메뉴 건너뛰기




Volumn 20, Issue 8, 2014, Pages 449-459

Osteoclasts: More than 'bone eaters'

Author keywords

Bone remodeling; Osteoblast; Osteoclast; Osteopetrosis; Osteoporosis; PTH

Indexed keywords

ALBERS SCHOENBERG DISEASE; ANIMAL; BONE; BONE DEVELOPMENT; BONE REMODELING; CYTOLOGY; FIBROUS DYSPLASIA; HUMAN; METABOLISM; OSTEOCLAST; OSTEOCLASTOMA; OSTEOLYSIS; OSTEOPOROSIS; PATHOLOGY;

EID: 84905560371     PISSN: 14714914     EISSN: 1471499X     Source Type: Journal    
DOI: 10.1016/j.molmed.2014.06.001     Document Type: Review
Times cited : (309)

References (132)
  • 1
    • 84895922168 scopus 로고    scopus 로고
    • Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit
    • Sims N.A., Martin T.J. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014, 3:481.
    • (2014) Bonekey Rep. , vol.3 , pp. 481
    • Sims, N.A.1    Martin, T.J.2
  • 2
    • 84904887392 scopus 로고    scopus 로고
    • Mechanisms of osteoclast-dependent bone formation
    • Teti A. Mechanisms of osteoclast-dependent bone formation. Bonekey Rep. 2013, 2:449.
    • (2013) Bonekey Rep. , vol.2 , pp. 449
    • Teti, A.1
  • 3
    • 0037673945 scopus 로고    scopus 로고
    • Osteoclast differentiation and activation
    • Boyle W.J., et al. Osteoclast differentiation and activation. Nature 2003, 423:337-342.
    • (2003) Nature , vol.423 , pp. 337-342
    • Boyle, W.J.1
  • 4
    • 84860364397 scopus 로고    scopus 로고
    • Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab
    • Lacey D.L., et al. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat. Rev. Drug Discov. 2012, 11:401-419.
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 401-419
    • Lacey, D.L.1
  • 5
    • 84884254939 scopus 로고    scopus 로고
    • Advances in the regulation of osteoclasts and osteoclast functions
    • Boyce B.F. Advances in the regulation of osteoclasts and osteoclast functions. J. Dent. Res. 2013, 92:860-867.
    • (2013) J. Dent. Res. , vol.92 , pp. 860-867
    • Boyce, B.F.1
  • 6
    • 11844251380 scopus 로고    scopus 로고
    • US Department of Health and Human Services US Department of Health and Human Services
    • US Department of Health and Human Services Bone Health and Osteoporosis: A Report of the Surgeon General 2004, US Department of Health and Human Services.
    • (2004) Bone Health and Osteoporosis: A Report of the Surgeon General
  • 7
    • 69949136157 scopus 로고    scopus 로고
    • Excess mortality following hip fracture: a systematic epidemiological review
    • Abrahamsen B., et al. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos. Int. 2009, 20:1633-1650.
    • (2009) Osteoporos. Int. , vol.20 , pp. 1633-1650
    • Abrahamsen, B.1
  • 8
    • 79959941928 scopus 로고    scopus 로고
    • Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection
    • Jones D., et al. Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection. J. Clin. Invest. 2011, 121:2534-2542.
    • (2011) J. Clin. Invest. , vol.121 , pp. 2534-2542
    • Jones, D.1
  • 9
    • 58049100952 scopus 로고    scopus 로고
    • Advances in osteoclast biology resulting from the study of osteopetrotic mutations
    • Segovia-Silvestre T., et al. Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum. Genet. 2009, 124:561-577.
    • (2009) Hum. Genet. , vol.124 , pp. 561-577
    • Segovia-Silvestre, T.1
  • 10
    • 34547521058 scopus 로고    scopus 로고
    • Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL
    • Sobacchi C., et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat. Genet. 2007, 39:960-962.
    • (2007) Nat. Genet. , vol.39 , pp. 960-962
    • Sobacchi, C.1
  • 11
    • 84882567717 scopus 로고    scopus 로고
    • Osteopetrosis: genetics, treatment and new insights into osteoclast function
    • Sobacchi C., et al. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol. 2013, 9:522-536.
    • (2013) Nat. Rev. Endocrinol. , vol.9 , pp. 522-536
    • Sobacchi, C.1
  • 13
    • 84873558051 scopus 로고    scopus 로고
    • WNT signaling in bone homeostasis and disease: from human mutations to treatments
    • Baron R., Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 2013, 19:179-192.
    • (2013) Nat. Med. , vol.19 , pp. 179-192
    • Baron, R.1    Kneissel, M.2
  • 14
    • 84863345866 scopus 로고    scopus 로고
    • Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH
    • Bedi B., et al. Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E725-E733.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109
    • Bedi, B.1
  • 15
    • 84859495072 scopus 로고    scopus 로고
    • Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling
    • Guihard P., et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells 2012, 30:762-772.
    • (2012) Stem Cells , vol.30 , pp. 762-772
    • Guihard, P.1
  • 16
    • 77957891185 scopus 로고    scopus 로고
    • Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss
    • Tawfeek H., et al. Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss. PLoS ONE 2010, 5:e12290.
