메뉴 건너뛰기




Volumn 16, Issue 1, 2016, Pages 70-81

Materials for solar fuels and chemicals

Author keywords

[No Author keywords available]

Indexed keywords

CATALYSTS; FUELS; INTERFACES (MATERIALS); WATER ABSORPTION;

EID: 85006964017     PISSN: 14761122     EISSN: 14764660     Source Type: Journal    
DOI: 10.1038/nmat4778     Document Type: Article
Times cited : (1246)

References (153)
  • 1
    • 84883874249 scopus 로고    scopus 로고
    • Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation
    • Appel, A. M., et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113, 6621-6658 (2013
    • (2013) Chem. Rev , vol.113 , pp. 6621-6658
    • Appel, A.M.1
  • 2
    • 77955302288 scopus 로고    scopus 로고
    • Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols
    • Chen, Z., et al. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3-16 (2010
    • (2010) J. Mater. Res , vol.25 , pp. 3-16
    • Chen, Z.1
  • 3
    • 84943193278 scopus 로고    scopus 로고
    • Particle suspension reactors and materials for solar-driven water splitting
    • Fabian, D. M., et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825-2850 (2015
    • (2015) Energy Environ. Sci , vol.8 , pp. 2825-2850
    • Fabian, D.M.1
  • 4
    • 84941690718 scopus 로고    scopus 로고
    • Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
    • Ager, J. W., Shaner, M. R., Walczak, K. A., Sharp, I. D., & ARDO, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811-2824 (2015
    • (2015) Energy Environ. Sci , vol.8 , pp. 2811-2824
    • Ager, J.W.1    Shaner, M.R.2    Walczak, K.A.3    Sharp, I.D.4    Ardo, S.5
  • 5
    • 0032540476 scopus 로고    scopus 로고
    • A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
    • Khaselev, O., & Turner, J. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425-427 (1998
    • (1998) Science , vol.280 , pp. 425-427
    • Khaselev, O.1    Turner, J.2
  • 6
    • 0033634510 scopus 로고    scopus 로고
    • Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis
    • Licht, S., et al. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920-8924 (2000
    • (2000) J. Phys. Chem. B , vol.104 , pp. 8920-8924
    • Licht, S.1
  • 7
    • 84940507336 scopus 로고    scopus 로고
    • Renewable fuels from concentrated solar power: Towards practical artificial photosynthesis
    • Bonke, S. A., Wiechen, M., MacFarlane, D. R., & Spiccia, L. Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ. Sci. 8, 2791-2796 (2015
    • (2015) Energy Environ. Sci , vol.8 , pp. 2791-2796
    • Bonke, S.A.1    Wiechen, M.2    MacFarlane, D.R.3    Spiccia, L.4
  • 8
    • 84886721800 scopus 로고    scopus 로고
    • Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell
    • Fujii, K., et al. Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int. J. Hydrogen Energy 38, 14424-14432 (2013
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 14424-14432
    • Fujii, K.1
  • 9
    • 84943312030 scopus 로고    scopus 로고
    • A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells
    • Akihiro, N., et al. A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl. Phys. Express 8, 107101 (2015
    • (2015) Appl. Phys. Express , vol.8 , pp. 107101
    • Akihiro, N.1
  • 10
    • 84994018369 scopus 로고    scopus 로고
    • Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
    • Jia, J., et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016
    • (2016) Nat. Commun , vol.7 , pp. 13237
    • Jia, J.1
  • 12
    • 84931275466 scopus 로고    scopus 로고
    • Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics
    • Schreier, M., et al. Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nat. Commun. 6, 7326 (2015
    • (2015) Nat. Commun , vol.6 , pp. 7326
    • Schreier, M.1
  • 13
    • 84936850662 scopus 로고    scopus 로고
    • A monolithic device for CO2 photoreduction to generate liquid organic substances in a single-compartment reactor
    • Arai, T., Sato, S., & Morikawa, T. A monolithic device for CO2 photoreduction to generate liquid organic substances in a single-compartment reactor. Energy Environ. Sci. 8, 1998-2002 (2015
    • (2015) Energy Environ. Sci , vol.8 , pp. 1998-2002
    • Arai, T.1    Sato, S.2    Morikawa, T.3
  • 14
    • 84959017370 scopus 로고    scopus 로고
    • Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction
    • Schreier, M., et al. Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J. Am. Chem. Soc. 138, 1938-1946 (2016
    • (2016) J. Am. Chem. Soc , vol.138 , pp. 1938-1946
    • Schreier, M.1
  • 15
    • 84928044052 scopus 로고    scopus 로고
    • Synthesis and characterization of a quaternary nanocomposite based on TiO2/CdS/rGO/Pt and its application in the photoreduction of CO2 to methane under visible light
    • Benedetti, J. E., Bernardo, D. R., Morais, A., Bettini, J., & Nogueira, A. F. Synthesis and characterization of a quaternary nanocomposite based on TiO2/CdS/rGO/Pt and its application in the photoreduction of CO2 to methane under visible light. RSC Adv. 5, 33914-33922 (2015
    • (2015) RSC Adv , vol.5 , pp. 33914-33922
    • Benedetti, J.E.1    Bernardo, D.R.2    Morais, A.3    Bettini, J.4    Nogueira, A.F.5
  • 16
    • 34548180960 scopus 로고
    • Detailed balance limit of efficiency of p-n junction solar cells
    • Shockley, W., & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510-519 (1961
    • (1961) J. Appl. Phys , vol.32 , pp. 510-519
    • Shockley, W.1    Queisser, H.J.2
  • 17
    • 36849107400 scopus 로고
    • Some thermodynamics of photochemical systems
    • Ross, R. T. Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590-4593 (1967
    • (1967) J. Chem. Phys , vol.46 , pp. 4590-4593
    • Ross, R.T.1
  • 18
    • 0021439293 scopus 로고
    • Efficiency of splitting water with semiconducting photoelectrodes
    • Weber, M. F., & Dignam, M. J. Efficiency of splitting water with semiconducting photoelectrodes. J. Electrochem. Soc. 131, 1258-1265 (1984
    • (1984) J. Electrochem. Soc , vol.131 , pp. 1258-1265
    • Weber, M.F.1    Dignam, M.J.2
  • 19
    • 0022506567 scopus 로고
    • Splitting water with semiconducting photoelectrodes-efficiency considerations
    • Weber, M., & Dignam, M. Splitting water with semiconducting photoelectrodes-efficiency considerations. Int. J. Hydrogen Energy 11, 225-232 (1986
    • (1986) Int. J. Hydrogen Energy , vol.11 , pp. 225-232
    • Weber, M.1    Dignam, M.2
  • 20
    • 0000697223 scopus 로고    scopus 로고
    • Photoelectrochemical production of hydrogen: Engineering loss analysis
    • Rocheleau, R. E., & Miller, E. L. Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrogen Energy 22, 771-782 (1997
    • (1997) Int. J. Hydrogen Energy , vol.22 , pp. 771-782
    • Rocheleau, R.E.1    Miller, E.L.2
  • 21
    • 0000658390 scopus 로고
    • Limiting and realizable efficiencies of solar photolysis of water
    • Bolton, J. R., Strickler, S. J., & Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495-500 (1985
    • (1985) Nature , vol.316 , pp. 495-500
    • Bolton, J.R.1    Strickler, S.J.2    Connolly, J.S.3
  • 22
    • 84870900511 scopus 로고    scopus 로고
    • Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
    • Haussener, S., et al. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 5, 9922-9935 (2012
    • (2012) Energy Environ. Sci , vol.5 , pp. 9922-9935
    • Haussener, S.1
  • 23
    • 84887858384 scopus 로고    scopus 로고
    • Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
    • Haussener, S., Hu, S., Xiang, C., Weber, A. Z., & Lewis, N. S. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 3605-3618 (2013
    • (2013) Energy Environ. Sci , vol.6 , pp. 3605-3618
    • Haussener, S.1    Hu, S.2    Xiang, C.3    Weber, A.Z.4    Lewis, N.S.5
  • 24
    • 84883669048 scopus 로고    scopus 로고
    • An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
    • Hu, S., Xiang, C., Haussener, S., Berger, A. D., & Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984-2993 (2013
    • (2013) Energy Environ. Sci , vol.6 , pp. 2984-2993
    • Hu, S.1    Xiang, C.2    Haussener, S.3    Berger, A.D.4    Lewis, N.S.5
  • 25
    • 84901022954 scopus 로고    scopus 로고
    • Modeling Practical performance limits of photoelectrochemical water splitting based on the current state of materials research
    • Seitz, L. C., et al. Modeling Practical performance limits of photoelectrochemical water splitting based on the current state of materials research. Chem Sus Chem 7, 1372-1385 (2014
    • (2014) Chem Sus Chem , vol.7 , pp. 1372-1385
