메뉴 건너뛰기




Volumn 35, Issue 8, 2014, Pages 358-367

Homeostasis in the mononuclear phagocyte system

Author keywords

Colony stimulating factor 1; Dendritic cell; Hematopoiesis; Macrophage; Proliferation

Indexed keywords

COLONY STIMULATING FACTOR 1;

EID: 84905093326     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2014.06.006     Document Type: Review
Times cited : (137)

References (111)
  • 1
    • 30044434256 scopus 로고    scopus 로고
    • The mononuclear phagocyte system
    • Hume D.A. The mononuclear phagocyte system. Curr. Opin. Immunol. 2006, 18:49-53.
    • (2006) Curr. Opin. Immunol. , vol.18 , pp. 49-53
    • Hume, D.A.1
  • 2
    • 0036826744 scopus 로고    scopus 로고
    • The mononuclear phagocyte system revisited
    • Hume D.A., et al. The mononuclear phagocyte system revisited. J. Leukoc. Biol. 2002, 72:621-627.
    • (2002) J. Leukoc. Biol. , vol.72 , pp. 621-627
    • Hume, D.A.1
  • 3
    • 54449093241 scopus 로고    scopus 로고
    • Differentiation and heterogeneity in the mononuclear phagocyte system
    • Hume D.A. Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol. 2008, 1:432-441.
    • (2008) Mucosal Immunol. , vol.1 , pp. 432-441
    • Hume, D.A.1
  • 4
    • 84857618521 scopus 로고    scopus 로고
    • Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling
    • Hume D.A., MacDonald K.P. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 2012, 119:1810-1820.
    • (2012) Blood , vol.119 , pp. 1810-1820
    • Hume, D.A.1    MacDonald, K.P.2
  • 5
    • 65249089638 scopus 로고    scopus 로고
    • In vivo analysis of dendritic cell development and homeostasis
    • Liu K., et al. In vivo analysis of dendritic cell development and homeostasis. Science 2009, 324:392-397.
    • (2009) Science , vol.324 , pp. 392-397
    • Liu, K.1
  • 6
    • 58749083404 scopus 로고    scopus 로고
    • Macrophages as APC and the dendritic cell myth
    • Hume D.A. Macrophages as APC and the dendritic cell myth. J. Immunol. 2008, 181:5829-5835.
    • (2008) J. Immunol. , vol.181 , pp. 5829-5835
    • Hume, D.A.1
  • 7
    • 77952887297 scopus 로고    scopus 로고
    • Unravelling mononuclear phagocyte heterogeneity
    • Geissmann F., et al. Unravelling mononuclear phagocyte heterogeneity. Nat. Rev. Immunol. 2010, 10:453-460.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 453-460
    • Geissmann, F.1
  • 8
    • 84867740805 scopus 로고    scopus 로고
    • Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
    • Gautier E.L., et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 2012, 13:1118-1128.
    • (2012) Nat. Immunol. , vol.13 , pp. 1118-1128
    • Gautier, E.L.1
  • 9
    • 84865418665 scopus 로고    scopus 로고
    • Deciphering the transcriptional network of the dendritic cell lineage
    • Miller J.C., et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 2012, 13:888-899.
    • (2012) Nat. Immunol. , vol.13 , pp. 888-899
    • Miller, J.C.1
  • 10
    • 84874038349 scopus 로고    scopus 로고
    • Can DCs be distinguished from macrophages by molecular signatures?
    • Hume D.A., et al. Can DCs be distinguished from macrophages by molecular signatures?. Nat. Immunol. 2013, 14:187-189.
    • (2013) Nat. Immunol. , vol.14 , pp. 187-189
    • Hume, D.A.1
  • 11
    • 77955412944 scopus 로고    scopus 로고
    • Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations
    • Mabbott N.A., et al. Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology 2010, 215:724-736.
    • (2010) Immunobiology , vol.215 , pp. 724-736
    • Mabbott, N.A.1
  • 12
    • 84884297351 scopus 로고    scopus 로고
    • An expression atlas of human primary cells: inference of gene function from coexpression networks
    • Mabbott N.A., et al. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 2013, 14:632.
    • (2013) BMC Genomics , vol.14 , pp. 632
    • Mabbott, N.A.1
  • 13
    • 84865447381 scopus 로고    scopus 로고
    • Plenary perspective: the complexity of constitutive and inducible gene expression in mononuclear phagocytes
    • Hume D.A. Plenary perspective: the complexity of constitutive and inducible gene expression in mononuclear phagocytes. J. Leukoc. Biol. 2012, 92:433-444.