    • (2010) PLoS ONE , vol.5
    • Tawfeek, H.1
  • 17
    • 79951655957 scopus 로고    scopus 로고
    • Osteoclast activity and subtypes as a function of physiology and pathology - implications for future treatments of osteoporosis
    • Henriksen K., et al. Osteoclast activity and subtypes as a function of physiology and pathology - implications for future treatments of osteoporosis. Endocr. Rev. 2011, 32:31-63.
    • (2011) Endocr. Rev. , vol.32 , pp. 31-63
    • Henriksen, K.1
  • 18
    • 67749099312 scopus 로고    scopus 로고
    • Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions
    • Everts V., et al. Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions. Biochim. Biophys. Acta 2009, 1792:757-765.
    • (2009) Biochim. Biophys. Acta , vol.1792 , pp. 757-765
    • Everts, V.1
  • 19
    • 67650506105 scopus 로고    scopus 로고
    • TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation
    • Tang Y., et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 2009, 15:757-765.
    • (2009) Nat. Med. , vol.15 , pp. 757-765
    • Tang, Y.1
  • 20
    • 84863726841 scopus 로고    scopus 로고
    • Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells
    • Xian L., et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 2012, 18:1095-1101.
    • (2012) Nat. Med. , vol.18 , pp. 1095-1101
    • Xian, L.1
  • 21
    • 84880297184 scopus 로고    scopus 로고
    • Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis
    • Zhen G., et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 2013, 19:704-712.
    • (2013) Nat. Med. , vol.19 , pp. 704-712
    • Zhen, G.1
  • 22
    • 34249751708 scopus 로고    scopus 로고
    • Are nonresorbing osteoclasts sources of bone anabolic activity?
    • Karsdal M.A., et al. Are nonresorbing osteoclasts sources of bone anabolic activity?. J. Bone Mineral Res. 2007, 22:487-494.
    • (2007) J. Bone Mineral Res. , vol.22 , pp. 487-494
    • Karsdal, M.A.1
  • 23
    • 0028078722 scopus 로고
    • Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course
    • Gerritsen E.J., et al. Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course. Pediatrics 1994, 93:247-253.
    • (1994) Pediatrics , vol.93 , pp. 247-253
    • Gerritsen, E.J.1
  • 24
    • 84856160815 scopus 로고    scopus 로고
    • RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations
    • Pangrazio A., et al. RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations. J. Bone Mineral Res. 2012, 27:342-351.
    • (2012) J. Bone Mineral Res. , vol.27 , pp. 342-351
    • Pangrazio, A.1
  • 25
    • 33645789497 scopus 로고    scopus 로고
    • Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment
    • Del Fattore A., et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J. Med. Genet. 2006, 43:315-325.
    • (2006) J. Med. Genet. , vol.43 , pp. 315-325
    • Del Fattore, A.1
  • 26
    • 0034676060 scopus 로고    scopus 로고
    • Decreased c-Src expression enhances osteoblast differentiation and bone formation
    • Marzia M., et al. Decreased c-Src expression enhances osteoblast differentiation and bone formation. J. Cell Biol. 2000, 151:311-320.
    • (2000) J. Cell Biol. , vol.151 , pp. 311-320
    • Marzia, M.1
  • 27
    • 58249097157 scopus 로고    scopus 로고
    • -/- mice
    • -/- mice. Bone 2009, 44:199-207.
    • (2009) Bone , vol.44 , pp. 199-207
    • Pennypacker, B.1
  • 28
    • 33646870167 scopus 로고    scopus 로고
    • Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass
    • Li C.Y., et al. Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J. Bone Miner. Res. 2006, 21:865-875.
    • (2006) J. Bone Miner. Res. , vol.21 , pp. 865-875
    • Li, C.Y.1
  • 29
    • 84873401233 scopus 로고    scopus 로고
    • Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation
    • Lotinun S., et al. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J. Clin. Invest. 2013, 123:666-681.
    • (2013) J. Clin. Invest. , vol.123 , pp. 666-681
    • Lotinun, S.1
  • 30
    • 15544373018 scopus 로고    scopus 로고
    • Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone
    • Dai X.M., et al. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J. Bone Miner. Res. 2004, 19:1441-1451.
    • (2004) J. Bone Miner. Res. , vol.19 , pp. 1441-1451
    • Dai, X.M.1
  • 31
    • 28544443834 scopus 로고    scopus 로고
    • Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice
    • Sakagami N., et al. Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice. Micron 2005, 36:688-695.
    • (2005) Micron , vol.36 , pp. 688-695
    • Sakagami, N.1
  • 32
    • 0027070472 scopus 로고
    • Bone and haematopoietic defects in mice lacking c-fos
    • Wang Z.Q., et al. Bone and haematopoietic defects in mice lacking c-fos. Nature 1992, 360:741-745.
    • (1992) Nature , vol.360 , pp. 741-745
    • Wang, Z.Q.1
  • 33
    • 52649161354 scopus 로고    scopus 로고
    • Cthrc1 is a positive regulator of osteoblastic bone formation
    • Kimura H., et al. Cthrc1 is a positive regulator of osteoblastic bone formation. PLoS ONE 2008, 3:e3174.
    • (2008) PLoS ONE , vol.3
    • Kimura, H.1
  • 34
    • 84883527430 scopus 로고    scopus 로고
    • Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation
    • Takeshita S., et al. Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J. Clin. Invest. 2013, 123:3914-3924.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3914-3924
    • Takeshita, S.1
  • 35
    • 84903280959 scopus 로고    scopus 로고
    • Osteoclast-derived complement component 3a stimulates osteoblast differentiation
    • Matsuoka K., et al. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J. Bone Miner. Res. 2014, 10.1002/jbmr.2187.