    • Seitz, L.C.1
  • 26
    • 84906242019 scopus 로고    scopus 로고
    • Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices
    • Döscher, H., et al. Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices. Energy Environ. Sci. 7, 2951-2956 (2014
    • (2014) Energy Environ. Sci , vol.7 , pp. 2951-2956
    • Döscher, H.1
  • 27
    • 0017552270 scopus 로고
    • Limits on the yield of photochemical solar energy conversion
    • Ross, R. T., & Hsiao, T.-L. Limits on the yield of photochemical solar energy conversion. J. Appl. Phys. 48, 4783-4785 (1977
    • (1977) J. Appl. Phys , vol.48 , pp. 4783-4785
    • Ross, R.T.1    Hsiao, T.-L.2
  • 28
    • 33750029921 scopus 로고    scopus 로고
    • Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers
    • Hanna, M. C., & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006
    • (2006) J. Appl. Phys , vol.100 , pp. 074510
    • Hanna, M.C.1    Nozik, A.J.2
  • 29
    • 77957692480 scopus 로고    scopus 로고
    • Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes
    • Sheng, W., Gasteiger, H. A., & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529-B1536 (2010
    • (2010) J. Electrochem. Soc , vol.157 , pp. B1529-B1536
    • Sheng, W.1    Gasteiger, H.A.2    Shao-Horn, Y.3
  • 30
    • 84963730550 scopus 로고
    • Hydrogen overvoltage on bright platinum
    • Schuldiner, S. Hydrogen overvoltage on bright platinum. J. Electrochem. Soc. 99, 488-494 (1952
    • (1952) J. Electrochem. Soc , vol.99 , pp. 488-494
    • Schuldiner, S.1
  • 31
    • 84919698565 scopus 로고    scopus 로고
    • Molybdenum phosphosulfide: An active, acid-stable, Earth-abundant catalyst for the hydrogen evolution reaction
    • Kibsgaard, J., & Jaramillo, T. F. Molybdenum phosphosulfide: an active, acid-stable, Earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53, 14433-14437 (2014
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 14433-14437
    • Kibsgaard, J.1    Jaramillo, T.F.2
  • 32
    • 84910070418 scopus 로고    scopus 로고
    • Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials
    • Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P., & Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957-3971 (2014
    • (2014) ACS Catal , vol.4 , pp. 3957-3971
    • Benck, J.D.1    Hellstern, T.R.2    Kibsgaard, J.3    Chakthranont, P.4    Jaramillo, T.F.5
  • 33
    • 84867840741 scopus 로고    scopus 로고
    • Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
    • Kibsgaard, J., Chen, Z., Reinecke, B. N., & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963-969 (2012
    • (2012) Nat. Mater , vol.11 , pp. 963-969
    • Kibsgaard, J.1    Chen, Z.2    Reinecke, B.N.3    Jaramillo, T.F.4
  • 34
    • 84863011992 scopus 로고    scopus 로고
    • Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions
    • Lee, Y., Suntivich, J., May, K. J., Perry, E. E., & Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399-404 (2012
    • (2012) J. Phys. Chem. Lett , vol.3 , pp. 399-404
    • Lee, Y.1    Suntivich, J.2    May, K.J.3    Perry, E.E.4    Shao-Horn, Y.5
  • 35
    • 84867498721 scopus 로고    scopus 로고
    • Solution-cast metal oxide thin film electrocatalysts for oxygen evolution
    • Trotochaud, L., Ranney, J. K., Williams, K. N., & Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253-17261 (2012
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 17253-17261
    • Trotochaud, L.1    Ranney, J.K.2    Williams, K.N.3    Boettcher, S.W.4
  • 36
    • 83255187152 scopus 로고    scopus 로고
    • A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
    • Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383-1385 (2011
    • (2011) Science , vol.334 , pp. 1383-1385
    • Suntivich, J.1    May, K.J.2    Gasteiger, H.A.3    Goodenough, J.B.4    Shao-Horn, Y.5
  • 37
    • 84901052482 scopus 로고    scopus 로고
    • Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2
    • Stoerzinger, K. A., Qiao, L., Biegalski, M. D., & Shao-Horn, Y. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636-1641 (2014
    • (2014) J. Phys. Chem. Lett , vol.5 , pp. 1636-1641
    • Stoerzinger, K.A.1    Qiao, L.2    Biegalski, M.D.3    Shao-Horn, Y.4
  • 38
    • 85017073501 scopus 로고    scopus 로고