    • (2012) J. Leukoc. Biol. , vol.92 , pp. 433-444
    • Hume, D.A.1
  • 14
    • 84876469090 scopus 로고    scopus 로고
    • CD8alpha+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3
    • Seillet C., et al. CD8alpha+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. Blood 2013, 121:1574-1583.
    • (2013) Blood , vol.121 , pp. 1574-1583
    • Seillet, C.1
  • 15
    • 84892450644 scopus 로고    scopus 로고
    • Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation
    • Epelman S., et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 2014, 40:91-104.
    • (2014) Immunity , vol.40 , pp. 91-104
    • Epelman, S.1
  • 16
    • 84884352076 scopus 로고    scopus 로고
    • Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes
    • Jakubzick C., et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 2013, 39:599-610.
    • (2013) Immunity , vol.39 , pp. 599-610
    • Jakubzick, C.1
  • 17
    • 34347405754 scopus 로고    scopus 로고
    • Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1
    • Sasmono R.T., et al. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. J. Leukoc. Biol. 2007, 82:111-123.
    • (2007) J. Leukoc. Biol. , vol.82 , pp. 111-123
    • Sasmono, R.T.1
  • 18
    • 84876468043 scopus 로고    scopus 로고
    • Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells
    • Matsushima H., et al. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood 2013, 121:1677-1689.
    • (2013) Blood , vol.121 , pp. 1677-1689
    • Matsushima, H.1
  • 19
    • 0029661945 scopus 로고    scopus 로고
    • Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified
    • Maraskovsky E., et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 1996, 184:1953-1962.
    • (1996) J. Exp. Med. , vol.184 , pp. 1953-1962
    • Maraskovsky, E.1
  • 20
    • 84886816349 scopus 로고    scopus 로고
    • IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1
    • Jenkins S.J., et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med. 2013, 210:2477-2491.
    • (2013) J. Exp. Med. , vol.210 , pp. 2477-2491
    • Jenkins, S.J.1
  • 21
    • 0036092801 scopus 로고    scopus 로고
    • Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects
    • Dai X.M., et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 2002, 99:111-120.
    • (2002) Blood , vol.99 , pp. 111-120
    • Dai, X.M.1
  • 22
    • 84870907320 scopus 로고    scopus 로고
    • Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia
    • Greter M., et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 2012, 37:1050-1060.
    • (2012) Immunity , vol.37 , pp. 1050-1060
    • Greter, M.1
  • 23
    • 84864152036 scopus 로고    scopus 로고
    • IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia
    • Wang Y., et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 2012, 13:753-760.
    • (2012) Nat. Immunol. , vol.13 , pp. 753-760
    • Wang, Y.1
  • 24
    • 0028261070 scopus 로고
    • Mice lacking both macrophage- and granulocyte-macrophage colony-stimulating factor have macrophages and coexistent osteopetrosis and severe lung disease
    • Lieschke G.J., et al. Mice lacking both macrophage- and granulocyte-macrophage colony-stimulating factor have macrophages and coexistent osteopetrosis and severe lung disease. Blood 1994, 84:27-35.
    • (1994) Blood , vol.84 , pp. 27-35
    • Lieschke, G.J.1
  • 25
    • 84863008117 scopus 로고    scopus 로고
    • GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells
    • Greter M., et al. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 2012, 36:1031-1046.
    • (2012) Immunity , vol.36 , pp. 1031-1046
    • Greter, M.1
  • 26
    • 0028236526 scopus 로고
    • Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology
    • Stanley E., et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:5592-5596.
    • (1994) Proc. Natl. Acad. Sci. U.S.A. , vol.91 , pp. 5592-5596
    • Stanley, E.1
  • 27
    • 68249155389 scopus 로고    scopus 로고
    • The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis
    • Kingston D., et al. The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood 2009, 114:835-843.
    • (2009) Blood , vol.114 , pp. 835-843
    • Kingston, D.1
  • 28
    • 0034210658 scopus 로고    scopus 로고
    • Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells
    • McKenna H.J., et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000, 95:3489-3497.
