon, S.1    Taylor, P.R.2
  • 178
    • 0037265240 scopus 로고    scopus 로고
    • Alternative activation of macrophages
    • Gordon S. Alternative activation of macrophages. Nat Rev Immunol (2003) 3:23-35. doi:10.1038/nri978
    • (2003) Nat Rev Immunol , vol.3 , pp. 23-35
    • Gordon, S.1
  • 180
    • 84857883847 scopus 로고    scopus 로고
    • Macrophage plasticity and polarization: in vivo veritas
    • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest (2012) 122:787-95. doi:10.1172/JCI59643
    • (2012) J Clin Invest , vol.122 , pp. 787-795
    • Sica, A.1    Mantovani, A.2
  • 181
    • 56749174940 scopus 로고    scopus 로고
    • Exploring the full spectrum of macrophage activation
    • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol (2008) 8:958-69. doi:10.1038/nri2448
    • (2008) Nat Rev Immunol , vol.8 , pp. 958-969
    • Mosser, D.M.1    Edwards, J.P.2
  • 182
    • 0036839143 scopus 로고    scopus 로고
    • Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
    • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol (2002) 23:549-55. doi:10.1016/S1471-4906(02)02302-5
    • (2002) Trends Immunol , vol.23 , pp. 549-555
    • Mantovani, A.1    Sozzani, S.2    Locati, M.3    Allavena, P.4    Sica, A.5
  • 183
    • 80052180187 scopus 로고    scopus 로고
    • Regulatory macrophages: setting the threshold for therapy
    • Fleming BD, Mosser DM. Regulatory macrophages: setting the threshold for therapy. Eur J Immunol (2011) 41:2498-502. doi:10.1002/eji.201141717
    • (2011) Eur J Immunol , vol.41 , pp. 2498-2502
    • Fleming, B.D.1    Mosser, D.M.2
  • 184
    • 84905665389 scopus 로고    scopus 로고
    • Evolution of our understanding of myeloid regulatory cells: from MDSCs to Mregs
    • Manjili MH, Wang XY, Abrams S. Evolution of our understanding of myeloid regulatory cells: from MDSCs to Mregs. Front Immunol (2014) 5:303. doi:10.3389/fimmu.2014.00303
    • (2014) Front Immunol , vol.5 , pp. 303
    • Manjili, M.H.1    Wang, X.Y.2    Abrams, S.3
  • 185
    • 84897556094 scopus 로고    scopus 로고
    • The M1 and M2 paradigm of macrophage activation: time for reassessment
    • Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep (2014) 6:13. doi:10.12703/P6-13
    • (2014) F1000Prime Rep , vol.6 , pp. 13
    • Martinez, F.O.1    Gordon, S.2
  • 186
    • 84900413094 scopus 로고    scopus 로고
    • Tissue-specific signals control reversible program of localization and functional polarization of macrophages
    • Okabe Y, Medzhitov R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell (2014) 157:832-44. doi:10.1016/j.cell.2014.04.016
    • (2014) Cell , vol.157 , pp. 832-844
    • Okabe, Y.1    Medzhitov, R.2
  • 188
  • 189
    • 80355146399 scopus 로고    scopus 로고
    • Transcriptional regulation of macrophage polarization: enabling diversity with identity
    • Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol (2011) 11:750-61. doi:10.1038/nri3088
    • (2011) Nat Rev Immunol , vol.11 , pp. 750-761
    • Lawrence, T.1    Natoli, G.2
  • 190
    • 77952394844 scopus 로고    scopus 로고
    • Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations
    • Lin SL, Castaño AP, Nowlin BT, Lupher ML Jr, Duffield JS. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol (2009) 183:6733-43. doi:10.4049/jimmunol.0901473
    • (2009) J Immunol , vol.183 , pp. 6733-6743
    • Lin, S.L.1    Castaño, A.P.2    Nowlin, B.T.3    Lupher Jr, M.L.4    Duffield, J.S.5
  • 191
    • 84896879143 scopus 로고    scopus 로고
    • Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro
    • Italiani P, Mazza EM, Lucchesi D, Cifola I, Gemelli C, Grande A, et al. Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro. PLoS One (2014) 9:e87680. doi:10.1371/journal.pone.0087680