    • (2014) J. Bone Miner. Res.
    • Matsuoka, K.1
  • 36
    • 33845714356 scopus 로고    scopus 로고
    • Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling
    • Ryu J., et al. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J. 2006, 25:5840-5851.
    • (2006) EMBO J. , vol.25 , pp. 5840-5851
    • Ryu, J.1
  • 37
    • 58549115903 scopus 로고    scopus 로고
    • Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate
    • Pederson L., et al. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:20764-20769.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 20764-20769
    • Pederson, L.1
  • 38
    • 63649143900 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis
    • Ishii M., et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 2009, 458:524-528.
    • (2009) Nature , vol.458 , pp. 524-528
    • Ishii, M.1
  • 39
    • 78650413566 scopus 로고    scopus 로고
    • Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo
    • Ishii M., et al. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J. Exp. Med. 2010, 207:2793-2798.
    • (2010) J. Exp. Med. , vol.207 , pp. 2793-2798
    • Ishii, M.1
  • 40
    • 84863893647 scopus 로고    scopus 로고
    • Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases
    • Matsuo K., Otaki N. Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases. Cell Adh. Migr. 2012, 6:148-156.
    • (2012) Cell Adh. Migr. , vol.6 , pp. 148-156
    • Matsuo, K.1    Otaki, N.2
  • 41
    • 67649811207 scopus 로고    scopus 로고
    • Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis
    • Irie N., et al. Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J. Biol. Chem. 2009, 284:14637-14644.
    • (2009) J. Biol. Chem. , vol.284 , pp. 14637-14644
    • Irie, N.1
  • 42
    • 33746528704 scopus 로고    scopus 로고
    • Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis
    • Zhao C., et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006, 4:111-121.
    • (2006) Cell Metab. , vol.4 , pp. 111-121
    • Zhao, C.1
  • 43
    • 84874342193 scopus 로고    scopus 로고
    • Stimulation of bone formation in cortical bone of mice treated with a receptor activator of nuclear factor-kappaB ligand (RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity
    • Furuya Y., et al. Stimulation of bone formation in cortical bone of mice treated with a receptor activator of nuclear factor-kappaB ligand (RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity. J. Biol. Chem. 2013, 288:5562-5571.
    • (2013) J. Biol. Chem. , vol.288 , pp. 5562-5571
    • Furuya, Y.1
  • 44
    • 63249087945 scopus 로고    scopus 로고
    • The National Osteoporosis Guideline Group's new guidelines: what is new?
    • Bukhari M. The National Osteoporosis Guideline Group's new guidelines: what is new?. Rheumatology 2009, 48:327-329.
    • (2009) Rheumatology , vol.48 , pp. 327-329
    • Bukhari, M.1
  • 45
    • 79958716455 scopus 로고    scopus 로고
    • Biochemical and molecular mechanisms of action of bisphosphonates
    • Rogers M.J., et al. Biochemical and molecular mechanisms of action of bisphosphonates. Bone 2011, 49:34-41.
    • (2011) Bone , vol.49 , pp. 34-41
    • Rogers, M.J.1
  • 46
    • 77956246270 scopus 로고    scopus 로고
    • Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL
    • Pierroz D.D., et al. Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL. J. Biol. Chem. 2010, 285:28164-28173.
    • (2010) J. Biol. Chem. , vol.285 , pp. 28164-28173
    • Pierroz, D.D.1
  • 47
    • 0141684971 scopus 로고    scopus 로고
    • The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis
    • Black D.M., et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N. Engl. J. Med. 2003, 349:1207-1215.
    • (2003) N. Engl. J. Med. , vol.349 , pp. 1207-1215
    • Black, D.M.1
  • 48
    • 0141796739 scopus 로고    scopus 로고
    • The effects of parathyroid hormone, alendronate, or both in men with osteoporosis
    • Finkelstein J.S., et al. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N. Engl. J. Med. 2003, 349:1216-1226.
    • (2003) N. Engl. J. Med. , vol.349 , pp. 1216-1226
    • Finkelstein, J.S.1
  • 49
    • 78649412131 scopus 로고    scopus 로고
    • Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1-34)] in postmenopausal osteoporosis
    • Cosman F., et al. Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1-34)] in postmenopausal osteoporosis. J. Bone Miner. Res. 2011, 26:503-511.
    • (2011) J. Bone Miner. Res. , vol.26 , pp. 503-511
    • Cosman, F.1
  • 50
    • 84879887680 scopus 로고    scopus 로고
    • Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial
    • Tsai J.N., et al. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet 2013, 382:50-56.
    • (2013) Lancet , vol.382 , pp. 50-56
    • Tsai, J.N.1
  • 51
    • 84889786252 scopus 로고    scopus 로고
    • Basic research and clinical applications of bisphosphonates in bone disease: what have we learned over the last 40 years?
    • Xu X.L., et al. Basic research and clinical applications of bisphosphonates in bone disease: what have we learned over the last 40 years?. J. Transl. Med. 2013, 11:303.
    • (2013) J. Transl. Med. , vol.11 , pp. 303
    • Xu, X.L.1
  • 52
    • 84904620328 scopus 로고    scopus 로고
    • Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys
    • Pennypacker B.L., et al. Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys. J. Bone Miner. Res. 2014, 10.1002/jbmr.2211.