    • (2000) Blood , vol.95 , pp. 3489-3497
    • McKenna, H.J.1
  • 29
    • 0025871906 scopus 로고
    • Interactions among granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor, and IFN-gamma lead to enhanced proliferation of murine macrophage progenitor cells
    • Breen F.N., et al. Interactions among granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor, and IFN-gamma lead to enhanced proliferation of murine macrophage progenitor cells. J. Immunol. 1991, 147:1542-1547.
    • (1991) J. Immunol. , vol.147 , pp. 1542-1547
    • Breen, F.N.1
  • 30
    • 84877787762 scopus 로고    scopus 로고
    • M-CSF instructs myeloid lineage fate in single haematopoietic stem cells
    • Mossadegh-Keller N., et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 2013, 497:239-243.
    • (2013) Nature , vol.497 , pp. 239-243
    • Mossadegh-Keller, N.1
  • 31
    • 78149462163 scopus 로고    scopus 로고
    • An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation
    • MacDonald K.P., et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 2010, 116:3955-3963.
    • (2010) Blood , vol.116 , pp. 3955-3963
    • MacDonald, K.P.1
  • 32
    • 80053156515 scopus 로고    scopus 로고
    • Dendritic cell and macrophage heterogeneity in vivo
    • Hashimoto D., et al. Dendritic cell and macrophage heterogeneity in vivo. Immunity 2011, 35:323-335.
    • (2011) Immunity , vol.35 , pp. 323-335
    • Hashimoto, D.1
  • 33
    • 30344444770 scopus 로고    scopus 로고
    • A clonogenic bone marrow progenitor specific for macrophages and dendritic cells
    • Fogg D.K., et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 2006, 311:83-87.
    • (2006) Science , vol.311 , pp. 83-87
    • Fogg, D.K.1
  • 34
    • 63449110370 scopus 로고    scopus 로고
    • CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation
    • Auffray C., et al. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J. Exp. Med. 2009, 206:595-606.
    • (2009) J. Exp. Med. , vol.206 , pp. 595-606
    • Auffray, C.1
  • 35
    • 35548970740 scopus 로고    scopus 로고
    • Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow
    • Onai N., et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 2007, 8:1207-1216.
    • (2007) Nat. Immunol. , vol.8 , pp. 1207-1216
    • Onai, N.1
  • 36
    • 58149280443 scopus 로고    scopus 로고
    • Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes
    • Jakubzick C., et al. Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J. Exp. Med. 2008, 205:2839-2850.
    • (2008) J. Exp. Med. , vol.205 , pp. 2839-2850
    • Jakubzick, C.1
  • 37
    • 84882786445 scopus 로고    scopus 로고
    • Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage
    • Schraml B.U., et al. Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 2013, 154:843-858.
    • (2013) Cell , vol.154 , pp. 843-858
    • Schraml, B.U.1
  • 38
    • 84897406127 scopus 로고    scopus 로고
    • Consortium and the RIKEN PMI and CLST (DGT) A promoter-level mammalian expression atlas
    • The FANTOM
    • The FANTOM. Consortium and the RIKEN PMI and CLST (DGT) A promoter-level mammalian expression atlas. Nature 2014, 507:462-470.
    • (2014) Nature , vol.507 , pp. 462-470
  • 39
    • 38449085888 scopus 로고    scopus 로고
    • The transcriptional regulation of the colony-stimulating factor 1 receptor (csf1r) gene during hematopoiesis
    • Bonifer C., Hume D.A. The transcriptional regulation of the colony-stimulating factor 1 receptor (csf1r) gene during hematopoiesis. Front. Biosci. 2008, 13:549-560.
    • (2008) Front. Biosci. , vol.13 , pp. 549-560
    • Bonifer, C.1    Hume, D.A.2
  • 40
    • 84880838451 scopus 로고    scopus 로고
    • Origin of monocytes and macrophages in a committed progenitor
    • Hettinger J., et al. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunol. 2013, 14:821-830.
    • (2013) Nat. Immunol. , vol.14 , pp. 821-830
    • Hettinger, J.1
  • 41
    • 77349124883 scopus 로고    scopus 로고
    • Origin and development of dendritic cells
    • Liu K., Nussenzweig M.C. Origin and development of dendritic cells. Immunol. Rev. 2010, 234:45-54.
    • (2010) Immunol. Rev. , vol.234 , pp. 45-54
    • Liu, K.1    Nussenzweig, M.C.2
  • 42
    • 22544455619 scopus 로고    scopus 로고
    • The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion
    • MacDonald K.P., et al. The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. J. Immunol. 2005, 175:1399-1405.