    • Gold-supported cerium-doped NiOx catalysts for water oxidation
    • Ng, J. W. D., et al. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 1, 16053 (2016
    • (2016) Nat. Energy , vol.1 , pp. 16053
    • Ng, J.W.D.1
  • 39
    • 84958851688 scopus 로고    scopus 로고
    • Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes
    • Hellstern, T. R., Benck, J. D., Kibsgaard, J., Hahn, C., & Jaramillo, T. F. Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Adv. Energy Mater. 6, 1501758 (2016
    • (2016) Adv. Energy Mater , vol.6 , pp. 1501758
    • Hellstern, T.R.1    Benck, J.D.2    Kibsgaard, J.3    Hahn, C.4    Jaramillo, T.F.5
  • 40
    • 84946763325 scopus 로고    scopus 로고
    • Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels
    • Singh, M. R., Clark, E. L., & Bell, A. T. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels. Proc. Natl Acad. Sci. USA 112, E6111-E6118 (2015
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. E6111-E6118
    • Singh, M.R.1    Clark, E.L.2    Bell, A.T.3
  • 42
    • 84883008345 scopus 로고    scopus 로고
    • Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
    • Pinaud, B. A., et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983-2002 (2013
    • (2013) Energy Environ. Sci , vol.6 , pp. 1983-2002
    • Pinaud, B.A.1
  • 43
    • 84908004617 scopus 로고    scopus 로고
    • Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting
    • Sathre, R., et al. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 7, 3264-3278 (2014
    • (2014) Energy Environ. Sci , vol.7 , pp. 3264-3278
    • Sathre, R.1
  • 44
    • 84960834531 scopus 로고    scopus 로고
    • Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology
    • Sathre, R., et al. Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology. Energy Environ. Sci. 9, 803-819 (2016
    • (2016) Energy Environ. Sci , vol.9 , pp. 803-819
    • Sathre, R.1
  • 45
    • 84979927797 scopus 로고    scopus 로고
    • Semiconducting materials for photoelectrochemical energy conversion
    • Sivula, K., & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016
    • (2016) Nat. Rev. Mater , vol.1 , pp. 15010
    • Sivula, K.1    Van De Krol, R.2
  • 47
    • 84902144692 scopus 로고    scopus 로고
    • Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
    • Hisatomi, T., Kubota, J., & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520-7535 (2014
    • (2014) Chem. Soc. Rev , vol.43 , pp. 7520-7535
    • Hisatomi, T.1    Kubota, J.2    Domen, K.3
  • 48
    • 34547189139 scopus 로고    scopus 로고
    • High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors
    • Arai, T., Konishi, Y., Iwasaki, Y., Sugihara, H., & Sayama, K. High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J. Comb. Chem. 9, 574-581 (2007
    • (2007) J. Comb. Chem , vol.9 , pp. 574-581
    • Arai, T.1    Konishi, Y.2    Iwasaki, Y.3    Sugihara, H.4    Sayama, K.5
  • 49
    • 84874889800 scopus 로고    scopus 로고
    • Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution
    • Berglund, S. P., Lee, H. C., Nunez, P. D., Bard, A. J., & Mullins, C. B. Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. Phys. Chem. Chem. Phys. 15, 4554-4565 (2013
    • (2013) Phys. Chem. Chem. Phys , vol.15 , pp. 4554-4565
    • Berglund, S.P.1    Lee, H.C.2    Nunez, P.D.3    Bard, A.J.4    Mullins, C.B.5
  • 50
    • 84886996545 scopus 로고    scopus 로고
    • Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
    • Jain, A., et al.commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013
    • (2013) APL Mater , vol.1 , pp. 011002
    • Jain, A.1
  • 51
    • 84869395155 scopus 로고    scopus 로고
    • The computational materials repository
    • Landis, D. D., et al. The Computational Materials Repository.comput. Sci. Eng. 14, 51-57 (2012
    • (2012) Comput. Sci. Eng , vol.14 , pp. 51-57
    • Landis, D.D.1
  • 52
    • 0000396135 scopus 로고
    • Self-consistent approximation to the kohn-sham exchange potential
    • Gritsenko, O., van Leeuwen, R., van Lenthe, E., & Baerends, E. J. Self-consistent approximation to the Kohn-Sham exchange potential. Phys. Rev. A 51, 1944-1954 (1995
    • (1995) Phys. Rev. A , vol.51 , pp. 1944-1954
    • Gritsenko, O.1    Van Leeuwen, R.2    Van Lenthe, E.3    Baerends, E.J.4