    • (2014) J. Bone Miner. Res.
    • Pennypacker, B.L.1
  • 53
    • 84885654460 scopus 로고    scopus 로고
    • Resorption controls bone anabolism driven by parathyroid hormone (PTH) receptor signaling in osteocytes
    • Rhee Y., et al. Resorption controls bone anabolism driven by parathyroid hormone (PTH) receptor signaling in osteocytes. J. Biol. Chem. 2013, 288:29809-29820.
    • (2013) J. Biol. Chem. , vol.288 , pp. 29809-29820
    • Rhee, Y.1
  • 54
    • 84867526082 scopus 로고    scopus 로고
    • Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study
    • Langdahl B., et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study. J. Bone Miner. Res. 2012, 27:2251-2258.
    • (2012) J. Bone Miner. Res. , vol.27 , pp. 2251-2258
    • Langdahl, B.1
  • 55
    • 84863116822 scopus 로고    scopus 로고
    • Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey
    • Cusick T., et al. Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J. Bone Miner. Res. 2012, 27:524-537.
    • (2012) J. Bone Miner. Res. , vol.27 , pp. 524-537
    • Cusick, T.1
  • 56
    • 67349125867 scopus 로고    scopus 로고
    • The anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status in bone in ovariectomized mice
    • Yamane H., et al. The anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status in bone in ovariectomized mice. Bone 2009, 44:1055-1062.
    • (2009) Bone , vol.44 , pp. 1055-1062
    • Yamane, H.1
  • 57
    • 84893044528 scopus 로고    scopus 로고
    • Romosozumab in postmenopausal women with low bone mineral density
    • McClung M.R., et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 2014, 370:412-420.
    • (2014) N. Engl. J. Med. , vol.370 , pp. 412-420
    • McClung, M.R.1
  • 58
    • 81855180504 scopus 로고    scopus 로고
    • Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover
    • van Lierop A.H., et al. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J. Bone Miner. Res. 2011, 26:2804-2811.
    • (2011) J. Bone Miner. Res. , vol.26 , pp. 2804-2811
    • van Lierop, A.H.1
  • 59
    • 79954483045 scopus 로고    scopus 로고
    • Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals
    • Takahashi N., et al. Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front. Biosci. 2011, 16:21-30.
    • (2011) Front. Biosci. , vol.16 , pp. 21-30
    • Takahashi, N.1
  • 60
    • 77956462309 scopus 로고    scopus 로고
    • Bisphosphonate treatment of aggressive primary, recurrent and metastatic giant cell tumour of bone
    • Balke M., et al. Bisphosphonate treatment of aggressive primary, recurrent and metastatic giant cell tumour of bone. BMC Cancer 2010, 10:462.
    • (2010) BMC Cancer , vol.10 , pp. 462
    • Balke, M.1
  • 61
    • 37349083874 scopus 로고    scopus 로고
    • Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case-control study
    • Tse L.F., et al. Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case-control study. Bone 2008, 42:68-73.
    • (2008) Bone , vol.42 , pp. 68-73
    • Tse, L.F.1
  • 62
    • 77349120482 scopus 로고    scopus 로고
    • Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study
    • Thomas D., et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 2010, 11:275-280.
    • (2010) Lancet Oncol. , vol.11 , pp. 275-280
    • Thomas, D.1
  • 63
    • 84865073466 scopus 로고    scopus 로고
    • Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone
    • Branstetter D.G., et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin. Cancer Res. 2012, 18:4415-4424.
    • (2012) Clin. Cancer Res. , vol.18 , pp. 4415-4424
    • Branstetter, D.G.1
  • 64
    • 84878760153 scopus 로고    scopus 로고
    • Fibrous dysplasia in a 120,000+ year old Neandertal from Krapina, Croatia
    • Monge J., et al. Fibrous dysplasia in a 120,000+ year old Neandertal from Krapina, Croatia. PLoS ONE 2013, 8:e64539.
    • (2013) PLoS ONE , vol.8
    • Monge, J.1
  • 66
    • 78650968168 scopus 로고    scopus 로고
    • Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm
    • Vilardaga J.P., et al. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell. Mol. Life Sci. 2011, 68:1-13.
    • (2011) Cell. Mol. Life Sci. , vol.68 , pp. 1-13
    • Vilardaga, J.P.1
  • 67
    • 84055181339 scopus 로고    scopus 로고
    • Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia
    • Regard J.B., et al. Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20101-20106.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 20101-20106
    • Regard, J.B.1
  • 68
    • 0042333447 scopus 로고    scopus 로고
    • Osteoclastogenesis in fibrous dysplasia of bone: in situ and in vitro analysis of IL-6 expression
    • Riminucci M., et al. Osteoclastogenesis in fibrous dysplasia of bone: in situ and in vitro analysis of IL-6 expression. Bone 2003, 33:434-442.
    • (2003) Bone , vol.33 , pp. 434-442
    • Riminucci, M.1
  • 69
    • 8944222565 scopus 로고    scopus 로고
    • Increased IL-6-production by cells isolated from the fibrous bone dysplasia tissues in patients with McCune-Albright syndrome
    • Yamamoto T., et al. Increased IL-6-production by cells isolated from the fibrous bone dysplasia tissues in patients with McCune-Albright syndrome. J. Clin. Invest. 1996, 98:30-35.