    • (2014) PLoS One , vol.9
    • Italiani, P.1    Mazza, E.M.2    Lucchesi, D.3    Cifola, I.4    Gemelli, C.5    Grande, A.6
  • 192
    • 64849097221 scopus 로고    scopus 로고
    • Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing
    • Mylonas KJ, Nair MG, Prieto-Lafuente L, Paape D, Allen JE. Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. J Immunol (2009) 182:3084-94. doi:10.4049/jimmunol.0803463
    • (2009) J Immunol , vol.182 , pp. 3084-3094
    • Mylonas, K.J.1    Nair, M.G.2    Prieto-Lafuente, L.3    Paape, D.4    Allen, J.E.5
  • 193
    • 21244443731 scopus 로고    scopus 로고
    • Macrophages sequentially change their functional phenotypes in response to changes in microenvironmental influences
    • Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotypes in response to changes in microenvironmental influences. J Immunol (2005) 175:342-9. doi:10.4049/jimmunol.175.1.342
    • (2005) J Immunol , vol.175 , pp. 342-349
    • Stout, R.D.1    Jiang, C.2    Matta, B.3    Tietzel, I.4    Watkins, S.K.5    Suttles, J.6
  • 194
    • 84875508135 scopus 로고    scopus 로고
    • Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4
    • Egawa M, Mukai K, Yoshikawa S, Iki M, Mukaida N, Kawano Y, et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity (2013) 38:570-80. doi:10.1016/j.immuni.2012.11.014
    • (2013) Immunity , vol.38 , pp. 570-580
    • Egawa, M.1    Mukai, K.2    Yoshikawa, S.3    Iki, M.4    Mukaida, N.5    Kawano, Y.6
  • 195
    • 84901467299 scopus 로고    scopus 로고
    • Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct
    • Gundra UM, Girgis NM, Ruckerl D, Jenkins S, Ward LN, Zurtz ZD, et al. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood (2014) 123:e110-22. doi:10.1182/blood-2013-08-520619
    • (2014) Blood , vol.123 , pp. e110-e122
    • Gundra, U.M.1    Girgis, N.M.2    Ruckerl, D.3    Jenkins, S.4    Ward, L.N.5    Zurtz, Z.D.6
  • 196
    • 0024600411 scopus 로고
    • Regulation of macrophages functions by l-arginine
    • Albina JE, Caldwell MD, Henry WL Jr, Mills CD. Regulation of macrophages functions by l-arginine. J Exp Med (1989) 169:1021-9. doi:10.1084/jem.169.3.1021
    • (1989) J Exp Med , vol.169 , pp. 1021-1029
    • Albina, J.E.1    Caldwell, M.D.2    Henry Jr, W.L.3    Mills, C.D.4
  • 197
    • 70350303578 scopus 로고    scopus 로고
    • Recent advances in arginine metabolism: roles and regulation of the arginases
    • Morris SM. Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol (2009) 157:922-30. doi:10.1111/ji.1476-5381.2009.00278
    • (2009) Br J Pharmacol , vol.157 , pp. 922-930
    • Morris, S.M.1
  • 198
    • 0027203305 scopus 로고
    • Mechanisms of suppression of macrophages nitric oxide release by transforming growth factor beta
    • Vodovoz Y, Bogdan C, Paik J, Xie QW, Nathan C. Mechanisms of suppression of macrophages nitric oxide release by transforming growth factor beta. J Exp Med (1993) 178:605-13. doi:10.1084/jem.178.2.605
    • (1993) J Exp Med , vol.178 , pp. 605-613
    • Vodovoz, Y.1    Bogdan, C.2    Paik, J.3    Xie, Q.W.4    Nathan, C.5
  • 199
    • 70349559403 scopus 로고    scopus 로고
    • Endotoxin tolerance: new mechanisms, molecules and clinical significance
    • Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol (2009) 30:475-87. doi:10.1016/j.it.2009.07.009
    • (2009) Trends Immunol , vol.30 , pp. 475-487
    • Biswas, S.K.1    Lopez-Collazo, E.2
  • 200
    • 33745896155 scopus 로고    scopus 로고
    • Recent advances in the relationship between obesity, inflammation, and insulin resistance
    • Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw (2006) 17:4-12.