    • (2005) J. Immunol. , vol.175 , pp. 1399-1405
    • MacDonald, K.P.1
  • 43
    • 84876297531 scopus 로고    scopus 로고
    • Diverse and heritable lineage imprinting of early haematopoietic progenitors
    • Naik S.H., et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 2013, 496:229-232.
    • (2013) Nature , vol.496 , pp. 229-232
    • Naik, S.H.1
  • 44
    • 20244387299 scopus 로고    scopus 로고
    • Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment
    • Adolfsson J., et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 2005, 121:295-306.
    • (2005) Cell , vol.121 , pp. 295-306
    • Adolfsson, J.1
  • 45
    • 70449393651 scopus 로고    scopus 로고
    • MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages
    • Aziz A., et al. MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. Science 2009, 326:867-871.
    • (2009) Science , vol.326 , pp. 867-871
    • Aziz, A.1
  • 46
    • 0037963473 scopus 로고    scopus 로고
    • Blood monocytes consist of two principal subsets with distinct migratory properties
    • Geissmann F., et al. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19:71-82.
    • (2003) Immunity , vol.19 , pp. 71-82
    • Geissmann, F.1
  • 47
    • 33645902493 scopus 로고    scopus 로고
    • Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
    • Serbina N.V., Pamer E.G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 2006, 7:311-317.
    • (2006) Nat. Immunol. , vol.7 , pp. 311-317
    • Serbina, N.V.1    Pamer, E.G.2
  • 48
    • 33645088198 scopus 로고    scopus 로고
    • Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery
    • Tacke F., et al. Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J. Exp. Med. 2006, 203:583-597.
    • (2006) J. Exp. Med. , vol.203 , pp. 583-597
    • Tacke, F.1
  • 49
    • 84872765982 scopus 로고    scopus 로고
    • Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis
    • Yona S., et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013, 38:79-91.
    • (2013) Immunity , vol.38 , pp. 79-91
    • Yona, S.1
  • 50
    • 84876207357 scopus 로고    scopus 로고
    • Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal
    • Carlin L.M., et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 2013, 153:362-375.
    • (2013) Cell , vol.153 , pp. 362-375
    • Carlin, L.M.1
  • 51
    • 34547728312 scopus 로고    scopus 로고
    • Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior
    • Auffray C., et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007, 317:666-670.
    • (2007) Science , vol.317 , pp. 666-670
    • Auffray, C.1
  • 52
    • 84888370511 scopus 로고    scopus 로고
    • Tissue LyC6- macrophages are generated in the absence of circulating LyC6- monocytes and Nur77 in a model of muscle regeneration
    • Varga T., et al. Tissue LyC6- macrophages are generated in the absence of circulating LyC6- monocytes and Nur77 in a model of muscle regeneration. J. Immunol. 2013, 191:5695-5701.
    • (2013) J. Immunol. , vol.191 , pp. 5695-5701
    • Varga, T.1
  • 53
    • 73949101833 scopus 로고    scopus 로고
    • The origin and development of nonlymphoid tissue CD103+ DCs
    • Ginhoux F., et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 2009, 206:3115-3130.
    • (2009) J. Exp. Med. , vol.206 , pp. 3115-3130
    • Ginhoux, F.1
  • 54
    • 84887616366 scopus 로고    scopus 로고
    • Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin
    • Tamoutounour S., et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 2013, 39:925-938.
    • (2013) Immunity , vol.39 , pp. 925-938
    • Tamoutounour, S.1
  • 55
    • 84871307366 scopus 로고    scopus 로고
    • CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis
    • Tamoutounour S., et al. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 2012, 42:3150-3166.
    • (2012) Eur. J. Immunol. , vol.42 , pp. 3150-3166
    • Tamoutounour, S.1
  • 56
    • 70049098070 scopus 로고    scopus 로고
    • Origin of the lamina propria dendritic cell network
    • Bogunovic M., et al. Origin of the lamina propria dendritic cell network. Immunity 2009, 31:513-525.
    • (2009) Immunity , vol.31 , pp. 513-525
    • Bogunovic, M.1
  • 57
    • 84875830139 scopus 로고    scopus 로고
    • Intestinal macrophages: well educated exceptions from the rule
    • Zigmond E., Jung S. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol. 2013, 34:162-168.