  • 53
    • 0037799714 scopus 로고    scopus 로고
    • Hybrid functionals based on a screened Coulomb potential
    • Heyd, J., Scuseria, G. E., & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207-8215 (2003
    • (2003) J. Chem. Phys , vol.118 , pp. 8207-8215
    • Heyd, J.1    Scuseria, G.E.2    Ernzerhof, M.3
  • 54
    • 78149310664 scopus 로고    scopus 로고
    • Efficient band gap prediction for solids
    • Chan, M. K. Y., & Ceder, G. Efficient band gap prediction for solids. Phys. Rev. Lett. 105, 196403 (2010
    • (2010) Phys. Rev. Lett , vol.105 , pp. 196403
    • Chan, M.K.Y.1    Ceder, G.2
  • 55
    • 77957666308 scopus 로고    scopus 로고
    • Kohn-Sham potential with discontinuity for band gap materials
    • Kuisma, M., Ojanen, J., Enkovaara, J., & Rantala, T. T. Kohn-Sham potential with discontinuity for band gap materials. Phys. Rev. B 82, 115106 (2010
    • (2010) Phys. Rev. B , vol.82 , pp. 115106
    • Kuisma, M.1    Ojanen, J.2    Enkovaara, J.3    Rantala, T.T.4
  • 56
    • 84921444588 scopus 로고    scopus 로고
    • New light-harvesting materials using accurate and efficient bandgap calculations
    • Castelli, I. E., et al. New light-harvesting materials using accurate and efficient bandgap calculations. Adv. Energy Mater. 5, 1400915 (2015
    • (2015) Adv. Energy Mater , vol.5 , pp. 1400915
    • Castelli, I.E.1
  • 57
    • 84856763665 scopus 로고    scopus 로고
    • Computational screening of perovskite metal oxides for optimal solar light capture
    • Castelli, I. E., et al.computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ. Sci. 5, 5814-5819 (2012
    • (2012) Energy Environ. Sci , vol.5 , pp. 5814-5819
    • Castelli, I.E.1
  • 58
    • 84871289626 scopus 로고    scopus 로고
    • First principles high throughput screening of oxynitrides for water-splitting photocatalysts
    • Wu, Y., Lazic, P., Hautier, G., Persson, K., & Ceder, G. First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy Environ. Sci. 6, 157-168 (2013
    • (2013) Energy Environ. Sci , vol.6 , pp. 157-168
    • Wu, Y.1    Lazic, P.2    Hautier, G.3    Persson, K.4    Ceder, G.5
  • 59
    • 84870039726 scopus 로고    scopus 로고
    • New cubic perovskites for one-and two-photon water splitting using the computational materials repository
    • Castelli, I. E., et al. New cubic perovskites for one-and two-photon water splitting using the computational materials repository. Energy Environ. Sci. 5, 9034-9043 (2012
    • (2012) Energy Environ. Sci , vol.5 , pp. 9034-9043
    • Castelli, I.E.1
  • 60
    • 84928209433 scopus 로고    scopus 로고
    • Mn2V2O7: An Earth abundant light absorber for solar water splitting
    • Yan, Q., et al. Mn2V2O7: an Earth abundant light absorber for solar water splitting. Adv. Energy Mater. 5, 1401840 (2015
    • (2015) Adv. Energy Mater , vol.5 , pp. 1401840
    • Yan, Q.1
  • 62
    • 84907428372 scopus 로고    scopus 로고
    • Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts
    • Luo, J., et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593-1596 (2014
    • (2014) Science , vol.345 , pp. 1593-1596
    • Luo, J.1
  • 63
    • 84926444089 scopus 로고    scopus 로고
    • Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
    • McCrory, C. C. L., et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347-4357 (2015
    • (2015) J. Am. Chem. Soc , vol.137 , pp. 4347-4357
    • McCrory, C.C.L.1
  • 64
    • 84943195332 scopus 로고    scopus 로고
    • Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends
    • Kibsgaard, J., et al. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 8, 3022-3029 (2015
    • (2015) Energy Environ. Sci , vol.8 , pp. 3022-3029
    • Kibsgaard, J.1
  • 65
    • 11144272645 scopus 로고    scopus 로고
    • Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium
    • Navarro-Flores, E., Chong, Z., & Omanovic, S. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A Chem. 226, 179-197 (2005
    • (2005) J. Mol. Catal. A Chem , vol.226 , pp. 179-197
    • Navarro-Flores, E.1    Chong, Z.2    Omanovic, S.3
  • 66
    • 47749095923 scopus 로고    scopus 로고
    • Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution
    • Krstajic, N., et al. Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution. Int. J. Hydrogen Energy 33, 3676-3687 (2008
