메뉴 건너뛰기




Volumn 1, Issue 2, 2017, Pages

Roadmap on solar water splitting: Current status and future prospects

Author keywords

Photoelectrochemistry; Semiconductor; Solar fuels; Tandem system; Water splitting

Indexed keywords

ARTIFICIAL PHOTOSYNTHESIS; COST EFFECTIVENESS; FIELD EMISSION CATHODES; FOSSIL FUELS; HYDROGEN FUELS; INORGANIC COMPOUNDS; ORGANIC SEMICONDUCTOR MATERIALS; PARTICLE BEAMS; PHOTOCATHODES; PHOTOELECTROCHEMICAL CELLS; SEMICONDUCTOR MATERIALS; SOLAR ENERGY;

EID: 85062796186     PISSN: None     EISSN: 23991984     Source Type: Journal    
DOI: 10.1088/2399-1984/aa88a1     Document Type: Review
Times cited : (191)

References (278)
  • 3
    • 84943312030 scopus 로고    scopus 로고
    • A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells
    • Nakamura A, Ota Y, Koike K, Hidaka Y, Nishioka K, Sugiyama M and Fujii K 2015 A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells Appl. Phys. Express 8 107101
    • (2015) Appl. Phys. Express , vol.8
    • Nakamura, A.1    Ota, Y.2    Koike, K.3    Hidaka, Y.4    Nishioka, K.5    Sugiyama, M.6    Fujii, K.7
  • 5
    • 84887986430 scopus 로고    scopus 로고
    • A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency
    • Jacobsson T J, Fjällström V, Sahlberg M, Edoff M and Edvinsson T 2013 A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency Energy Environ. Sci. 6 3676
    • (2013) Energy Environ. Sci. , vol.6 , pp. 3676
    • Jacobsson, T.J.1    Fjällström, V.2    Sahlberg, M.3    Edoff, M.4    Edvinsson, T.5
  • 6
    • 35248851939 scopus 로고    scopus 로고
    • Solar hydrogen production by water splitting with a conversion efficiency of 18%
    • Peharz G, Dimroth F and Wittstadt U 2007 Solar hydrogen production by water splitting with a conversion efficiency of 18% Int. J. Hydrog. Energy 32 3248
    • (2007) Int. J. Hydrog. Energy , vol.32 , pp. 3248
    • Peharz, G.1    Dimroth, F.2    Wittstadt, U.3
  • 7
    • 0035398718 scopus 로고    scopus 로고
    • Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting
    • Licht S, Wang B, Mukerji S, Soga T, Umeno M and Tributsch H 2001 Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting Int. J. Hydrog. Energy 26 653
    • (2001) Int. J. Hydrog. Energy , vol.26 , pp. 653
    • Licht, S.1    Wang, B.2    Mukerji, S.3    Soga, T.4    Umeno, M.5    Tributsch, H.6
  • 8
    • 0035254142 scopus 로고    scopus 로고
    • High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production
    • Khaselev O, Bansal A and Turner J 2001 High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production Int. J. Hydrog. Energy 26 127
    • (2001) Int. J. Hydrog. Energy , vol.26 , pp. 127
    • Khaselev, O.1    Bansal, A.2    Turner, J.3
  • 12
    • 84941690718 scopus 로고    scopus 로고
    • Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
    • Ager J W, Shaner M R, Walczak K A, Sharp I D and Ardo S 2015 Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting Energy Environ. Sci. 8 2811
    • (2015) Energy Environ. Sci. , vol.8 , pp. 2811
    • Ager, J.W.1    Shaner, M.R.2    Walczak, K.A.3    Sharp, I.D.4    Ardo, S.5
  • 13
    • 84890410163 scopus 로고    scopus 로고
    • Will solar-driven water-splitting devices see the light of day?
    • McKone J R, Lewis N S and Gray H B 2014 Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26 407
    • (2014) Chem. Mater. , vol.26 , pp. 407
    • McKone, J.R.1    Lewis, N.S.2    Gray, H.B.3
  • 14
    • 84883008345 scopus 로고    scopus 로고
    • Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
    • Pinaud B A et al 2013 Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry Energy Environ. Sci. 6 1983
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1983
    • Pinaud, B.A.1
  • 15
    • 84978378771 scopus 로고    scopus 로고
    • A comparative technoeconomic analysis of renewable hydrogen production using solar energy
    • Shaner M R, Atwater H A, Lewis N S and McFarland E W 2016 A comparative technoeconomic analysis of renewable hydrogen production using solar energy Energy Environ. Sci. 9 2354
    • (2016) Energy Environ. Sci. , vol.9 , pp. 2354
    • Shaner, M.R.1    Atwater, H.A.2    Lewis, N.S.3    McFarland, E.W.4
  • 17
    • 85021776987 scopus 로고    scopus 로고
    • Introductory lecture: Sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis
    • Hisatomi T and Domen K 2017 Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis Faraday Discuss. 198 11
    • (2017) Faraday Discuss , vol.198 , pp. 11
    • Hisatomi, T.1    Domen, K.2
  • 18
    • 84883720145 scopus 로고    scopus 로고
    • Photoelectrochemical tandem cells for solar water splitting
    • Prevot M S and Sivula K 2013 Photoelectrochemical tandem cells for solar water splitting J. Phys. Chem. C 117 17879
    • (2013) J. Phys. Chem. C , vol.117
    • Prevot, M.S.1    Sivula, K.2
  • 19
    • 84978187273 scopus 로고    scopus 로고
    • Water splitting progress in tandem devices: Moving photolysis beyond electrolysis
    • Zhang K, Ma M, Li P, Wang D H and Park J H 2016 Water splitting progress in tandem devices: moving photolysis beyond electrolysis Adv. Energy Mater. 6 1600602
    • (2016) Adv. Energy Mater. , vol.6
    • Zhang, K.1    Ma, M.2    Li, P.3    Wang, D.H.4    Park, J.H.5
  • 20
    • 0017552270 scopus 로고
    • Limits on the yield of photochemical solar energy conversion
    • Ross R T and Hsiao T L 1977 Limits on the yield of photochemical solar energy conversion J. Appl. Phys. 48 4783
    • (1977) J. Appl. Phys. , vol.48 , pp. 4783
    • Ross, R.T.1    Hsiao, T.L.2
  • 21
    • 0000802927 scopus 로고
    • Photochemical diodes
    • Nozik A J 1977 Photochemical diodes Appl. Phys. Lett. 30 567
    • (1977) Appl. Phys. Lett. , vol.30 , pp. 567
    • Nozik, A.J.1
  • 22
    • 0021439293 scopus 로고
    • Efficiency of splitting water with semiconducting photoelectrodes
    • Weber M F and Dignam M J 1984 Efficiency of splitting water with semiconducting photoelectrodes J. Electrochem. Soc. 131 1258
    • (1984) J. Electrochem. Soc. , vol.131 , pp. 1258
    • Weber, M.F.1    Dignam, M.J.2
  • 23
    • 0000658390 scopus 로고
    • Limiting and realizable efficiencies of solar photolysis of water
    • Bolton J R, Strickler S J and Connolly J S 1985 Limiting and realizable efficiencies of solar photolysis of water Nature 316 495
    • (1985) Nature , vol.316 , pp. 495
    • Bolton, J.R.1    Strickler, S.J.2    Connolly, J.S.3
  • 24
    • 84887858384 scopus 로고    scopus 로고
    • Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
    • Haussener S, Hu S, Xiang C, Weber A Z and Lewis N S 2013 Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems Energy Environ. Sci. 6 3605
    • (2013) Energy Environ. Sci. , vol.6 , pp. 3605
    • Haussener, S.1    Hu, S.2    Xiang, C.3    Weber, A.Z.4    Lewis, N.S.5
  • 25
    • 84883669048 scopus 로고    scopus 로고
    • An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
    • Hu S, Xiang C, Haussener S, Berger A D and Lewis N S 2013 An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems Energy Environ. Sci. 6 2984
    • (2013) Energy Environ. Sci. , vol.6 , pp. 2984
    • Hu, S.1    Xiang, C.2    Haussener, S.3    Berger, A.D.4    Lewis, N.S.5