    • (2013) Trends Immunol. , vol.34 , pp. 162-168
    • Zigmond, E.1    Jung, S.2
  • 58
    • 34548764423 scopus 로고    scopus 로고
    • Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses
    • Denning T.L., et al. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 2007, 8:1086-1094.
    • (2007) Nat. Immunol. , vol.8 , pp. 1086-1094
    • Denning, T.L.1
  • 59
    • 84878191150 scopus 로고    scopus 로고
    • IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses
    • Schlitzer A., et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 2013, 38:970-983.
    • (2013) Immunity , vol.38 , pp. 970-983
    • Schlitzer, A.1
  • 60
    • 84874069797 scopus 로고    scopus 로고
    • Intestinal CD103(-) dendritic cells migrate in lymph and prime effector T cells
    • Cerovic V., et al. Intestinal CD103(-) dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol. 2013, 6:104-113.
    • (2013) Mucosal Immunol. , vol.6 , pp. 104-113
    • Cerovic, V.1
  • 61
    • 84876349699 scopus 로고    scopus 로고
    • Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6C(hi) monocyte precursors
    • Bain C.C., et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6C(hi) monocyte precursors. Mucosal Immunol. 2013, 6:498-510.
    • (2013) Mucosal Immunol. , vol.6 , pp. 498-510
    • Bain, C.C.1
  • 62
    • 84870900504 scopus 로고    scopus 로고
    • Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells
    • Zigmond E., et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 2012, 37:1076-1090.
    • (2012) Immunity , vol.37 , pp. 1076-1090
    • Zigmond, E.1
  • 63
    • 84863007648 scopus 로고    scopus 로고
    • NK cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection
    • Goldszmid R.S., et al. NK cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 2012, 36:1047-1059.
    • (2012) Immunity , vol.36 , pp. 1047-1059
    • Goldszmid, R.S.1
  • 64
    • 84859508307 scopus 로고    scopus 로고
    • A lineage of myeloid cells independent of Myb and hematopoietic stem cells
    • Schulz C., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336:86-90.
    • (2012) Science , vol.336 , pp. 86-90
    • Schulz, C.1
  • 65
    • 0034049748 scopus 로고    scopus 로고
    • Origins and functions of phagocytes in the embryo
    • Lichanska A.M., Hume D.A. Origins and functions of phagocytes in the embryo. Exp. Hematol. 2000, 28:601-611.
    • (2000) Exp. Hematol. , vol.28 , pp. 601-611
    • Lichanska, A.M.1    Hume, D.A.2
  • 66
    • 0033168250 scopus 로고    scopus 로고
    • Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1
    • Lichanska A.M., et al. Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood 1999, 94:127-138.
    • (1999) Blood , vol.94 , pp. 127-138
    • Lichanska, A.M.1
  • 67
    • 0037307026 scopus 로고    scopus 로고
    • A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse
    • Sasmono R.T., et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 2003, 101:1155-1163.
    • (2003) Blood , vol.101 , pp. 1155-1163
    • Sasmono, R.T.1
  • 68
    • 78149360132 scopus 로고    scopus 로고
    • Fate mapping analysis reveals that adult microglia derive from primitive macrophages
    • Ginhoux F., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841-845.
    • (2010) Science , vol.330 , pp. 841-845
    • Ginhoux, F.1
  • 69
    • 84864298329 scopus 로고    scopus 로고
    • Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
    • Hoeffel G., et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 2012, 209:1167-1181.
    • (2012) J. Exp. Med. , vol.209 , pp. 1167-1181
    • Hoeffel, G.1
  • 70
    • 0028114205 scopus 로고
    • Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes
    • Reddy M.A., et al. Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J. Exp. Med. 1994, 180:2309-2319.
    • (1994) J. Exp. Med. , vol.180 , pp. 2309-2319
    • Reddy, M.A.1
  • 71
    • 65149083962 scopus 로고    scopus 로고
    • The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line
    • Suzuki H., et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat. Genet. 2009, 41:553-562.
    • (2009) Nat. Genet. , vol.41 , pp. 553-562
    • Suzuki, H.1
  • 72
    • 84904993091 scopus 로고    scopus 로고
    • Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators
    • Raza S., et al. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators. J. Leukoc. Biol. 2014, 10.1189/jlb.6HI0313-169R.
    • (2014) J. Leukoc. Biol.