    • (2006) Eur Cytokine Netw , vol.17 , pp. 4-12
    • Bastard, J.P.1    Maachi, M.2    Lagathu, C.3    Kim, M.J.4    Caron, M.5    Vidal, H.6
  • 201
    • 38449108504 scopus 로고    scopus 로고
    • Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response
    • Martín-Fuentes P, Civeira F, Recalde D, García-Otín AL, Jarauta E, Marzo I, et al. Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response. J Immunol (2007) 179:3242-8. doi:10.4049/jimmunol.179.5.3242
    • (2007) J Immunol , vol.179 , pp. 3242-3248
    • Martín-Fuentes, P.1    Civeira, F.2    Recalde, D.3    García-Otín, A.L.4    Jarauta, E.5    Marzo, I.6
  • 202
    • 38649087921 scopus 로고    scopus 로고
    • Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis
    • Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci U S A (2008) 105:652-6. doi:10.1073/pnas.0708594105
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 652-656
    • Swann, J.B.1    Vesely, M.D.2    Silva, A.3    Sharkey, J.4    Akira, S.5    Schreiber, R.D.6
  • 203
    • 77956976681 scopus 로고    scopus 로고
    • Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm
    • Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol (2010) 11:889-96. doi:10.1038/ni.1937
    • (2010) Nat Immunol , vol.11 , pp. 889-896
    • Biswas, S.K.1    Mantovani, A.2
  • 204
    • 4344706372 scopus 로고    scopus 로고
    • Functional plasticity of macrophages: reversible adaptation to changing microenvironments
    • Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol (2004) 76:509-13. doi:10.1189/jlb.0504272
    • (2004) J Leukoc Biol , vol.76 , pp. 509-513
    • Stout, R.D.1    Suttles, J.2
  • 205
    • 84866736117 scopus 로고    scopus 로고
    • Macrophage polarization and plasticity in health and disease
    • Biswas SK, Chittezhath M, Shalova IN, Lim JY. Macrophage polarization and plasticity in health and disease. Immunol Res (2012) 53:11-24. doi:10.1007/s12026-012-8291-9
    • (2012) Immunol Res , vol.53 , pp. 11-24
    • Biswas, S.K.1    Chittezhath, M.2    Shalova, I.N.3    Lim, J.Y.4
  • 206
    • 70349443224 scopus 로고    scopus 로고
    • Transcriptional control of the inflammatory response
    • Medzhitov R, Horng T. Transcriptional control of the inflammatory response. Nat Rev Immunol (2009) 9:692-703. doi:10.1038/nri2634
    • (2009) Nat Rev Immunol , vol.9 , pp. 692-703
    • Medzhitov, R.1    Horng, T.2
  • 207
    • 77949971595 scopus 로고    scopus 로고
    • Selective transcription in response to an inflammatory stimulus
    • Smale ST. Selective transcription in response to an inflammatory stimulus. Cell (2010) 140:833-44. doi:10.1016/j.cell.2010.01.037
    • (2010) Cell , vol.140 , pp. 833-844
    • Smale, S.T.1
  • 208
    • 85191993854 scopus 로고    scopus 로고
    • The second touch hypothesis: T cell activation, homing and polarization
    • Ley K. The second touch hypothesis: T cell activation, homing and polarization. F1000Res (2014) 3:37. doi:10.12688/f1000research.3_37.v02
    • (2014) F1000Res , vol.3 , pp. 37
    • Ley, K.1
  • 209
    • 22344453196 scopus 로고    scopus 로고
    • Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion
    • Kawakami N, Nägerl UV, Odoardi F, Bonhoeffer T, Wekerle H, Flügel A. Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J Exp Med (2005) 201:1805-14. doi:10.1084/jem.20050011
    • (2005) J Exp Med , vol.201 , pp. 1805-1814
    • Kawakami, N.1    Nägerl, U.V.2    Odoardi, F.3    Bonhoeffer, T.4    Wekerle, H.5    Flügel, A.6
  • 210
    • 38149001476 scopus 로고    scopus 로고