  • 26
    • 84906242019 scopus 로고    scopus 로고
    • Sunlight absorption in water—efficiency and design implications for photoelectrochemical devices
    • Döscher H, Geisz J F, Deutsch T G and Turner J A 2014 Sunlight absorption in water—efficiency and design implications for photoelectrochemical devices Energy Environ. Sci. 7 2951
    • (2014) Energy Environ. Sci. , vol.7 , pp. 2951
    • Döscher, H.1    Geisz, J.F.2    Deutsch, T.G.3    Turner, J.A.4
  • 27
    • 84901022954 scopus 로고    scopus 로고
    • Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research
    • Seitz L C, Chen Z, Forman A J, Pinaud B A, Benck J D and Jaramillo T F 2014 Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research ChemSusChem 7 1372
    • (2014) Chemsuschem , vol.7 , pp. 1372
    • Seitz, L.C.1    Chen, Z.2    Forman, A.J.3    Pinaud, B.A.4    Benck, J.D.5    Jaramillo, T.F.6
  • 28
  • 29
    • 85019621678 scopus 로고    scopus 로고
    • Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures
    • Young J L, Steiner M A, Döscher H, France R M, Turner J A and Deutsch Todd G 2017 Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures Nat. Energy 2 17028
    • (2017) Nat. Energy , vol.2 , Issue.17028
    • Young, J.L.1    Steiner, M.A.2    Döscher, H.3    France, R.M.4    Turner, J.A.5    Deutsch Todd, G.6
  • 30
    • 85078060575 scopus 로고    scopus 로고
    • A flexible web-based approach to modeling tandem photocatalytic devices
    • Seger B, Hansen O and Vesborg P C K 2017 A flexible web-based approach to modeling tandem photocatalytic devices Sol. RRL 1 e201600013
    • (2017) Sol. RRL , vol.1
    • Seger, B.1    Hansen, O.2    Vesborg, P.C.K.3
  • 33
    • 26944441222 scopus 로고    scopus 로고
    • Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces
    • Lewis N S 2005 Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces Inorg. Chem. 44 6900
    • (2005) Inorg. Chem. , vol.44 , pp. 6900
    • Lewis, N.S.1
  • 37
    • 0000258680 scopus 로고    scopus 로고
    • Behavior of Si photoelectrodes under high level injection conditions: I. Steady-state current–voltage properties and quasi-Fermi level positions under illumination
    • Tan M X, Kenyon C N, Krüger O and Lewis N S 1997 Behavior of Si photoelectrodes under high level injection conditions: I. Steady-state current–voltage properties and quasi-Fermi level positions under illumination J. Phys. Chem. B 101 2830
    • (1997) J. Phys. Chem. B , vol.101 , pp. 2830
    • Tan, M.X.1    Kenyon, C.N.2    Krüger, O.3    Lewis, N.S.4
  • 38
    • 0039732489 scopus 로고    scopus 로고
    • Behavior of Si photoelectrodes under high level injection conditions: II. Experimental measurements and digital simulations of the behavior of quasi-Fermi levels under illumination and applied bias
    • Krüger O, Kenyon C N, Tan M X and Lewis N S 1997 Behavior of Si photoelectrodes under high level injection conditions: II. Experimental measurements and digital simulations of the behavior of quasi-Fermi levels under illumination and applied bias J. Phys. Chem. B 101 2840
    • (1997) J. Phys. Chem. B , vol.101 , pp. 2840
    • Krüger, O.1    Kenyon, C.N.2    Tan, M.X.3    Lewis, N.S.4
  • 44
    • 0001581185 scopus 로고
    • The current–voltage characteristics of semiconductor-electrolyte junction photovoltaic cells
    • Reichman J 1980 The current–voltage characteristics of semiconductor-electrolyte junction photovoltaic cells Appl. Phys. Lett. 36 574
    • (1980) Appl. Phys. Lett. , vol.36 , pp. 574
    • Reichman, J.1
  • 45
    • 0019563614 scopus 로고
    • Voltage dependence of the dark and photocurrents in semiconductor–electrolyte junctions
    • El Guibaly F, Colbow K and Funt B L 1981 Voltage dependence of the dark and photocurrents in semiconductor–electrolyte junctions J. Appl. Phys. 52 3480
    • (1981) J. Appl. Phys. , vol.52 , pp. 3480
    • El Guibaly, F.1    Colbow, K.2    Funt, B.L.3
  • 46
    • 0020100607 scopus 로고
    • Theory of photocurrent in semiconductor-electrolyte junction solar cells
    • El Guibaly F and Colbow K 1982 Theory of photocurrent in semiconductor-electrolyte junction solar cells J. Appl. Phys. 53 1737
    • (1982) J. Appl. Phys. , vol.53 , pp. 1737
    • El Guibaly, F.1    Colbow, K.2
  • 47
    • 84979927797 scopus 로고    scopus 로고
    • Semiconducting materials for photoelectrochemical energy conversion
    • Sivula K and van de Krol R 2016 Semiconducting materials for photoelectrochemical energy conversion Nat. Rev. Mater. 1 15010
    • (2016) Nat. Rev. Mater. , vol.1
    • Sivula, K.1    van de Krol, R.2
  • 49
    • 84864751062 scopus 로고    scopus 로고
    • Binary copper oxide semiconductors: From materials towards devices
    • Meyer B K et al 2012 Binary copper oxide semiconductors: from materials towards devices Phys. Status Solidi b 249 1487
    • (2012) Phys. Status Solidi B , vol.249 , pp. 1487
    • Meyer, B.K.1
  • 50
    • 79957496297 scopus 로고    scopus 로고
    • Highly active oxide photocathode for photoelectrochemical water reduction
    • Paracchino A, Laporte V, Sivula K, Gratzel M and Thimsen E 2011 Highly active oxide photocathode for photoelectrochemical water reduction Nat. Mater. 10 456
    • (2011) Nat. Mater. , vol.10 , pp. 456
    • Paracchino, A.1    Laporte, V.2    Sivula, K.3    Gratzel, M.4    Thimsen, E.5
  • 52
    • 84976284554 scopus 로고    scopus 로고
    • Transparent cuprous oxide photocathode enabling a stacked tandem cell for unbiased water splitting
    • Dias P et al 2015 Transparent cuprous oxide photocathode enabling a stacked tandem cell for unbiased water splitting Adv. Energy Mater. 5 1501537
    • (2015) Adv. Energy Mater. , vol.5
    • Dias, P.1
  • 55
    • 84868116582 scopus 로고    scopus 로고
    • x nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting
    • x nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting Chem. Sci. 3 3482
    • (2012) Chem. Sci. , vol.3 , pp. 3482
    • Lin, C.Y.1    Lai, Y.H.2    Mersch, D.3    Reisner, E.4
  • 58
    • 84892817918 scopus 로고    scopus 로고
    • Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes
    • Tilley S D, Schreier M, Azevedo J, Stefik M and Graetzel M 2014 Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes Adv. Funct. Mater. 24 303
    • (2014) Adv. Funct. Mater. , vol.24 , pp. 303
    • Tilley, S.D.1    Schreier, M.2    Azevedo, J.3    Stefik, M.4    Graetzel, M.5
  • 59
    • 84906568523 scopus 로고    scopus 로고
    • Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst
    • Morales-Guio C G, Tilley S D, Vrubel H, Gratzel M and Hu X L 2014 Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst Nat. Commun. 5 3059
    • (2014) Nat. Commun. , vol.5 , pp. 3059
    • Morales-Guio, C.G.1    Tilley, S.D.2    Vrubel, H.3    Gratzel, M.4    Hu, X.L.5
  • 65
    • 34547189139 scopus 로고    scopus 로고
    • High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors
    • Arai T, Konishi Y, Iwasaki Y, Sugihara H and Sayama K 2007 High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors J. Comb. Chem. 9 574
    • (2007) J. Comb. Chem. , vol.9 , pp. 574
    • Arai, T.1    Konishi, Y.2    Iwasaki, Y.3    Sugihara, H.4    Sayama, K.5