    • Raza, S.1
  • 73
    • 0026552605 scopus 로고
    • Turnover of resident microglia in the normal adult mouse brain
    • Lawson L.J., et al. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 1992, 48:405-415.
    • (1992) Neuroscience , vol.48 , pp. 405-415
    • Lawson, L.J.1
  • 74
    • 0022387412 scopus 로고
    • Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain
    • Perry V.H., et al. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 1985, 15:313-326.
    • (1985) Neuroscience , vol.15 , pp. 313-326
    • Perry, V.H.1
  • 75
    • 0023513913 scopus 로고
    • Apparent role of the macrophage growth factor, CSF-1, in placental development
    • Pollard J.W., et al. Apparent role of the macrophage growth factor, CSF-1, in placental development. Nature 1987, 330:484-486.
    • (1987) Nature , vol.330 , pp. 484-486
    • Pollard, J.W.1
  • 76
    • 75649112342 scopus 로고    scopus 로고
    • Estrogen receptor signaling promotes dendritic cell differentiation by increasing expression of the transcription factor IRF4
    • Carreras E., et al. Estrogen receptor signaling promotes dendritic cell differentiation by increasing expression of the transcription factor IRF4. Blood 2010, 115:238-246.
    • (2010) Blood , vol.115 , pp. 238-246
    • Carreras, E.1
  • 77
    • 84875892857 scopus 로고    scopus 로고
    • Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways
    • Kierdorf K., et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 2013, 16:273-280.
    • (2013) Nat. Neurosci. , vol.16 , pp. 273-280
    • Kierdorf, K.1
  • 78
    • 34247601504 scopus 로고    scopus 로고
    • Cell tracing shows the contribution of the yolk sac to adult haematopoiesis
    • Samokhvalov I.M., et al. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 2007, 446:1056-1061.
    • (2007) Nature , vol.446 , pp. 1056-1061
    • Samokhvalov, I.M.1
  • 79
    • 84885454468 scopus 로고    scopus 로고
    • Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF
    • Guilliams M., et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 2013, 210:1977-1992.
    • (2013) J. Exp. Med. , vol.210 , pp. 1977-1992
    • Guilliams, M.1
  • 80
    • 73949147392 scopus 로고    scopus 로고
    • Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
    • Chorro L., et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 2009, 206:3089-3100.
    • (2009) J. Exp. Med. , vol.206 , pp. 3089-3100
    • Chorro, L.1
  • 81
    • 84886953273 scopus 로고    scopus 로고
    • A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation
    • Goldmann T., et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 2013, 16:1618-1626.
    • (2013) Nat. Neurosci. , vol.16 , pp. 1618-1626
    • Goldmann, T.1
  • 82
    • 36448994709 scopus 로고    scopus 로고
    • Local self-renewal can sustain CNS microglia maintenance and function throughout adult life
    • Ajami B., et al. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 2007, 10:1538-1543.
    • (2007) Nat. Neurosci. , vol.10 , pp. 1538-1543
    • Ajami, B.1
  • 83
    • 84888063933 scopus 로고    scopus 로고
    • Beyond stem cells: self-renewal of differentiated macrophages
    • Sieweke M.H., Allen J.E. Beyond stem cells: self-renewal of differentiated macrophages. Science 2013, 342:1242974.
    • (2013) Science , vol.342 , pp. 1242974
    • Sieweke, M.H.1    Allen, J.E.2
  • 84
    • 79951693243 scopus 로고    scopus 로고
    • The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency
    • Bigley V., et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J. Exp. Med. 2011, 208:227-234.
    • (2011) J. Exp. Med. , vol.208 , pp. 227-234
    • Bigley, V.1
  • 85
    • 0034234509 scopus 로고    scopus 로고
    • Langerhans cell deficiency in reticular dysgenesis
    • Emile J.F., et al. Langerhans cell deficiency in reticular dysgenesis. Blood 2000, 96:58-62.
    • (2000) Blood , vol.96 , pp. 58-62
    • Emile, J.F.1
  • 86
    • 79960219807 scopus 로고    scopus 로고
    • IRF8 mutations and human dendritic-cell immunodeficiency
    • Hambleton S., et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 2011, 365:127-138.
    • (2011) N. Engl. J. Med. , vol.365 , pp. 127-138
    • Hambleton, S.1
  • 87
    • 77949902065 scopus 로고    scopus 로고
    • Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia
    • Vinh D.C., et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood 2010, 115:1519-1529.