    • Dendritic cell-induced memory T cell activation in nonlymphoid tissues
    • Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science (2008) 319:198-202. doi:10.1126/science.1151869
    • (2008) Science , vol.319 , pp. 198-202
    • Wakim, L.M.1    Waithman, J.2    van Rooijen, N.3    Heath, W.R.4    Carbone, F.R.5
  • 211
    • 84864321408 scopus 로고    scopus 로고
    • CD4+ T Cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation
    • Muller AJ, Filipe-Santos O, Eberl G, Aebischer T, Späth GF, Bousso P. CD4+ T Cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity (2012) 37:147-57. doi:10.1016/j.immuni.2012.05.015
    • (2012) Immunity , vol.37 , pp. 147-157
    • Muller, A.J.1    Filipe-Santos, O.2    Eberl, G.3    Aebischer, T.4    Späth, G.F.5    Bousso, P.6
  • 212
    • 63449086433 scopus 로고    scopus 로고
    • Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves
    • Choi JH, Do Y, Cheong C, Koh H, Boscardin SB, Oh YS, et al. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J Exp Med (2009) 206:497-505. doi:10.1084/jem.20082129
    • (2009) J Exp Med , vol.206 , pp. 497-505
    • Choi, J.H.1    Do, Y.2    Cheong, C.3    Koh, H.4    Boscardin, S.B.5    Oh, Y.S.6
  • 213
    • 81955161809 scopus 로고    scopus 로고
    • Flt3 signaling-dependent dendritic cells protect against atherosclerosis
    • Choi JH, Cheong C, Dandamudi DB, Park CG, Rodriguez A, Mehandru S, et al. Flt3 signaling-dependent dendritic cells protect against atherosclerosis. Immunity (2011) 35:819-31. doi:10.1016/j.immuni.2011.09.014
    • (2011) Immunity , vol.35 , pp. 819-831
    • Choi, J.H.1    Cheong, C.2    Dandamudi, D.B.3    Park, C.G.4    Rodriguez, A.5    Mehandru, S.6
  • 214
    • 84866002538 scopus 로고    scopus 로고
    • Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis
    • Koltsova EK, Garcia Z, Chodaczek G, Landau M, McArdle S, Scott SR, et al. Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. J Clin Invest (2012) 122:3114-26. doi:10.1172/JCI61758
    • (2012) J Clin Invest , vol.122 , pp. 3114-3126
    • Koltsova, E.K.1    Garcia, Z.2    Chodaczek, G.3    Landau, M.4    McArdle, S.5    Scott, S.R.6
  • 216
    • 84895800375 scopus 로고    scopus 로고
    • Trained immunity or tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors
    • Ifrim DC, Quintin J, Joosten LA, Jacobs C, Jansen T, Jacobs L, et al. Trained immunity or tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clin Vaccine Immunol (2014) 21:534-45. doi:10.1128/CVI.00688-13
    • (2014) Clin Vaccine Immunol , vol.21 , pp. 534-545
    • Ifrim, D.C.1    Quintin, J.2    Joosten, L.A.3    Jacobs, C.4    Jansen, T.5    Jacobs, L.6
  • 217
    • 80052472550 scopus 로고    scopus 로고
    • Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury
    • Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT, Jakubzick C, et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med (2011) 184:547-60. doi:10.1164/rccm.201011-1891OC
    • (2011) Am J Respir Crit Care Med , vol.184 , pp. 547-560
    • Janssen, W.J.1    Barthel, L.2    Muldrow, A.3    Oberley-Deegan, R.E.4    Kearns, M.T.5    Jakubzick, C.6
  • 218
    • 0018757466 scopus 로고
    • Defective tumoridical activity of macrophages of A/J mice. II. Comparison of the macrophages cytotoxic defect of A7J mice with that of lipid A-unresponsive C3H/HeJ mice
    • Boraschi D, Meltzer MS. Defective tumoridical activity of macrophages of A/J mice. II. Comparison of the macrophages cytotoxic defect of A7J mice with that of lipid A-unresponsive C3H/HeJ mice. J Immunol (1979) 122:1592-7.