  • 71
    • 85018695833 scopus 로고    scopus 로고
    • III–V semiconductor photoelectrodes Semiconduct
    • Siddiqi G, Pan Z and Hu S 2017 III–V semiconductor photoelectrodes Semiconduct. Semimet. 97 81
    • (2017) Semimet. , vol.97 , pp. 81
    • Siddiqi, G.1    Pan, Z.2    Hu, S.3
  • 72
    • 84867521098 scopus 로고    scopus 로고
    • P-type InP nanopillar photocathodes for efficient solar-driven hydrogen production
    • Lee M H et al 2012 p-type InP nanopillar photocathodes for efficient solar-driven hydrogen production Angew. Chem., Int. Ed. Engl. 51 10760
    • (2012) Angew. Chem., Int. Ed. Engl. , vol.51
    • Lee, M.H.1
  • 73
    • 84949117524 scopus 로고    scopus 로고
    • 2 surface passivation on improving the performance of p-InP photocathodes
    • 2 surface passivation on improving the performance of p-InP photocathodes J. Phys. Chem. C 119 2308
    • (2015) J. Phys. Chem. C , vol.119 , pp. 2308
    • Lin, Y.J.1
  • 74
    • 84981164549 scopus 로고    scopus 로고
    • High-efficiency InP-based photocathode for hydrogen production by interface energetics design and photon management
    • Gao L et al 2016 High-efficiency InP-based photocathode for hydrogen production by interface energetics design and photon management Adv. Funct. Mater. 26 679
    • (2016) Adv. Funct. Mater. , vol.26 , pp. 679
    • Gao, L.1
  • 77
    • 84927591697 scopus 로고    scopus 로고
    • Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays
    • Kibria M G, Chowdhury F A, Zhao S, AlOtaibi B, Trudeau M L, Guo H and Mi Z 2015 Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays Nat. Commun. 6 6797
    • (2015) Nat. Commun. , vol.6 , pp. 6797
    • Kibria, M.G.1    Chowdhury, F.A.2    Zhao, S.3    Alotaibi, B.4    Trudeau, M.L.5    Guo, H.6    Mi, Z.7
  • 79
    • 84947441108 scopus 로고    scopus 로고
    • Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation
    • Chowdhury F A, Mi Z, Kibria M G and Trudeau M L 2015 Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation APL Mater. 3 104408
    • (2015) APL Mater , vol.3
    • Chowdhury, F.A.1    Mi, Z.2    Kibria, M.G.3    Trudeau, M.L.4
  • 80
    • 84959020224 scopus 로고    scopus 로고
    • Artificial photosynthesis using metal/nonmetal-nitride semiconductors: Current status, prospects, and challenges
    • Kibria M G and Mi Z 2016 Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges J. Mater. Chem. A 4 2801
    • (2016) J. Mater. Chem. A , vol.4 , pp. 2801
    • Kibria, M.G.1    Mi, Z.2
  • 81
    • 85016612872 scopus 로고    scopus 로고
    • Artificial photosynthesis on III-nitride nanowire arrays Semiconduct
    • Chu S, Kong X, Vanka S, Guo H and Mi Z 2017 Artificial photosynthesis on III-nitride nanowire arrays Semiconduct. Semimet. 97 223
    • (2017) Semimet , vol.97 , pp. 223
    • Chu, S.1    Kong, X.2    Vanka, S.3    Guo, H.4    Mi, Z.5
  • 83
    • 84872414009 scopus 로고    scopus 로고
    • The role of extended defects on the performance of optoelectronic devices in nitride semiconductors
    • Moustakas T D 2013 The role of extended defects on the performance of optoelectronic devices in nitride semiconductors Phys. Status Solidi a 210 169
    • (2013) Phys. Status Solidi A , vol.210 , pp. 169
    • Moustakas, T.D.1
  • 84
  • 85
    • 85027941270 scopus 로고    scopus 로고
    • Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting
    • Kibria M G et al 2016 Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting Adv. Mater. 28 8388
    • (2016) Adv. Mater. , vol.28 , pp. 8388
    • Kibria, M.G.1
  • 86
    • 30344471067 scopus 로고    scopus 로고
    • Photoelectrochemical properties of p-type GaN in comparison with n-type GaN Japan
    • Fujii K and Ohkawa K 2005 Photoelectrochemical properties of p-type GaN in comparison with n-type GaN Japan. J. Appl. Phys. 44 L909
    • (2005) J. Appl. Phys. , vol.44 , pp. L909
    • Fujii, K.1    Ohkawa, K.2
  • 87
    • 76449111619 scopus 로고    scopus 로고
    • Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells
    • Aryal K, Pantha B N, Li J, Lin J Y and Jiang H X 2010 Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells Appl. Phys. Lett. 96 052110
    • (2010) Appl. Phys. Lett. , vol.96
    • Aryal, K.1    Pantha, B.N.2    Li, J.3    Lin, J.Y.4    Jiang, H.X.5
  • 88
    • 84926612448 scopus 로고    scopus 로고
    • High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode
    • Fan S Z, AlOtaibi B, Woo S Y, Wang Y J, Botton G A and Mi Z 2015 High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode Nano Lett. 15 2721
    • (2015) Nano Lett , vol.15 , pp. 2721
    • Fan, S.Z.1    Alotaibi, B.2    Woo, S.Y.3    Wang, Y.J.4    Botton, G.A.5    Mi, Z.6
  • 94
    • 29144465666 scopus 로고    scopus 로고
    • Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovoltaic application
    • Raulot J M, Domain C and Guillemoles J F 2005 Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovoltaic application J. Phys. Chem. Solids 66 2019
    • (2005) J. Phys. Chem. Solids , vol.66 , pp. 2019
    • Raulot, J.M.1    Domain, C.2    Guillemoles, J.F.3
  • 97
    • 18744385250 scopus 로고    scopus 로고
    • New quaternary barium copper/silver selenostannates: Different coordination spheres, metal–metal interactions, and physical properties
    • Assoud A, Soheilnia N and Kleinke H 2005 New quaternary barium copper/silver selenostannates: different coordination spheres, metal–metal interactions, and physical properties Chem. Mater. 17 2255
    • (2005) Chem. Mater. , vol.17 , pp. 2255
    • Assoud, A.1    Soheilnia, N.2    Kleinke, H.3
  • 98
    • 84957607354 scopus 로고    scopus 로고
    • 4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics
    • 4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics Phys. Chem. Chem. Phys. 18 4828
    • (2016) Phys. Chem. Chem. Phys. , vol.18 , pp. 4828
    • Hong, F.1    Lin, W.J.2    Meng, W.W.3    Yan, Y.F.4
  • 101
    • 45049085979 scopus 로고    scopus 로고
    • Photoelectrolysis of water using thin copper gallium diselenide electrodes
    • Marsen B, Cole B and Miller E L 2008 Photoelectrolysis of water using thin copper gallium diselenide electrodes Sol. Energy Mater. Sol. Cells 92 1054
    • (2008) Sol. Energy Mater. Sol. Cells , vol.92 , pp. 1054
    • Marsen, B.1    Cole, B.2    Miller, E.L.3
  • 104
    • 84915751024 scopus 로고    scopus 로고
    • 2 photocathodes prepared by an electrodeposition-sulfurization method
    • 2 photocathodes prepared by an electrodeposition-sulfurization method Angew. Chem., Int. Ed. Engl. 53 11808
    • (2014) Angew. Chem., Int. Ed. Engl. , vol.53
    • Zhao, J.1
  • 114
    • 85012902003 scopus 로고    scopus 로고
    • 4 thin film based photoelectrochemical water reduction devices
    • 4 thin film based photoelectrochemical water reduction devices Chem. Mater. 29 916
    • (2017) Chem. Mater. , vol.29 , pp. 916
    • Ge, J.1
  • 115
    • 85002727739 scopus 로고    scopus 로고
    • 4 (x = 0–0.55) thin films with tunable band gaps for solar water splitting
    • 4 (x = 0–0.55) thin films with tunable band gaps for solar water splitting J. Mater. Chem. A 4 18885
    • (2016) J. Mater. Chem. A , vol.4 , pp. 18885