    • (2010) Blood , vol.115 , pp. 1519-1529
    • Vinh, D.C.1
  • 88
    • 79960706327 scopus 로고    scopus 로고
    • A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation
    • Davies L.C., et al. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur. J. Immunol. 2011, 41:2155-2164.
    • (2011) Eur. J. Immunol. , vol.41 , pp. 2155-2164
    • Davies, L.C.1
  • 89
    • 0014325451 scopus 로고
    • The origin and kinetics of mononuclear phagocytes
    • van Furth R., Cohn Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968, 128:415-435.
    • (1968) J. Exp. Med. , vol.128 , pp. 415-435
    • van Furth, R.1    Cohn, Z.A.2
  • 90
    • 0014286552 scopus 로고
    • Hematopoietic origin of macrophages as studied by chromosome markers in mice
    • Virolainen M. Hematopoietic origin of macrophages as studied by chromosome markers in mice. J. Exp. Med. 1968, 127:943-952.
    • (1968) J. Exp. Med. , vol.127 , pp. 943-952
    • Virolainen, M.1
  • 91
    • 35748957798 scopus 로고    scopus 로고
    • Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages
    • Landsman L., Jung S. Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J. Immunol. 2007, 179:3488-3494.
    • (2007) J. Immunol. , vol.179 , pp. 3488-3494
    • Landsman, L.1    Jung, S.2
  • 92
    • 79958715229 scopus 로고    scopus 로고
    • Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation
    • Jenkins S.J., et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011, 332:1284-1288.
    • (2011) Science , vol.332 , pp. 1284-1288
    • Jenkins, S.J.1
  • 93
    • 41449087956 scopus 로고    scopus 로고
    • The prolonged life-span of alveolar macrophages
    • Murphy J., et al. The prolonged life-span of alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 2008, 38:380-385.
    • (2008) Am. J. Respir. Cell Mol. Biol. , vol.38 , pp. 380-385
    • Murphy, J.1
  • 94
    • 84866162482 scopus 로고    scopus 로고
    • IL-10 acts as a developmental switch guiding monocyte differentiation to macrophages during a murine peritoneal infection
    • Nguyen H.H., et al. IL-10 acts as a developmental switch guiding monocyte differentiation to macrophages during a murine peritoneal infection. J. Immunol. 2012, 189:3112-3120.
    • (2012) J. Immunol. , vol.189 , pp. 3112-3120
    • Nguyen, H.H.1
  • 95
    • 84876775203 scopus 로고    scopus 로고
    • Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
    • Hashimoto D., et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013, 38:792-804.
    • (2013) Immunity , vol.38 , pp. 792-804
    • Hashimoto, D.1
  • 96
    • 0027365921 scopus 로고
    • Low doses of radiation induce systemic production of cytokines: possible contribution to leukemogenesis
    • Tartakovsky B., et al. Low doses of radiation induce systemic production of cytokines: possible contribution to leukemogenesis. Int. J. Cancer 1993, 55:269-274.
    • (1993) Int. J. Cancer , vol.55 , pp. 269-274
    • Tartakovsky, B.1
  • 97
    • 0023404771 scopus 로고
    • Macrophages specifically regulate the concentration of their own growth factor in the circulation
    • Bartocci A., et al. Macrophages specifically regulate the concentration of their own growth factor in the circulation. Proc. Natl. Acad. Sci. U.S.A. 1987, 84:6179-6183.
    • (1987) Proc. Natl. Acad. Sci. U.S.A. , vol.84 , pp. 6179-6183
    • Bartocci, A.1
  • 98
    • 84878738380 scopus 로고    scopus 로고
    • Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation
    • Davies L.C., et al. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat. Commun. 2013, 4:1886.
    • (2013) Nat. Commun. , vol.4 , pp. 1886
    • Davies, L.C.1
  • 99
    • 0021321676 scopus 로고
    • The correlation between plasminogen activator activity and thymidine incorporation in mouse bone marrow-derived macrophages. Opposing actions of colony-stimulating factor, phorbol myristate acetate, dexamethasone and prostaglandin E
    • Hume D.A., Gordon S. The correlation between plasminogen activator activity and thymidine incorporation in mouse bone marrow-derived macrophages. Opposing actions of colony-stimulating factor, phorbol myristate acetate, dexamethasone and prostaglandin E. Exp. Cell Res. 1984, 150:347-355.