    • (1996) J. Clin. Invest. , vol.98 , pp. 30-35
    • Yamamoto, T.1
  • 70
    • 84896491131 scopus 로고    scopus 로고
    • Clinical and radiological observations in a case series of 26 patients with fibrous dysplasia
    • Thomsen M.D., Rejnmark L. Clinical and radiological observations in a case series of 26 patients with fibrous dysplasia. Calcif. Tissue Int. 2014, 94:384-395.
    • (2014) Calcif. Tissue Int. , vol.94 , pp. 384-395
    • Thomsen, M.D.1    Rejnmark, L.2
  • 71
    • 84861393976 scopus 로고    scopus 로고
    • Denosumab treatment for fibrous dysplasia
    • Boyce A.M., et al. Denosumab treatment for fibrous dysplasia. J. Bone Miner. Res. 2012, 27:1462-1470.
    • (2012) J. Bone Miner. Res. , vol.27 , pp. 1462-1470
    • Boyce, A.M.1
  • 72
    • 84899122436 scopus 로고    scopus 로고
    • Rapid biochemical response to denosumab in fibrous dysplasia of bone: report of two cases
    • Ganda K., Seibel M.J. Rapid biochemical response to denosumab in fibrous dysplasia of bone: report of two cases. Osteoporos. Int. 2014, 25:777-782.
    • (2014) Osteoporos. Int. , vol.25 , pp. 777-782
    • Ganda, K.1    Seibel, M.J.2
  • 73
    • 0037222822 scopus 로고    scopus 로고
    • Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis
    • Taranta A., et al. Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am. J. Pathol. 2003, 162:57-68.
    • (2003) Am. J. Pathol. , vol.162 , pp. 57-68
    • Taranta, A.1
  • 74
    • 0024346202 scopus 로고
    • Skeletal disease in primary hyperparathyroidism
    • Silverberg S.J., et al. Skeletal disease in primary hyperparathyroidism. J. Bone Miner. Res. 1989, 4:283-291.
    • (1989) J. Bone Miner. Res. , vol.4 , pp. 283-291
    • Silverberg, S.J.1
  • 75
    • 67049164995 scopus 로고    scopus 로고
    • Osteoprotegerin abrogated cortical porosity and bone marrow fibrosis in a mouse model of constitutive activation of the PTH/PTHrP receptor
    • Ohishi M., et al. Osteoprotegerin abrogated cortical porosity and bone marrow fibrosis in a mouse model of constitutive activation of the PTH/PTHrP receptor. Am. J. Pathol. 2009, 174:2160-2171.
    • (2009) Am. J. Pathol. , vol.174 , pp. 2160-2171
    • Ohishi, M.1
  • 76
    • 84892610064 scopus 로고    scopus 로고
    • The bone marrow niche for haematopoietic stem cells
    • Morrison S.J., Scadden D.T. The bone marrow niche for haematopoietic stem cells. Nature 2014, 505:327-334.
    • (2014) Nature , vol.505 , pp. 327-334
    • Morrison, S.J.1    Scadden, D.T.2
  • 77
    • 84860378826 scopus 로고    scopus 로고
    • Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow
    • Mansour A., et al. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J. Exp. Med. 2012, 209:537-549.
    • (2012) J. Exp. Med. , vol.209 , pp. 537-549
    • Mansour, A.1
  • 78
    • 84902438387 scopus 로고    scopus 로고
    • Altered hematopoietic stem cell and osteoclast precursor frequency in cathepsin K null mice
    • Jacome-Galarza C., et al. Altered hematopoietic stem cell and osteoclast precursor frequency in cathepsin K null mice. J. Cell. Biochem. 2014, 115:1449-1457.
    • (2014) J. Cell. Biochem. , vol.115 , pp. 1449-1457
    • Jacome-Galarza, C.1
  • 79
    • 79551620014 scopus 로고    scopus 로고
    • Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo
    • Lymperi S., et al. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 2011, 117:1540-1549.
    • (2011) Blood , vol.117 , pp. 1540-1549
    • Lymperi, S.1
  • 80
    • 84889804765 scopus 로고    scopus 로고
    • Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice
    • Flores C., et al. Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice. Haematologica 2013, 98:1848-1855.
    • (2013) Haematologica , vol.98 , pp. 1848-1855
    • Flores, C.1
  • 81
    • 84862936378 scopus 로고    scopus 로고
    • Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization
    • Miyamoto K., et al. Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J. Exp. Med. 2011, 208:2175-2181.
    • (2011) J. Exp. Med. , vol.208 , pp. 2175-2181
    • Miyamoto, K.1
  • 82
    • 80052790321 scopus 로고    scopus 로고
    • Egress and mobilization of hematopoietic stem and progenitor cells: a dynamic multi-facet process
    • Harvard Stem Cell Institute
    • Lapid K., et al. Egress and mobilization of hematopoietic stem and progenitor cells: a dynamic multi-facet process. StemBook 2008, Harvard Stem Cell Institute. http://www.stembook.org/.
    • (2008) StemBook
    • Lapid, K.1
  • 83
    • 0031059252 scopus 로고    scopus 로고
    • Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization
    • Morrison S.J., et al. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:1908-1913.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 1908-1913
    • Morrison, S.J.1
  • 84
    • 77954086292 scopus 로고    scopus 로고
    • Update on clinical experience with AMD3100, an SDF-1/CXCL12-CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells
    • Pusic I., DiPersio J.F. Update on clinical experience with AMD3100, an SDF-1/CXCL12-CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells. Curr. Opin. Hematol. 2010, 17:319-326.