    • Ge, J.1    Yu, Y.2    Yan, Y.F.3
  • 116
    • 84996519133 scopus 로고    scopus 로고
    • 4 (x approximate to 0.83) thin film for solar energy conversion
    • 4 (x approximate to 0.83) thin film for solar energy conversion ACS Energy Lett. 1 583
    • (2016) ACS Energy Lett , vol.1 , pp. 583
    • Ge, J.1    Yu, Y.2    Yan, Y.F.3
  • 119
    • 0030271042 scopus 로고    scopus 로고
    • Hydrogen evolution on platinum-coated p-silicon photocathodes
    • Maier C U, Specht M and Bilger G 1996 Hydrogen evolution on platinum-coated p-silicon photocathodes Int. J. Hydrog. Energy 21 859
    • (1996) Int. J. Hydrog. Energy , vol.21 , pp. 859
    • Maier, C.U.1    Specht, M.2    Bilger, G.3
  • 122
    • 84855789133 scopus 로고    scopus 로고
    • Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode
    • Oh I, Kye J and Hwang S 2012 Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode Nano Lett. 12 298
    • (2012) Nano Lett , vol.12 , pp. 298
    • Oh, I.1    Kye, J.2    Hwang, S.3
  • 123
    • 79551702472 scopus 로고    scopus 로고
    • Photoelectrochemical hydrogen evolution using Si microwire arrays
    • Boettcher S W et al 2011 Photoelectrochemical hydrogen evolution using Si microwire arrays J. Am. Chem. Soc. 133 1216
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 1216
    • Boettcher, S.W.1
  • 124
    • 84929193309 scopus 로고    scopus 로고
    • High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution
    • Wang H P, Sun K, Noh S Y, Kargar A, Tsai M L, Huang M Y, Wang D L and He J H 2015 High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution Nano Lett. 15 2817
    • (2015) Nano Lett , vol.15 , pp. 2817
    • Wang, H.P.1    Sun, K.2    Noh, S.Y.3    Kargar, A.4    Tsai, M.L.5    Huang, M.Y.6    Wang, D.L.7    He, J.H.8
  • 126
    • 85032336733 scopus 로고    scopus 로고
    • Layered 2D semiconducting transition metal dichalcogenides for solar energy conversion
    • Yu X and Sivula K 2017 Layered 2D semiconducting transition metal dichalcogenides for solar energy conversion Curr. Opin. Electrochem. 2 97
    • (2017) Curr. Opin. Electrochem. , vol.2 , pp. 97
    • Yu, X.1    Sivula, K.2
  • 127
    • 84894635747 scopus 로고    scopus 로고
    • Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides
    • Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides ACS Nano 8 1102
    • (2014) ACS Nano , vol.8 , pp. 1102
    • Jariwala, D.1    Sangwan, V.K.2    Lauhon, L.J.3    Marks, T.J.4    Hersam, M.C.5
  • 128
    • 84921374161 scopus 로고    scopus 로고
    • Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single-and few-layer nanosheets
    • Lv R, Robinson J A, Schaak R E, Sun D, Sun Y F, Mallouk T E and Terrones M 2015 Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets Acc. Chem. Res. 48 56
    • (2015) Acc. Chem. Res. , vol.48 , pp. 56
    • Lv, R.1    Robinson, J.A.2    Schaak, R.E.3    Sun, D.4    Sun, Y.F.5    Mallouk, T.E.6    Terrones, M.7
  • 129
    • 0020736073 scopus 로고
    • Electrochemical characterization of p-type semiconducting tungsten disulfide photocathodes: Efficient photoreduction processes at semiconductor/liquid electrolyte interfaces
    • Baglio J A, Calabrese G S, Harrison D J, Kamienieck E, Ricco A J, Wrighton M S and Zoski G D 1983 Electrochemical characterization of p-type semiconducting tungsten disulfide photocathodes: efficient photoreduction processes at semiconductor/liquid electrolyte interfaces J. Am. Chem. Soc. 105 2246
    • (1983) J. Am. Chem. Soc. , vol.105 , pp. 2246
    • Baglio, J.A.1    Calabrese, G.S.2    Harrison, D.J.3    Kamienieck, E.4    Ricco, A.J.5    Wrighton, M.S.6    Zoski, G.D.7
  • 133
    • 84969278973 scopus 로고    scopus 로고
    • Nanostructured conjugated polymers for energy-related applications beyond solar cells Chem
    • Xie J, Zhao C E, Lin Z Q, Gu P Y and Zhang Q C 2016 Nanostructured conjugated polymers for energy-related applications beyond solar cells Chem.—Asian J. 11 1489
    • (2016) Asian J , vol.11 , pp. 1489
    • Xie, J.1    Zhao, C.E.2    Lin, Z.Q.3    Gu, P.Y.4    Zhang, Q.C.5
  • 134
    • 84999048444 scopus 로고    scopus 로고
    • Conjugated polymers: Catalysts for photocatalytic hydrogen evolution
    • Zhang G G, Lan Z A and Wang X C 2016 Conjugated polymers: catalysts for photocatalytic hydrogen evolution Angew. Chem., Int. Ed. Engl. 55 15712
    • (2016) Angew. Chem., Int. Ed. Engl. , vol.55
    • Zhang, G.G.1    Lan, Z.A.2    Wang, X.C.3
  • 136
    • 84877288694 scopus 로고    scopus 로고
    • Band structure engineering of carbon nitride: In search of a polymer photocatalyst with high photooxidation property
    • Chu S, Wang Y, Guo Y, Feng J Y, Wang C C, Luo W J, Fan X X and Zou Z G 2013 Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property ACS Catal. 3 912
    • (2013) ACS Catal , vol.3 , pp. 912
    • Chu, S.1    Wang, Y.2    Guo, Y.3    Feng, J.Y.4    Wang, C.C.5    Luo, W.J.6    Fan, X.X.7    Zou, Z.G.8
  • 139
    • 84874611797 scopus 로고    scopus 로고
    • A polymer tandem solar cell with 10.6% power conversion efficiency
    • You J B et al 2013 A polymer tandem solar cell with 10.6% power conversion efficiency Nat. Commun. 4 1446
    • (2013) Nat. Commun. , vol.4 , pp. 1446
    • You, J.B.1
  • 141
    • 85002912135 scopus 로고    scopus 로고
    • Polymer-based photocathodes with a solution-processable cuprous iodide anode layer and a polyethyleneimine protective coating
    • Rojas H C et al 2016 Polymer-based photocathodes with a solution-processable cuprous iodide anode layer and a polyethyleneimine protective coating Energy Environ. Sci. 9 3710
    • (2016) Energy Environ. Sci. , vol.9 , pp. 3710
    • Rojas, H.C.1
  • 142
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima A and Honda K 1972 Electrochemical photolysis of water at a semiconductor electrode Nature 238 37
    • (1972) Nature , vol.238 , pp. 37
    • Fujishima, A.1    Honda, K.2
  • 143
    • 0000629550 scopus 로고
    • 2 crystals
    • 2 crystals Nature 257 383
    • (1975) Nature , vol.257 , pp. 383
    • Nozik, A.J.1
  • 146
    • 84873201087 scopus 로고    scopus 로고
    • Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook
    • Li Z, Luo W, Zhang M, Feng J and Zou Z 2013 Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook Energy Environ. Sci. 6 347
    • (2013) Energy Environ. Sci. , vol.6 , pp. 347
    • Li, Z.1    Luo, W.2    Zhang, M.3    Feng, J.4    Zou, Z.5
  • 147
    • 84902436756 scopus 로고    scopus 로고
    • Towards highly efficient photoanodes: Boosting sunlight-driven semiconductor nanomaterials for water oxidation
    • Gan J, Lu X and Tong Y 2014 Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation Nanoscale 6 7142
    • (2014) Nanoscale , vol.6 , pp. 7142
    • Gan, J.1    Lu, X.2    Tong, Y.3
  • 148
    • 85020447034 scopus 로고    scopus 로고
    • Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting
    • Yang Y, Niu S, Han D, Liu T, Wang G and Li Y 2017 Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting Adv. Energy Mater. 7 1700555
    • (2017) Adv. Energy Mater. , vol.7
    • Yang, Y.1    Niu, S.2    Han, D.3    Liu, T.4    Wang, G.5    Li, Y.6
  • 149