    • (2008) Int. J. Hydrogen Energy , vol.33 , pp. 3676-3687
    • Krstajic, N.1
  • 67
    • 0028374353 scopus 로고
    • Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis
    • Fan, C. Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis. J. Electrochem. Soc. 141, 382-387 (1994
    • (1994) J. Electrochem. Soc , vol.141 , pp. 382-387
    • Fan, C.1
  • 68
    • 84896374437 scopus 로고    scopus 로고
    • Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction
    • Li, D. J., et Al. Molybdenum Sulfide/N-doped CNT Forest Hybrid Catalysts for High-performance Hydrogen Evolution Reaction. Nano Lett. 14, 1228-1233 (2014
    • (2014) Nano Lett , vol.14 , pp. 1228-1233
    • Li, D.J.1
  • 69
    • 84926444089 scopus 로고    scopus 로고
    • Benchmarking HER and OER electrocatalysts for solar water splitting devices
    • McCrory, C. C. L., et al. Benchmarking HER and OER electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347-4357 (2015
    • (2015) J. Am. Chem. Soc , vol.137 , pp. 4347-4357
    • McCrory, C.C.L.1
  • 70
    • 84900346581 scopus 로고    scopus 로고
    • Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation
    • Trotochaud, L., Young, S. L., Ranney, J. K., & Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744-6753 (2014
    • (2014) J. Am. Chem. Soc , vol.136 , pp. 6744-6753
    • Trotochaud, L.1    Young, S.L.2    Ranney, J.K.3    Boettcher, S.W.4
  • 71
    • 84883088089 scopus 로고    scopus 로고
    • An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen
    • Louie, M. W., & Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329-12337 (2013
    • (2013) J. Am. Chem. Soc , vol.135 , pp. 12329-12337
    • Louie, M.W.1    Bell, A.T.2
  • 72
    • 33750453016 scopus 로고    scopus 로고
    • Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
    • Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. B., & Nørskov, J. K.computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909-913 (2006
    • (2006) Nat. Mater , vol.5 , pp. 909-913
    • Greeley, J.1    Jaramillo, T.F.2    Bonde, J.3    Chorkendorff, I.B.4    Nørskov, J.K.5
  • 73
    • 17644368513 scopus 로고    scopus 로고
    • Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution
    • Hinnemann, B., et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308-5309 (2005
    • (2005) J. Am. Chem. Soc , vol.127 , pp. 5308-5309
    • Hinnemann, B.1
  • 75
    • 70349272471 scopus 로고    scopus 로고
    • Cyclopentadienyl ruthenium-nickel catalysts for biomimetic hydrogen evolution: Electrocatalytic properties and mechanistic DFT studies
    • Canaguier, S., et al. Cyclopentadienyl ruthenium-nickel catalysts for biomimetic hydrogen evolution: electrocatalytic properties and mechanistic DFT studies. Chemistry 15, 9350-9364 (2009
    • (2009) Chemistry , vol.15 , pp. 9350-9364
    • Canaguier, S.1
  • 76
    • 84899629076 scopus 로고    scopus 로고
    • Hydrogen evolution by a metal-free electrocatalyst
    • Zheng, Y., et al. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014
    • (2014) Nat. Commun , vol.5 , pp. 3783
    • Zheng, Y.1
  • 77
    • 80051809046 scopus 로고    scopus 로고
    • Universality in oxygen evolution electrocatalysis on oxide surfaces
    • Man, I. C., et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem Cat Chem 3, 1159-1165 (2011
    • (2011) Chem Cat Chem , vol.3 , pp. 1159-1165
    • Man, I.C.1
  • 78
    • 84929271425 scopus 로고    scopus 로고
    • A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
    • Zhang, J., Zhao, Z., Xia, Z., & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotech. 10, 444-452 (2015
    • (2015) Nat. Nanotech , vol.10 , pp. 444-452
    • Zhang, J.1    Zhao, Z.2    Xia, Z.3    Dai, L.4
  • 79
    • 84907864570 scopus 로고    scopus 로고
    • Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution
    • Viswanathan, V., Pickrahn, K. L., Luntz, A. C., Bent, S. F., & Nørskov, J. K. Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution. Nano Lett. 14, 5853-5857 (2014
    • (2014) Nano Lett , vol.14 , pp. 5853-5857
    • Viswanathan, V.1    Pickrahn, K.L.2    Luntz, A.C.3    Bent, S.F.4    Nørskov, J.K.5
  • 80
    • 84902682315 scopus 로고    scopus 로고