    • (1984) Exp. Cell Res. , vol.150 , pp. 347-355
    • Hume, D.A.1    Gordon, S.2
  • 100
    • 80052246111 scopus 로고    scopus 로고
    • Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool
    • Ajami B., et al. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 2011, 14:1142-1149.
    • (2011) Nat. Neurosci. , vol.14 , pp. 1142-1149
    • Ajami, B.1
  • 101
    • 0028911184 scopus 로고
    • Review of the macrophage disappearance reaction
    • Barth M.W., et al. Review of the macrophage disappearance reaction. J. Leukoc. Biol. 1995, 57:361-367.
    • (1995) J. Leukoc. Biol. , vol.57 , pp. 361-367
    • Barth, M.W.1
  • 102
    • 80052472550 scopus 로고    scopus 로고
    • Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury
    • Janssen W.J., et al. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am. J. Respir. Crit. Care Med. 2011, 184:547-560.
    • (2011) Am. J. Respir. Crit. Care Med. , vol.184 , pp. 547-560
    • Janssen, W.J.1
  • 103
    • 80052621954 scopus 로고    scopus 로고
    • Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1
    • Tagliani E., et al. Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J. Exp. Med. 2011, 208:1901-1916.
    • (2011) J. Exp. Med. , vol.208 , pp. 1901-1916
    • Tagliani, E.1
  • 104
    • 84883800208 scopus 로고    scopus 로고
    • Local proliferation dominates lesional macrophage accumulation in atherosclerosis
    • Robbins C.S., et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 2013, 19:1166-1172.
    • (2013) Nat. Med. , vol.19 , pp. 1166-1172
    • Robbins, C.S.1
  • 105
    • 30044448462 scopus 로고    scopus 로고
    • Colony-stimulating factor-1 in immunity and inflammation
    • Chitu V., Stanley E.R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 2006, 18:39-48.
    • (2006) Curr. Opin. Immunol. , vol.18 , pp. 39-48
    • Chitu, V.1    Stanley, E.R.2
  • 106
    • 30444440914 scopus 로고    scopus 로고
    • Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain
    • Nandi S., et al. Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain. Blood 2006, 107:786-795.
    • (2006) Blood , vol.107 , pp. 786-795
    • Nandi, S.1
  • 107
    • 33748493394 scopus 로고    scopus 로고
    • Distinct in vivo roles of colony-stimulating factor-1 isoforms in renal inflammation
    • Jang M.H., et al. Distinct in vivo roles of colony-stimulating factor-1 isoforms in renal inflammation. J. Immunol. 2006, 177:4055-4063.
    • (2006) J. Immunol. , vol.177 , pp. 4055-4063
    • Jang, M.H.1
  • 108
    • 0032715353 scopus 로고    scopus 로고
    • Bacterial/CpG DNA down-modulates colony stimulating factor-1 receptor surface expression on murine bone marrow-derived macrophages with concomitant growth arrest and factor-independent survival
    • Sester D.P., et al. Bacterial/CpG DNA down-modulates colony stimulating factor-1 receptor surface expression on murine bone marrow-derived macrophages with concomitant growth arrest and factor-independent survival. J. Immunol. 1999, 163:6541-6550.
    • (1999) J. Immunol. , vol.163 , pp. 6541-6550
    • Sester, D.P.1
  • 109
    • 73349124125 scopus 로고    scopus 로고
    • GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-alpha converting enzyme (TACE)
    • Hiasa M., et al. GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-alpha converting enzyme (TACE). Blood 2009, 114:4517-4526.
    • (2009) Blood , vol.114 , pp. 4517-4526
    • Hiasa, M.1
  • 110
    • 77952524264 scopus 로고    scopus 로고
    • Pivotal advance: avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products
    • Garceau V., et al. Pivotal advance: avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J. Leukoc. Biol. 2010, 87:753-764.
    • (2010) J. Leukoc. Biol. , vol.87 , pp. 753-764
    • Garceau, V.1
  • 111
    • 84964316024 scopus 로고    scopus 로고
    • Characterisation of a novel Fc conjugate of Macrophage Colony-Stimulating Factor (CSF1)
    • Gow D.J., et al. Characterisation of a novel Fc conjugate of Macrophage Colony-Stimulating Factor (CSF1). Mol. Ther. 2014, 10.1038/mt.2014.112.
    • (2014) Mol. Ther.
    • Gow, D.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.