    • 85026634838 scopus 로고    scopus 로고
    • Photoelectrochemical devices for solar water splitting—materials and challenges
    • Jiang C, Moniz S J A, Wang A, Zhang T and Tang J 2017 Photoelectrochemical devices for solar water splitting—materials and challenges Chem. Soc. Rev. 46 4645
    • (2017) Chem. Soc. Rev. , vol.46 , pp. 4645
    • Jiang, C.1    Moniz, S.J.A.2    Wang, A.3    Zhang, T.4    Tang, J.5
  • 151
    • 84979307950 scopus 로고    scopus 로고
    • Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy
    • Zandi O and Hamann T W 2016 Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy Nat. Chem. 8 778
    • (2016) Nat. Chem. , vol.8 , pp. 778
    • Zandi, O.1    Hamann, T.W.2
  • 152
    • 84942134166 scopus 로고    scopus 로고
    • Hematite-based solar water splitting in acidic solutions: Functionalization by mono-and multilayers of iridium oxygen-evolution catalysts
    • Li W, Sheehan S W, He D, He Y M, Yao X H, Grimm R L, Brudvig G W and Wang D W 2015 Hematite-based solar water splitting in acidic solutions: functionalization by mono-and multilayers of iridium oxygen-evolution catalysts Angew. Chem., Int. Ed. Engl. 54 11428
    • (2015) Angew. Chem., Int. Ed. Engl. , vol.54
    • Li, W.1    Sheehan, S.W.2    He, D.3    He, Y.M.4    Yao, X.H.5    Grimm, R.L.6    Brudvig, G.W.7    Wang, D.W.8
  • 153
    • 84961368233 scopus 로고    scopus 로고
    • Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting
    • Kim J Y, Magesh G, Youn D H, Jang J W, Kubota J, Domen K and Lee J S 2013 Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting Sci. Rep. 3 2681
    • (2013) Sci. Rep. , vol.3 , pp. 2681
    • Kim, J.Y.1    Magesh, G.2    Youn, D.H.3    Jang, J.W.4    Kubota, J.5    Domen, K.6    Lee, J.S.7
  • 154
    • 84984921004 scopus 로고    scopus 로고
    • Hematite heterostructures for photoelectrochemical water splitting: Rational materials design and charge carrier dynamics
    • Shen S, Lindley S A, Chen X and Zhang J Z 2016 Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics Energy Environ. Sci. 9 2744
    • (2016) Energy Environ. Sci. , vol.9 , pp. 2744
    • Shen, S.1    Lindley, S.A.2    Chen, X.3    Zhang, J.Z.4
  • 156
    • 85045551109 scopus 로고    scopus 로고
    • Photovoltage at semiconductor–electrolyte junctions
    • Mayer M T 2017 Photovoltage at semiconductor–electrolyte junctions Curr. Opin. Electrochem. 2 104
    • (2017) Curr. Opin. Electrochem , vol.2 , pp. 104
    • Mayer, M.T.1
  • 157
    • 84935874227 scopus 로고    scopus 로고
    • Enabling unassisted solar water splitting by iron oxide and silicon
    • Jang J-W et al 2015 Enabling unassisted solar water splitting by iron oxide and silicon Nat. Commun. 6 7447
    • (2015) Nat. Commun. , vol.6 , pp. 7447
    • Jang, J.-W.1
  • 159
    • 84856424509 scopus 로고    scopus 로고
    • Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst
    • Seabold J A and Choi K-S 2012 Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst J. Am. Chem. Soc. 134 2186
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 2186
    • Seabold, J.A.1    Choi, K.-S.2
  • 161
    • 84881162564 scopus 로고    scopus 로고
    • Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
    • Abdi F F, Han L, Smets A H M, Zeman M, Dam B and van de Krol R 2013 Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode Nat. Commun. 4 2195
    • (2013) Nat. Commun. , vol.4 , pp. 2195
    • Abdi, F.F.1    Han, L.2    Smets, A.H.M.3    Zeman, M.4    Dam, B.5    van de Krol, R.6
  • 162
    • 84945260853 scopus 로고    scopus 로고
    • Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting
    • Kim T W, Ping Y, Galli G A and Choi K S 2015 Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting Nat. Commun. 6 8769
    • (2015) Nat. Commun. , vol.6 , Issue.8769
    • Kim, T.W.1    Ping, Y.2    Galli, G.A.3    Choi, K.S.4
  • 164
    • 84874491562 scopus 로고    scopus 로고
    • Progress in bismuth vanadate photoanodes for use in solar water oxidation
    • Park Y, McDonald K J and Choi K-S 2013 Progress in bismuth vanadate photoanodes for use in solar water oxidation Chem. Soc. Rev. 42 2321
    • (2013) Chem. Soc. Rev. , vol.42 , pp. 2321
    • Park, Y.1    McDonald, K.J.2    Choi, K.-S.3
  • 167
    • 84896735953 scopus 로고    scopus 로고
    • 4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
    • 4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting Science 343 990
    • (2014) Science , vol.343 , pp. 990
    • Kim, T.W.1    Choi, K.-S.2
  • 170
    • 84878933808 scopus 로고    scopus 로고
    • Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: Case studies on hematite
    • Mayer M T, Lin Y J, Yuan G B and Wang D W 2013 Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite Acc. Chem. Res. 46 1558
    • (2013) Acc. Chem. Res. , vol.46 , pp. 1558
    • Mayer, M.T.1    Lin, Y.J.2    Yuan, G.B.3    Wang, D.W.4
  • 171
    • 84910109203 scopus 로고    scopus 로고
    • Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion
    • Yuan Y P, Ruan L W, Barber J, Loo S C J and Xue C 2014 Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion Energy Environ. Sci. 7 3934
    • (2014) Energy Environ. Sci. , vol.7 , pp. 3934
    • Yuan, Y.P.1    Ruan, L.W.2    Barber, J.3    Loo, S.C.J.4    Xue, C.5
  • 172
    • 84930959042 scopus 로고    scopus 로고
    • 4 nanorods with ultimate water splitting efficiency
    • 4 nanorods with ultimate water splitting efficiency Nat. Commun. 5 11141
    • (2015) Nat. Commun. , vol.5
    • Pihosh, Y.1
  • 180
    • 84255214176 scopus 로고    scopus 로고
    • Effect of thermal treatment on the crystallographic, surface energetics, and photoelectrochemical properties of reactively cosputtered copper tungstate for water splitting
    • Chang Y C, Braun A, Deangelis A, Kaneshiro J and Gaillard N 2011 Effect of thermal treatment on the crystallographic, surface energetics, and photoelectrochemical properties of reactively cosputtered copper tungstate for water splitting J. Phys. Chem. C 115 25490
    • (2011) J. Phys. Chem. C , vol.115
    • Chang, Y.C.1    Braun, A.2    Deangelis, A.3    Kaneshiro, J.4    Gaillard, N.5
  • 181
    • 84889579569 scopus 로고    scopus 로고
    • 4 in photoelectrochemical water oxidation is dictated by a midgap electronic state
    • 4 in photoelectrochemical water oxidation is dictated by a midgap electronic state J. Phys. Chem. C 117 24726
    • (2013) J. Phys. Chem. C , vol.117
    • Pyper, K.J.1    Yourey, J.E.2    Bartlett, B.M.3
  • 182
    • 84964845419 scopus 로고    scopus 로고
    • 4 nanoflake array-based single-junction and heterojunction photoanodes for photoelectrochemical water oxidation
    • 4 nanoflake array-based single-junction and heterojunction photoanodes for photoelectrochemical water oxidation ACS Appl. Mater. Interfaces 8 9211
    • (2016) ACS Appl. Mater. Interfaces , vol.8 , pp. 9211
    • Ye, W.1    Chen, F.2    Zhao, F.3    Han, N.4    Li, Y.5
  • 186
    • 84955260481 scopus 로고    scopus 로고
    • Development of ternary iron vanadium oxide semiconductors for applications in photoelectrochemical water oxidation