    • Beyond the volcano limitations in electrocatalysis-oxygen evolution reaction
    • Halck, N. B., Petrykin, V., Krtil, P., & Rossmeisl, J. Beyond the volcano limitations in electrocatalysis-oxygen evolution reaction. Phys. Chem. Chem. Phys. 16, 13682-13688 (2014
    • (2014) Phys. Chem. Chem. Phys , vol.16 , pp. 13682-13688
    • Halck, N.B.1    Petrykin, V.2    Krtil, P.3    Rossmeisl, J.4
  • 82
    • 84856011473 scopus 로고    scopus 로고
    • Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts
    • Peterson, A. A., & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251-258 (2012
    • (2012) J. Phys. Chem. Lett , vol.3 , pp. 251-258
    • Peterson, A.A.1    Nørskov, J.K.2
  • 83
    • 84904467428 scopus 로고    scopus 로고
    • Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction
    • Chan, K., Tsai, C., Hansen, H. A., & Nørskov, J. K. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. Chem Cat Chem 6, 1899-1905 (2014
    • (2014) Chem Cat Chem , vol.6 , pp. 1899-1905
    • Chan, K.1    Tsai, C.2    Hansen, H.A.3    Nørskov, J.K.4
  • 85
    • 9744261716 scopus 로고    scopus 로고
    • Origin of the overpotential for oxygen reduction at a fuel-cell cathode
    • Nørskov, J. K., et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886-17892 (2004
    • (2004) J. Phys. Chem. B , vol.108 , pp. 17886-17892
    • Nørskov, J.K.1
  • 86
    • 34250703763 scopus 로고    scopus 로고
    • Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt 111) electrode
    • Skulason, E., et al. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys. 9, 3241-3250 (2007
    • (2007) Phys. Chem. Chem. Phys , vol.9 , pp. 3241-3250
    • Skulason, E.1
  • 89
    • 84937120035 scopus 로고    scopus 로고
    • Electrochemical barriers made simple
    • Chan, K., & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663-2668 (2015
    • (2015) J. Phys. Chem. Lett , vol.6 , pp. 2663-2668
    • Chan, K.1    Nørskov, J.K.2
  • 90
    • 84960333707 scopus 로고    scopus 로고
    • Direct water decomposition on transition metal surfaces: Structural dependence and catalytic screening
    • Tsai, C., et al. Direct water decomposition on transition metal surfaces: structural dependence and catalytic screening. Catal. Lett. 146, 718-724 (2016
    • (2016) Catal. Lett , vol.146 , pp. 718-724
    • Tsai, C.1
  • 91
    • 1642351472 scopus 로고    scopus 로고
    • Chemical activity of the nitrogenase FeMo cofactor with a central nitrogen ligand: Density functional study
    • Hinnemann, B., & Nørskov, J. K. Chemical activity of the nitrogenase FeMo cofactor with a central nitrogen ligand: density functional study. J. Am. Chem. Soc. 126, 3920-3927 (2004
    • (2004) J. Am. Chem. Soc , vol.126 , pp. 3920-3927
    • Hinnemann, B.1    Nørskov, J.K.2
  • 92
    • 34447326950 scopus 로고    scopus 로고
    • Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts
    • Jaramillo, T. F., et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100-102 (2007
    • (2007) Science , vol.317 , pp. 100-102
    • Jaramillo, T.F.1
  • 93
    • 80054036548 scopus 로고    scopus 로고
    • Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials
    • Chen, Z., et al Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11, 4168-4175 (2011
    • (2011) Nano Lett , vol.11 , pp. 4168-4175
    • Chen, Z.1
  • 94
    • 84866103921 scopus 로고    scopus 로고
    • Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity
    • Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J., & Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2, 1916-1923 (2012
    • (2012) ACS Catal , vol.2 , pp. 1916-1923
    • Benck, J.D.1    Chen, Z.2    Kuritzky, L.Y.3    Forman, A.J.4    Jaramillo, T.F.5
  • 95
    • 57049156528 scopus 로고    scopus 로고
    • Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts
    • Jaramillo, T. F., et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J. Phys. Chem. C 112, 17492-17498 (2008
    • (2008) J. Phys. Chem. C , vol.112 , pp. 17492-17498
    • Jaramillo, T.F.1
  • 96
    • 79955891162 scopus 로고    scopus 로고
    • MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction
    • Li, Y., et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296-7299 (2011
    • (2011) J. Am. Chem. Soc , vol.133 , pp. 7296-7299