    • (2010) Curr. Opin. Hematol. , vol.17 , pp. 319-326
    • Pusic, I.1    DiPersio, J.F.2
  • 85
    • 33749478463 scopus 로고    scopus 로고
    • The Severe Chronic Neutropenia International Registry: 10-year follow-up report
    • Dale D.C., et al. The Severe Chronic Neutropenia International Registry: 10-year follow-up report. Support. Cancer Ther. 2006, 3:220-231.
    • (2006) Support. Cancer Ther. , vol.3 , pp. 220-231
    • Dale, D.C.1
  • 86
    • 33646914982 scopus 로고    scopus 로고
    • Osteoporosis in children with severe congenital neutropenia: bone mineral density and treatment with bisphosphonates
    • Borzutzky A., et al. Osteoporosis in children with severe congenital neutropenia: bone mineral density and treatment with bisphosphonates. J. Pediatr. Hematol. Oncol. 2006, 28:205-209.
    • (2006) J. Pediatr. Hematol. Oncol. , vol.28 , pp. 205-209
    • Borzutzky, A.1
  • 87
    • 84873815402 scopus 로고    scopus 로고
    • A pivotal role of bone remodeling in granulocyte colony stimulating factor induced hematopoietic stem/progenitor cells mobilization
    • Li S., et al. A pivotal role of bone remodeling in granulocyte colony stimulating factor induced hematopoietic stem/progenitor cells mobilization. J. Cell. Physiol. 2013, 228:1002-1009.
    • (2013) J. Cell. Physiol. , vol.228 , pp. 1002-1009
    • Li, S.1
  • 88
    • 0029869848 scopus 로고    scopus 로고
    • Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice
    • Takahashi T., et al. Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice. Lab. Invest. 1996, 74:827-834.
    • (1996) Lab. Invest. , vol.74 , pp. 827-834
    • Takahashi, T.1
  • 89
    • 0032212144 scopus 로고    scopus 로고
    • Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization
    • Takamatsu Y., et al. Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood 1998, 92:3465-3473.
    • (1998) Blood , vol.92 , pp. 3465-3473
    • Takamatsu, Y.1
  • 90
    • 33744983304 scopus 로고    scopus 로고
    • Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells
    • Kollet O., et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 2006, 12:657-664.
    • (2006) Nat. Med. , vol.12 , pp. 657-664
    • Kollet, O.1
  • 91
    • 84881263256 scopus 로고    scopus 로고
    • The nucleotide sugar UDP-glucose mobilizes long-term repopulating primitive hematopoietic cells
    • Kook S., et al. The nucleotide sugar UDP-glucose mobilizes long-term repopulating primitive hematopoietic cells. J. Clin. Invest. 2013, 123:3420-3435.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3420-3435
    • Kook, S.1
  • 92
    • 84884349410 scopus 로고    scopus 로고
    • The development and characterization of an ELISA specifically detecting the active form of cathepsin K
    • Sun S., et al. The development and characterization of an ELISA specifically detecting the active form of cathepsin K. Clin. Biochem. 2013, 46:1601-1606.
    • (2013) Clin. Biochem. , vol.46 , pp. 1601-1606
    • Sun, S.1
  • 93
    • 70350591051 scopus 로고    scopus 로고
    • Serum cathepsin K as a marker of bone metabolism in postmenopausal women treated with alendronate
    • Munoz-Torres M., et al. Serum cathepsin K as a marker of bone metabolism in postmenopausal women treated with alendronate. Maturitas 2009, 64:188-192.
    • (2009) Maturitas , vol.64 , pp. 188-192
    • Munoz-Torres, M.1
  • 94
    • 0020462249 scopus 로고
    • Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation
    • Wiktor-Jedrzejczak W.W., et al. Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation. J. Exp. Med. 1982, 156:1516-1527.
    • (1982) J. Exp. Med. , vol.156 , pp. 1516-1527
    • Wiktor-Jedrzejczak, W.W.1
  • 95
    • 84880920106 scopus 로고    scopus 로고
    • RANKL-RANK interaction in immune regulatory systems
    • Akiyama T., et al. RANKL-RANK interaction in immune regulatory systems. World J. Orthop. 2012, 3:142-150.
    • (2012) World J. Orthop. , vol.3 , pp. 142-150
    • Akiyama, T.1
  • 96
    • 84864147310 scopus 로고    scopus 로고
    • The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells
    • Kanaya T., et al. The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. Nat. Immunol. 2012, 13:729-736.
    • (2012) Nat. Immunol. , vol.13 , pp. 729-736
    • Kanaya, T.1
  • 97
    • 84875221877 scopus 로고    scopus 로고
    • Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus
    • Kiechl S., et al. Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat. Med. 2013, 19:358-363.
    • (2013) Nat. Med. , vol.19 , pp. 358-363
    • Kiechl, S.1
  • 98
    • 84899072812 scopus 로고    scopus 로고
    • RANKL/RANK - from bone physiology to breast cancer
    • Sigl V., Penninger J.M. RANKL/RANK - from bone physiology to breast cancer. Cytokine Growth Factor Rev. 2014, 25:205-214.
    • (2014) Cytokine Growth Factor Rev. , vol.25 , pp. 205-214
    • Sigl, V.1    Penninger, J.M.2
  • 99
    • 29644433627 scopus 로고    scopus 로고
    • Identification of multiple osteoclast precursor populations in murine bone marrow
    • Jacquin C., et al. Identification of multiple osteoclast precursor populations in murine bone marrow. J. Bone Miner. Res. 2006, 21:67-77.