    • Mandal H, Shyamal S, Hajra P, Bera A, Sariket D, Kundu S and Bhattacharya C 2016 Development of ternary iron vanadium oxide semiconductors for applications in photoelectrochemical water oxidation RSC Adv. 6 4992
    • (2016) RSC Adv , vol.6 , pp. 4992
    • Mandal, H.1    Shyamal, S.2    Hajra, P.3    Bera, A.4    Sariket, D.5    Kundu, S.6    Bhattacharya, C.7
  • 188
    • 85020676795 scopus 로고    scopus 로고
    • Controlling the amount of co-catalyst as a critical factor in determining the efficiency of photoelectrodes: The case of nickel (II) hydroxide on vanadate photoanodes
    • Quiñonero J and Gómez R 2017 Controlling the amount of co-catalyst as a critical factor in determining the efficiency of photoelectrodes: the case of nickel (II) hydroxide on vanadate photoanodes Appl. Catal. B 217 437
    • (2017) Appl. Catal. B , vol.217 , pp. 437
    • Quiñonero, J.1    Gómez, R.2
  • 189
    • 34250779498 scopus 로고    scopus 로고
    • New non-oxide photocatalysts designed for overall water splitting under visible light
    • Maeda K and Domen K 2007 New non-oxide photocatalysts designed for overall water splitting under visible light J. Phys. Chem. C 111 7851
    • (2007) J. Phys. Chem. C , vol.111 , pp. 7851
    • Maeda, K.1    Domen, K.2
  • 191
    • 84964781160 scopus 로고    scopus 로고
    • Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting
    • Liu G J, Ye S, Yan P L, Xiong F Q, Fu P, Wang Z L, Chen Z, Shi J Y and Li C 2016 Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting Energy Environ. Sci. 9 1327
    • (2016) Energy Environ. Sci. , vol.9 , pp. 1327
    • Liu, G.J.1    Ye, S.2    Yan, P.L.3    Xiong, F.Q.4    Fu, P.5    Wang, Z.L.6    Chen, Z.7    Shi, J.Y.8    Li, C.9
  • 195
    • 84885155807 scopus 로고    scopus 로고
    • Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency
    • Li Y B et al 2013 Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency Nat. Commun. 4 2566
    • (2013) Nat. Commun. , vol.4 , pp. 2566
    • Li, Y.B.1
  • 196
    • 84927714511 scopus 로고    scopus 로고
    • Tantalum nitride nanorod arrays: Introducing Ni–Fe layered double hydroxides as a cocatalyst strongly stabilizing photoanodes in water splitting
    • Wang L, Dionigi F, Nguyen N T, Kirchgeorg R, Gliech M, Grigorescu S, Strasser P and Schmuki P 2015 Tantalum nitride nanorod arrays: introducing Ni–Fe layered double hydroxides as a cocatalyst strongly stabilizing photoanodes in water splitting Chem. Mater. 27 2360
    • (2015) Chem. Mater. , vol.27 , pp. 2360
    • Wang, L.1    Dionigi, F.2    Nguyen, N.T.3    Kirchgeorg, R.4    Gliech, M.5    Grigorescu, S.6    Strasser, P.7    Schmuki, P.8
  • 197
    • 85016019792 scopus 로고    scopus 로고
    • 5 thin-film photoanode for solar water oxidation
    • 5 thin-film photoanode for solar water oxidation Angew. Chem. Int. Ed. Engl. 56 4739
    • (2017) Angew. Chem. Int. Ed. Engl. , vol.56 , pp. 4739
    • Zhong, M.1
  • 202
  • 204
    • 84983432354 scopus 로고    scopus 로고
    • 2N particles
    • 2N particles Small 12 5468
    • (2016) Small , vol.12 , pp. 5468
    • Akiyama, S.1
  • 205
    • 84880371109 scopus 로고    scopus 로고
    • 2N photoanode harvesting a wide range of visible light for water splitting
    • 2N photoanode harvesting a wide range of visible light for water splitting J. Am. Chem. Soc. 135 10238
    • (2013) J. Am. Chem. Soc. , vol.135
    • Higashi, M.1    Domen, K.2    Abe, R.3
  • 206
    • 84923241374 scopus 로고    scopus 로고
    • 2N photoanodes prepared by particle transfer method
    • 2N photoanodes prepared by particle transfer method J. Am. Chem. Soc. 137 2227
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 2227
    • Ueda, K.1
  • 208
    • 84992200635 scopus 로고    scopus 로고
    • Tantalum nitride films integrated with transparent conductive oxide substrates via atomic layer deposition for photoelectrochemical water splitting
    • Hajibabaei H, Zandi O and Hamann T W 2016 Tantalum nitride films integrated with transparent conductive oxide substrates via atomic layer deposition for photoelectrochemical water splitting Chem. Sci. 7 6760
    • (2016) Chem. Sci. , vol.7 , pp. 6760
    • Hajibabaei, H.1    Zandi, O.2    Hamann, T.W.3
  • 209
    • 33746368832 scopus 로고    scopus 로고
    • Hydrogen generation from aqueous water using n-GaN by photoassisted electrolysis
    • Fujii K and Ohkawa K 2006 Hydrogen generation from aqueous water using n-GaN by photoassisted electrolysis Phys. Status Solidi c 3 2270
    • (2006) Phys. Status Solidi C , vol.3 , pp. 2270
    • Fujii, K.1    Ohkawa, K.2
  • 211
    • 54949143962 scopus 로고    scopus 로고
    • Direct hydrogen gas generation by using InGaN epilayers as working electrodes
    • Li J, Lin J Y and Jiang H X 2008 Direct hydrogen gas generation by using InGaN epilayers as working electrodes Appl. Phys. Lett. 93 162107
    • (2008) Appl. Phys. Lett. , vol.93
    • Li, J.1    Lin, J.Y.2    Jiang, H.X.3
  • 213
    • 84896874497 scopus 로고    scopus 로고
    • Band engineered epitaxial 3D GaN-InGaN core–shell rod arrays as an advanced photoanode for visible-light-driven water splitting
    • Caccamo L et al 2014 Band engineered epitaxial 3D GaN-InGaN core–shell rod arrays as an advanced photoanode for visible-light-driven water splitting ACS Appl. Mater. Interfaces 6 2235
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 2235
    • Caccamo, L.1
  • 214
    • 84920946248 scopus 로고    scopus 로고
    • Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires
    • Ebaid M, Kang J H, Lim S H, Ha J S, Lee J K, Cho Y H and Ryu S W 2015 Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires Nano Energy 12 215
    • (2015) Nano Energy , vol.12 , pp. 215
    • Ebaid, M.1    Kang, J.H.2    Lim, S.H.3    Ha, J.S.4    Lee, J.K.5    Cho, Y.H.6    Ryu, S.W.7
  • 216
    • 84884248581 scopus 로고    scopus 로고
    • Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode
    • AlOtaibi B, Nguyen H P T, Zhao S, Kibria M G, Fan S and Mi Z 2013 Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode Nano Lett. 13 4356
    • (2013) Nano Lett , vol.13 , pp. 4356
    • Alotaibi, B.1    Nguyen, H.P.T.2    Zhao, S.3    Kibria, M.G.4    Fan, S.5    Mi, Z.6
  • 217
    • 84988596381 scopus 로고    scopus 로고
    • A monolithically integrated InGaN nanowire/Si tandem photoanode approaching the ideal bandgap configuration of 1.75/1.13 eV
    • Fan S, Shih I and Mi Z 2017 A monolithically integrated InGaN nanowire/Si tandem photoanode approaching the ideal bandgap configuration of 1.75/1.13 eV Adv. Energy Mater. 7 1600952
    • (2017) Adv. Energy Mater. , vol.7
    • Fan, S.1    Shih, I.2    Mi, Z.3
  • 220
    • 84994644852 scopus 로고    scopus 로고
    • A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes
    • Yang J et al 2017 A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes Nat. Mater. 16 335
    • (2017) Nat. Mater. , vol.16 , pp. 335
    • Yang, J.1
  • 221
    • 85006437144 scopus 로고    scopus 로고
    • NiFe alloy protected silicon photoanode for efficient water splitting
    • Yu X, Yang P, Chen S, Zhang M and Shi G 2017 NiFe alloy protected silicon photoanode for efficient water splitting Adv. Energy Mater. 7 1601805
    • (2017) Adv. Energy Mater. , vol.7