    • (1979) J Immunol , vol.122 , pp. 1592-1597
    • Boraschi, D.1    Meltzer, M.S.2
  • 219
    • 79956080152 scopus 로고    scopus 로고
    • Trained immunity: a memory for innate host defense
    • Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe (2011) 9:355-61. doi:10.1016/j.chom.2011.04.006
    • (2011) Cell Host Microbe , vol.9 , pp. 355-361
    • Netea, M.G.1    Quintin, J.2    van der Meer, J.W.3
  • 220
    • 84865119423 scopus 로고    scopus 로고
    • Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes
    • Quintin J, Saeed S, Martens JH, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe (2012) 12:223-32. doi:10.10167/j.chom.2012.06.006
    • (2012) Cell Host Microbe , vol.12 , pp. 223-232
    • Quintin, J.1    Saeed, S.2    Martens, J.H.3    Giamarellos-Bourboulis, E.J.4    Ifrim, D.C.5    Logie, C.6
  • 221
    • 36749022208 scopus 로고    scopus 로고
    • Macrophages receptor implicated in the "adaptive" form of innate immunity
    • Bowdish DM, Loffredo MS, Mukhopadhyay S, Mantovani A, Gordon S. Macrophages receptor implicated in the "adaptive" form of innate immunity. Microbe Infect (2007) 9:1680-7. doi:10.1016/j.micinf.2007.09.002
    • (2007) Microbe Infect , vol.9 , pp. 1680-1687
    • Bowdish, D.M.1    Loffredo, M.S.2    Mukhopadhyay, S.3    Mantovani, A.4    Gordon, S.5
  • 223
    • 84880711233 scopus 로고    scopus 로고
    • Training innate immunity: the changing concept of immunological memory in innate host defence
    • Netea MG. Training innate immunity: the changing concept of immunological memory in innate host defence. Eur J Clin Invest (2013) 43:881-4. doi:10.1111/eci.12132
    • (2013) Eur J Clin Invest , vol.43 , pp. 881-884
    • Netea, M.G.1
  • 224
    • 84895780697 scopus 로고    scopus 로고
    • Innate immune memory: towards a better understanding of host defense mechanisms
    • Quintin J, Cheng SC, van der Meer JW, Netea MG. Innate immune memory: towards a better understanding of host defense mechanisms. Curr Opin Immunol (2014) 29:1-7. doi:10.1016/j.coi.2014.02.006
    • (2014) Curr Opin Immunol , vol.29 , pp. 1-7
    • Quintin, J.1    Cheng, S.C.2    van der Meer, J.W.3    Netea, M.G.4
  • 225
    • 84872522528 scopus 로고    scopus 로고
    • Latent enhancers activated by stimulation in differentiated cells
    • Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A, Bonifacio S, et al. Latent enhancers activated by stimulation in differentiated cells. Cell (2013) 152:157-71. doi:10.1016/j.cell.2012.12.018
    • (2013) Cell , vol.152 , pp. 157-171
    • Ostuni, R.1    Piccolo, V.2    Barozzi, I.3    Polletti, S.4    Termanini, A.5    Bonifacio, S.6
  • 226
    • 84904394690 scopus 로고    scopus 로고
    • Macrophage activation and polarization: nomenclature and experimental guidelines
    • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity (2014) 41:14-20. doi:10.1016/j.immuni.2014.06.008
    • (2014) Immunity , vol.41 , pp. 14-20
    • Murray, P.J.1    Allen, J.E.2    Biswas, S.K.3    Fisher, E.A.4    Gilroy, D.W.5    Goerdt, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.