    • (2006) J. Bone Miner. Res. , vol.21 , pp. 67-77
    • Jacquin, C.1
  • 100
    • 84870535425 scopus 로고    scopus 로고
    • Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function
    • Charles J.F., et al. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J. Clin. Invest. 2012, 122:4592-4605.
    • (2012) J. Clin. Invest. , vol.122 , pp. 4592-4605
    • Charles, J.F.1
  • 101
    • 55849088412 scopus 로고    scopus 로고
    • NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism
    • Aliprantis A.O., et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J. Clin. Invest. 2008, 118:3775-3789.
    • (2008) J. Clin. Invest. , vol.118 , pp. 3775-3789
    • Aliprantis, A.O.1
  • 102
    • 84891486024 scopus 로고    scopus 로고
    • Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly
    • Serafini P. Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunol. Res. 2013, 57:172-184.
    • (2013) Immunol. Res. , vol.57 , pp. 172-184
    • Serafini, P.1
  • 103
    • 79251501314 scopus 로고    scopus 로고
    • T cell suppression by osteoclasts in vitro
    • Grassi F., et al. T cell suppression by osteoclasts in vitro. J. Cell. Physiol. 2011, 226:982-990.
    • (2011) J. Cell. Physiol. , vol.226 , pp. 982-990
    • Grassi, F.1
  • 104
    • 84881401714 scopus 로고    scopus 로고
    • Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction
    • Danilin S., et al. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology 2012, 1:1484-1494.
    • (2012) Oncoimmunology , vol.1 , pp. 1484-1494
    • Danilin, S.1
  • 105
    • 84872554724 scopus 로고    scopus 로고
    • Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer
    • Sawant A., et al. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer. Cancer Res. 2013, 73:672-682.
    • (2013) Cancer Res. , vol.73 , pp. 672-682
    • Sawant, A.1
  • 106
    • 84869222349 scopus 로고    scopus 로고
    • + myeloid-derived suppressor cells
    • + myeloid-derived suppressor cells. PLoS ONE 2012, 7:e48871.
    • (2012) PLoS ONE , vol.7
    • Zhuang, J.1
  • 107
    • 77955475327 scopus 로고    scopus 로고
    • + T cells
    • + T cells. Blood 2010, 116:210-217.
    • (2010) Blood , vol.116 , pp. 210-217
    • Li, H.1
  • 108
    • 66949172165 scopus 로고    scopus 로고
    • + T cells
    • + T cells. J. Immunol. 2009, 182:5477-5487.
    • (2009) J. Immunol. , vol.182 , pp. 5477-5487
    • Kiesel, J.R.1
  • 109
    • 84862001747 scopus 로고    scopus 로고
    • + T-cells suppress bone resorption in vitro
    • + T-cells suppress bone resorption in vitro. PLoS ONE 2012, 7:e38199.
    • (2012) PLoS ONE , vol.7
    • Buchwald, Z.S.1
  • 110
    • 84879521975 scopus 로고    scopus 로고
    • + CD8 T-cells limit bone loss in mice
    • + CD8 T-cells limit bone loss in mice. Bone 2013, 56:163-173.
    • (2013) Bone , vol.56 , pp. 163-173
    • Buchwald, Z.S.1
  • 111
    • 84901044324 scopus 로고    scopus 로고
    • T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway
    • Bozec A., et al. T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci. Transl. Med. 2014, 6:235ra260.
    • (2014) Sci. Transl. Med. , vol.6
    • Bozec, A.1
  • 112
    • 47249103596 scopus 로고    scopus 로고
    • CTLA-4 directly inhibits osteoclast formation
    • Axmann R., et al. CTLA-4 directly inhibits osteoclast formation. Ann. Rheum. Dis. 2008, 67:1603-1609.
    • (2008) Ann. Rheum. Dis. , vol.67 , pp. 1603-1609
    • Axmann, R.1
  • 113
    • 79952111472 scopus 로고    scopus 로고
    • Examining the metastatic niche: targeting the microenvironment
    • Guise T. Examining the metastatic niche: targeting the microenvironment. Semin. Oncol. 2010, 37(Suppl. 2):S2-S14.
    • (2010) Semin. Oncol. , vol.37 , Issue.SUPPL. 2
    • Guise, T.1
  • 114
    • 4644261592 scopus 로고    scopus 로고
    • Mechanisms of bone metastasis
    • Roodman G.D. Mechanisms of bone metastasis. N. Engl. J. Med. 2004, 350:1655-1664.
    • (2004) N. Engl. J. Med. , vol.350 , pp. 1655-1664
    • Roodman, G.D.1
  • 115
    • 0036675220 scopus 로고    scopus 로고
    • Metastasis to bone: causes, consequences and therapeutic opportunities
    • Mundy G.R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2002, 2:584-593.
    • (2002) Nat. Rev. Cancer , vol.2 , pp. 584-593
    • Mundy, G.R.1
  • 116
    • 68349160814 scopus 로고    scopus 로고
    • Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis
    • Korpal M., et al. Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat. Med. 2009, 15:960-966.