    • Yu, X.1    Yang, P.2    Chen, S.3    Zhang, M.4    Shi, G.5
  • 222
    • 0022661771 scopus 로고
    • Protection of n-Si photoanode against photocorrosion in photoelectrochemical cell for water electrolysis
    • Kainthla R C, Zelenay B and Bockris J O M 1986 Protection of n-Si photoanode against photocorrosion in photoelectrochemical cell for water electrolysis J. Electrochem. Soc. 133 248
    • (1986) J. Electrochem. Soc. , vol.133 , pp. 248
    • Kainthla, R.C.1    Zelenay, B.2    Bockris, J.O.M.3
  • 223
    • 33750267176 scopus 로고
    • Photoelectrochemical characteristics of metal-modified epitaxial n-Si anodes
    • Li G and Wang S 1987 Photoelectrochemical characteristics of metal-modified epitaxial n-Si anodes J. Electroanal. Chem. Interfacial Electrochem. 227 213
    • (1987) J. Electroanal. Chem. Interfacial Electrochem. , vol.227 , pp. 213
    • Li, G.1    Wang, S.2
  • 224
    • 84863084936 scopus 로고    scopus 로고
    • Nickel oxide functionalized silicon for efficient photo-oxidation of water
    • Sun K et al 2012 Nickel oxide functionalized silicon for efficient photo-oxidation of water Energy Environ. Sci. 5 7872
    • (2012) Energy Environ. Sci. , vol.5 , pp. 7872
    • Sun, K.1
  • 225
    • 84855431684 scopus 로고    scopus 로고
    • High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation
    • Jun K, Lee Y S, Buonassisi T and Jacobson J M 2012 High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation Angew. Chem. Int. Ed. Engl. 51 423
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 423
    • Jun, K.1    Lee, Y.S.2    Buonassisi, T.3    Jacobson, J.M.4
  • 226
    • 84877313095 scopus 로고    scopus 로고
    • Metal oxide composite enabled nanotextured si photoanode for efficient solar driven water oxidation
    • Sun K, Pang X, Shen S, Qian X, Cheung J S and Wang D 2013 Metal oxide composite enabled nanotextured si photoanode for efficient solar driven water oxidation Nano Lett. 13 2064
    • (2013) Nano Lett , vol.13 , pp. 2064
    • Sun, K.1    Pang, X.2    Shen, S.3    Qian, X.4    Cheung, J.S.5    Wang, D.6
  • 227
    • 84875180625 scopus 로고    scopus 로고
    • Photoelectrochemical behavior of n-type Si(100) electrodes coated with thin films of manganese oxide grown by atomic layer deposition
    • Strandwitz N C, Comstock D J, Grimm R L, Nichols-Nielander A C, Elam J and Lewis N S 2013 Photoelectrochemical behavior of n-type Si(100) electrodes coated with thin films of manganese oxide grown by atomic layer deposition J. Phys. Chem. C 117 4931
    • (2013) J. Phys. Chem. C , vol.117 , pp. 4931
    • Strandwitz, N.C.1    Comstock, D.J.2    Grimm, R.L.3    Nichols-Nielander, A.C.4    Elam, J.5    Lewis, N.S.6
  • 229
    • 84887776735 scopus 로고    scopus 로고
    • High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation
    • Kenney M J, Gong M, Li Y, Wu J Z, Feng J, Lanza M and Dai H 2013 High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation Science 342 836
    • (2013) Science , vol.342 , pp. 836
    • Kenney, M.J.1    Gong, M.2    Li, Y.3    Wu, J.Z.4    Feng, J.5    Lanza, M.6    Dai, H.7
  • 232
    • 84938885048 scopus 로고    scopus 로고
    • P-type transparent conducting oxide/n-type semiconductor heterojunctions for efficient and stable solar water oxidation
    • Chen L et al 2015 p-type transparent conducting oxide/n-type semiconductor heterojunctions for efficient and stable solar water oxidation J. Am. Chem. Soc. 137 9595
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 9595
    • Chen, L.1
  • 236
    • 67849122733 scopus 로고    scopus 로고
    • Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light
    • Wang X C, Maeda K, Chen X F, Takanabe K, Domen K, Hou Y D, Fu X Z and Antonietti M 2009 Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light J. Am. Chem. Soc. 131 1680
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 1680
    • Wang, X.C.1    Maeda, K.2    Chen, X.F.3    Takanabe, K.4    Domen, K.5    Hou, Y.D.6    Fu, X.Z.7    Antonietti, M.8
  • 237
    • 77952910557 scopus 로고    scopus 로고
    • Photocurrent generation by polymeric carbon nitride solids: An initial step towards a novel photovoltaic system
    • Zhang Y J and Antonietti M 2010 Photocurrent generation by polymeric carbon nitride solids: an initial step towards a novel photovoltaic system Chem.—Asian J. 5 1307
    • (2010) Chem.—Asian J. , vol.5 , pp. 1307
    • Zhang, Y.J.1    Antonietti, M.2
  • 239
    • 84962833514 scopus 로고    scopus 로고
    • Efficiency enhancement of carbon nitride photoelectrochemical cells via tailored monomers design
    • Bian J C, Xi L F, Huang C, Lange K M, Zhang R Q and Shalom M 2016 Efficiency enhancement of carbon nitride photoelectrochemical cells via tailored monomers design Adv. Energy Mater. 6 1600263
    • (2016) Adv. Energy Mater. , vol.6
    • Bian, J.C.1    Xi, L.F.2    Huang, C.3    Lange, K.M.4    Zhang, R.Q.5    Shalom, M.6
  • 241
    • 84950341726 scopus 로고    scopus 로고
    • Direct light-driven water oxidation by a ladder-type conjugated polymer photoanode
    • Bornoz P, Prevot M S, Yu X Y, Guijarro N and Sivula K 2015 Direct light-driven water oxidation by a ladder-type conjugated polymer photoanode J. Am. Chem. Soc. 137 15338
    • (2015) J. Am. Chem. Soc. , vol.137
    • Bornoz, P.1    Prevot, M.S.2    Yu, X.Y.3    Guijarro, N.4    Sivula, K.5
  • 245
    • 84925115483 scopus 로고    scopus 로고
    • A theoretical analysis of optical absorption limits and performance of tandem devices and series interconnected architectures for solar hydrogen production
    • Jacobsson T J, Fjallstrom V, Edoff M and Edvinsson T 2015 A theoretical analysis of optical absorption limits and performance of tandem devices and series interconnected architectures for solar hydrogen production Sol. Energy Mater. Sol. Cells 138 86
    • (2015) Sol. Energy Mater. Sol. Cells , vol.138 , pp. 86
    • Jacobsson, T.J.1    Fjallstrom, V.2    Edoff, M.3    Edvinsson, T.4
  • 247
    • 0001494058 scopus 로고
    • P–n photoelectrolysis cells
    • Nozik A J 1976 p–n photoelectrolysis cells Appl. Phys. Lett. 29 150
    • (1976) Appl. Phys. Lett , vol.29 , pp. 150
    • Nozik, A.J.1
  • 248
    • 0017598026 scopus 로고
    • Stable photoelectrochemical cells for splitting of water
    • Ohashi K, Mccann J and Bockris J O M 1977 Stable photoelectrochemical cells for splitting of water Nature 266 610
    • (1977) Nature , vol.266 , pp. 610
    • Ohashi, K.1    McCann, J.2    Bockris, J.O.M.3
  • 249
    • 53149144743 scopus 로고    scopus 로고
    • P-type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation
    • Mor G K, Varghese O K, Wilke R H T, Sharma S, Shankar K, Latempa T J, Choi K S and Grimes C A 2008 p-type Cu–Ti–O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation Nano Lett. 8 1906
    • (2008) Nano Lett , vol.8 , pp. 1906
    • Mor, G.K.1    Varghese, O.K.2    Wilke, R.H.T.3    Sharma, S.4    Shankar, K.5    Latempa, T.J.6    Choi, K.S.7    Grimes, C.A.8
  • 250
    • 84879106363 scopus 로고    scopus 로고
    • A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting
    • Liu C, Tang J Y, Chen H M, Liu B and Yang P D 2013 A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting Nano Lett. 13 2989