    • (2009) Nat. Med. , vol.15 , pp. 960-966
    • Korpal, M.1
  • 117
    • 84862809842 scopus 로고    scopus 로고
    • Denosumab in patients with cancer-a surgical strike against the osteoclast
    • Brown J.E., Coleman R.E. Denosumab in patients with cancer-a surgical strike against the osteoclast. Nat. Rev. Clin. Oncol. 2012, 9:110-118.
    • (2012) Nat. Rev. Clin. Oncol. , vol.9 , pp. 110-118
    • Brown, J.E.1    Coleman, R.E.2
  • 118
    • 84877634979 scopus 로고    scopus 로고
    • Zoledronic acid to prevent and treat cancer metastasis: new prospects for an old drug
    • Young R.J., Coleman R.E. Zoledronic acid to prevent and treat cancer metastasis: new prospects for an old drug. Future Oncol. 2013, 9:633-643.
    • (2013) Future Oncol. , vol.9 , pp. 633-643
    • Young, R.J.1    Coleman, R.E.2
  • 119
    • 81255160593 scopus 로고    scopus 로고
    • Suppression of bone formation by osteoclastic expression of semaphorin 4D
    • Negishi-Koga T., et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat. Med. 2011, 17:1473-1480.
    • (2011) Nat. Med. , vol.17 , pp. 1473-1480
    • Negishi-Koga, T.1
  • 120
    • 39749179636 scopus 로고    scopus 로고
    • A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts
    • Del Fattore A., et al. A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J. Bone Miner. Res. 2008, 23:380-391.
    • (2008) J. Bone Miner. Res. , vol.23 , pp. 380-391
    • Del Fattore, A.1
  • 121
    • 0033962845 scopus 로고    scopus 로고
    • Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover
    • Angel N.Z., et al. Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J. Bone Miner. Res. 2000, 15:103-110.
    • (2000) J. Bone Miner. Res. , vol.15 , pp. 103-110
    • Angel, N.Z.1
  • 122
    • 0142178313 scopus 로고    scopus 로고
    • Tartrate-resistant acid phosphatase knockout mice
    • Hayman A.R., Cox T.M. Tartrate-resistant acid phosphatase knockout mice. J. Bone Miner. Res. 2003, 18:1905-1907.
    • (2003) J. Bone Miner. Res. , vol.18 , pp. 1905-1907
    • Hayman, A.R.1    Cox, T.M.2
  • 123
    • 56749103188 scopus 로고    scopus 로고
    • Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling
    • Walker E.C., et al. Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J. Bone Miner. Res. 2008, 23:2025-2032.
    • (2008) J. Bone Miner. Res. , vol.23 , pp. 2025-2032
    • Walker, E.C.1
  • 124
    • 84882766118 scopus 로고    scopus 로고
    • Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors
    • Ota K., et al. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone 2013, 57:68-75.
    • (2013) Bone , vol.57 , pp. 68-75
    • Ota, K.1
  • 125
    • 84864060446 scopus 로고    scopus 로고
    • Afamin secreted from nonresorbing osteoclasts acts as a chemokine for preosteoblasts via the Akt-signaling pathway
    • Kim B.J., et al. Afamin secreted from nonresorbing osteoclasts acts as a chemokine for preosteoblasts via the Akt-signaling pathway. Bone 2012, 51:431-440.
    • (2012) Bone , vol.51 , pp. 431-440
    • Kim, B.J.1
  • 126
  • 127
    • 84879159387 scopus 로고    scopus 로고
    • Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization
    • Ota K., et al. Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. J. Cell. Biochem. 2013, 114:1901-1907.
    • (2013) J. Cell. Biochem. , vol.114 , pp. 1901-1907
    • Ota, K.1
  • 128
    • 0029797701 scopus 로고    scopus 로고
    • Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro
    • Grano M., et al. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:7644-7648.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 7644-7648
    • Grano, M.1
  • 129
    • 84861861110 scopus 로고    scopus 로고
    • Hepatocyte growth factor increases osteopontin expression in human osteoblasts through PI3K, Akt, c-Src, and AP-1 signaling pathway
    • Chen H.T., et al. Hepatocyte growth factor increases osteopontin expression in human osteoblasts through PI3K, Akt, c-Src, and AP-1 signaling pathway. PLoS ONE 2012, 7:e38378.
    • (2012) PLoS ONE , vol.7
    • Chen, H.T.1
  • 130
    • 74949138882 scopus 로고    scopus 로고
    • Non-resorbing osteoclasts induce migration and osteogenic differentiation of mesenchymal stem cells
    • Kreja L., et al. Non-resorbing osteoclasts induce migration and osteogenic differentiation of mesenchymal stem cells. J. Cell. Biochem. 2010, 109:347-355.
    • (2010) J. Cell. Biochem. , vol.109 , pp. 347-355
    • Kreja, L.1
  • 131
    • 55849138345 scopus 로고    scopus 로고
    • Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling
    • Sanchez-Fernandez M.A., et al. Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling. PLOS ONE 2008, 3:e3537.
    • (2008) PLOS ONE , vol.3
    • Sanchez-Fernandez, M.A.1
  • 132
    • 77953662385 scopus 로고    scopus 로고
    • PDGF BB purified from osteoclasts acts as osteoblastogenesis inhibitory factor (OBIF)
    • Kubota K., et al. PDGF BB purified from osteoclasts acts as osteoblastogenesis inhibitory factor (OBIF). J. Biomol. Tech. 2002, 13:62-71.
    • (2002) J. Biomol. Tech. , vol.13 , pp. 62-71
    • Kubota, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.