    • (2013) Nano Lett , vol.13 , pp. 2989
    • Liu, C.1    Tang, J.Y.2    Chen, H.M.3    Liu, B.4    Yang, P.D.5
  • 254
    • 84879910528 scopus 로고    scopus 로고
    • Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination
    • Chen Q P, Li J H, Li X J, Huang K, Zhou B X and Shangguan W F 2013 Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination ChemSusChem 6 1276
    • (2013) Chemsuschem , vol.6 , pp. 1276
    • Chen, Q.P.1    Li, J.H.2    Li, X.J.3    Huang, K.4    Zhou, B.X.5    Shangguan, W.F.6
  • 255
    • 84922897090 scopus 로고    scopus 로고
    • Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system
    • Walczak K et al 2015 Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system ChemSusChem 8 544
    • (2015) Chemsuschem , vol.8 , pp. 544
    • Walczak, K.1
  • 258
    • 84925239913 scopus 로고    scopus 로고
    • 2 solid solution with visible light response in photocatalytic and photoelectrochemical solar water splitting systems
    • 2 solid solution with visible light response in photocatalytic and photoelectrochemical solar water splitting systems J. Phys. Chem. Lett. 6 1042
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 1042
    • Kato, T.1    Hakari, Y.2    Ikeda, S.3    Jia, Q.X.4    Iwase, A.5    Kudo, A.6
  • 259
    • 84954075654 scopus 로고    scopus 로고
    • Overall photoelectrochemical water splitting using tandem cell under simulated sunlight
    • Kim J H, Kaneko H, Minegishi T, Kubota J, Domen K and Lee J S 2016 Overall photoelectrochemical water splitting using tandem cell under simulated sunlight ChemSusChem 9 61
    • (2016) Chemsuschem , vol.9 , pp. 61
    • Kim, J.H.1    Kaneko, H.2    Minegishi, T.3    Kubota, J.4    Domen, K.5    Lee, J.S.6
  • 260
    • 84958619816 scopus 로고    scopus 로고
    • Multifunctional coatings from scalable single source precursor chemistry in tandem photoelectrochemical water splitting
    • Lai Y H, Palm D W and Reisner E 2015 Multifunctional coatings from scalable single source precursor chemistry in tandem photoelectrochemical water splitting Adv. Energy Mater. 5 1501668
    • (2015) Adv. Energy Mater. , vol.5
    • Lai, Y.H.1    Palm, D.W.2    Reisner, E.3
  • 263
    • 85017507850 scopus 로고    scopus 로고
    • Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes
    • Ye K H, Wang Z, Gu J, Xiang S, Yuan Y, Zhu Y, Zhang Y, Mai W and Yang S 2017 Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes Energy Environ. Sci. 10 772
    • (2017) Energy Environ. Sci. , vol.10 , pp. 772
    • Ye, K.H.1    Wang, Z.2    Gu, J.3    Xiang, S.4    Yuan, Y.5    Zhu, Y.6    Zhang, Y.7    Mai, W.8    Yang, S.9
  • 264
    • 85008600471 scopus 로고    scopus 로고
    • 4 photocatalyst for sun-driven water oxidation: Top-performing photoanodes and scale-up challenges
    • 4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges Catalysts 7 13
    • (2017) Catalysts , vol.7 , pp. 13
    • Tolod, K.1    Hernández, S.2    Russo, N.3
  • 265
    • 84907578473 scopus 로고    scopus 로고
    • An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system
    • Jin J, Walczak K, Singh M R, Karp C, Lewis N S and Xiang C X 2014 An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system Energy Environ. Sci. 7 3371
    • (2014) Energy Environ. Sci. , vol.7 , pp. 3371
    • Jin, J.1    Walczak, K.2    Singh, M.R.3    Karp, C.4    Lewis, N.S.5    Xiang, C.X.6
  • 266
    • 84940515656 scopus 로고    scopus 로고
    • An electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH
    • Singh M R, Papadantonakis K, Xiang C X and Lewis N S 2015 An electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH Energy Environ. Sci. 8 2760
    • (2015) Energy Environ. Sci. , vol.8 , pp. 2760
    • Singh, M.R.1    Papadantonakis, K.2    Xiang, C.X.3    Lewis, N.S.4
  • 267
    • 84908429197 scopus 로고    scopus 로고
    • Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting
    • Yang H B, Miao J W, Hung S F, Huo F W, Chen H M and Liu B 2014 Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting ACS Nano 8 10403
    • (2014) ACS Nano , vol.8
    • Yang, H.B.1    Miao, J.W.2    Hung, S.F.3    Huo, F.W.4    Chen, H.M.5    Liu, B.6
  • 268
    • 85006925524 scopus 로고    scopus 로고
    • 2S–ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting
    • 2S–ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting J. Alloys Compd. 698 133
    • (2017) J. Alloys Compd. , vol.698 , pp. 133
    • Bai, Z.M.1    Zhang, Y.H.2
  • 269
    • 84944345233 scopus 로고    scopus 로고
    • A metal-nitride nanowire dual-photoelectrode device for unassisted solar-to-hydrogen conversion under parallel illumination
    • AlOtaibi B, Fan S, Vanka S, Kibria M G and Mi Z 2015 A metal-nitride nanowire dual-photoelectrode device for unassisted solar-to-hydrogen conversion under parallel illumination Nano Lett. 15 6821
    • (2015) Nano Lett , vol.15 , pp. 6821
    • Alotaibi, B.1    Fan, S.2    Vanka, S.3    Kibria, M.G.4    Mi, Z.5
  • 271
    • 85021716733 scopus 로고    scopus 로고
    • Bismuth vanadate as a platform for accelerating discovery and development of complex transition-metal oxide photoanodes
    • Sharp I D, Cooper J K, Toma F M and Buonsanti R 2017 Bismuth vanadate as a platform for accelerating discovery and development of complex transition-metal oxide photoanodes ACS Energy Lett. 2 139
    • (2017) ACS Energy Lett , vol.2 , pp. 139
    • Sharp, I.D.1    Cooper, J.K.2    Toma, F.M.3    Buonsanti, R.4
  • 273
    • 84946105911 scopus 로고    scopus 로고
    • Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators
    • Hu S, Lewis N S, Ager J W, Yang J H, McKone J R and Strandwitz N C 2015 Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators J. Phys. Chem. C 119 24201
    • (2015) J. Phys. Chem. C , vol.119
    • Hu, S.1    Lewis, N.S.2    Ager, J.W.3    Yang, J.H.4    McKone, J.R.5    Strandwitz, N.C.6
  • 274
    • 84979584118 scopus 로고    scopus 로고
    • Atomic layer deposited corrosion protection: A path to stable and efficient photoelectrochemical cells
    • Scheuermann A G and McIntyre P C 2016 Atomic layer deposited corrosion protection: a path to stable and efficient photoelectrochemical cells J. Phys. Chem. Lett. 7 2867
    • (2016) J. Phys. Chem. Lett. , vol.7 , pp. 2867
    • Scheuermann, A.G.1    McIntyre, P.C.2
  • 276
    • 85025075433 scopus 로고    scopus 로고
    • Emerging approaches to stabilise photocorrodible electrodes and catalysts for solar fuel applications
    • Crespo-Quesada M and Reisner E 2017 Emerging approaches to stabilise photocorrodible electrodes and catalysts for solar fuel applications Energy Environ. Sci. 10 1116
    • (2017) Energy Environ. Sci. , vol.10 , pp. 1116
    • Crespo-Quesada, M.1    Reisner, E.2
  • 277
    • 85018381159 scopus 로고    scopus 로고
    • Recent developments in complex metal oxide photoelectrodes
    • Abdi F F and Berglund S P 2017 Recent developments in complex metal oxide photoelectrodes J. Phys. D: Appl. Phys. 50 193002
    • (2017) J. Phys. D: Appl. Phys. , vol.50
    • Abdi, F.F.1    Berglund, S.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.