    • Li, Y.1
  • 97
    • 84874965738 scopus 로고    scopus 로고
    • Synthesis of MoS2 and MoSe2 films with vertically aligned layers
    • Kong, D., et al Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341-1347 (2013
    • (2013) Nano Lett , vol.13 , pp. 1341-1347
    • Kong, D.1
  • 98
    • 84859945129 scopus 로고    scopus 로고
    • Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles
    • Xiang, Q., Yu, J., & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575-6578 (2012
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 6575-6578
    • Xiang, Q.1    Yu, J.2    Jaroniec, M.3
  • 99
    • 84904570870 scopus 로고    scopus 로고
    • Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction
    • Xiao, P., et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7, 2624-2629 (2014
    • (2014) Energy Environ. Sci , vol.7 , pp. 2624-2629
    • Xiao, P.1
  • 100
    • 84887680701 scopus 로고    scopus 로고
    • Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
    • McCrory, C. C. L., Jung, S., Peters, J. C., & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977-16987 (2013
    • (2013) J. Am. Chem. Soc , vol.135 , pp. 16977-16987
    • McCrory, C.C.L.1    Jung, S.2    Peters, J.C.3    Jaramillo, T.F.4
  • 101
    • 84860385434 scopus 로고    scopus 로고
    • New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
    • Kuhl, K. P., Cave, E. R., Abram, D. N., & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050-7059 (2012
    • (2012) Energy Environ. Sci , vol.5 , pp. 7050-7059
    • Kuhl, K.P.1    Cave, E.R.2    Abram, D.N.3    Jaramillo, T.F.4
  • 102
    • 68349140297 scopus 로고    scopus 로고
    • eds Vayenas, C. G., White, R. E., & Gamboa-Aldeco, M. E. Springer
    • Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G., White, R. E., & Gamboa-Aldeco, M. E.) 89-189 (Springer, 2008
    • (2008) Modern Aspects of Electrochemistry , pp. 89-189
    • Hori, Y.1
  • 103
    • 84907921289 scopus 로고    scopus 로고
    • Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces
    • Kuhl, K. P., et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107-14113 (2014
    • (2014) J. Am. Chem. Soc , vol.136 , pp. 14107-14113
    • Kuhl, K.P.1
  • 104
    • 84874255995 scopus 로고    scopus 로고
    • Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps
    • Nie, X., Esopi, M. R., Janik, M. J., & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459-2462 (2013
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 2459-2462
    • Nie, X.1    Esopi, M.R.2    Janik, M.J.3    Asthagiri, A.4
  • 105
    • 84940842959 scopus 로고    scopus 로고
    • New design paradigm for heterogeneous catalysts
    • Vojvodic, A., & Nørskov, J. K. New design paradigm for heterogeneous catalysts. Natl Sci. Rev. 2, 140-149 (2015
    • (2015) Natl Sci. Rev , vol.2 , pp. 140-149
    • Vojvodic, A.1    Nørskov, J.K.2
  • 106
    • 84923539157 scopus 로고    scopus 로고
    • Improving oxygen electrochemistry through nanoscopic confinement
    • Doyle, A. D., Montoya, J. H., & Vojvodic, A. Improving oxygen electrochemistry through nanoscopic confinement. Chem Cat Chem 7, 738-742 (2015
    • (2015) Chem Cat Chem , vol.7 , pp. 738-742
    • Doyle, A.D.1    Montoya, J.H.2    Vojvodic, A.3
  • 107
    • 80555131146 scopus 로고    scopus 로고
    • Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials
    • Rosen, B. A., et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643-644 (2011
    • (2011) Science , vol.334 , pp. 643-644
    • Rosen, B.A.1
  • 108
    • 84875928664 scopus 로고    scopus 로고
    • Effect of cations on the electrochemical conversion of CO2 to CO
    • Thorson, M. R., Siil, K. I., & Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69-F74 (2012
    • (2012) J. Electrochem. Soc , vol.160 , pp. F69-F74
    • Thorson, M.R.1    Siil, K.I.2    Kenis, P.J.A.3
  • 109
    • 84901827400 scopus 로고    scopus 로고
    • Switching the reaction course of electrochemical CO2 reduction with ionic liquids
    • Sun, L., Ramesha, G. K., Kamat, P. V, & Brennecke, J. F. Switching the reaction course of electrochemical CO2 reduction with ionic liquids. Langmuir 30, 6302-6308 (2014
    • (2014) Langmuir , vol.30 , pp. 6302-6308
    • Sun, L.1    Ramesha, G.K.2    Kamat, P.V.3    Brennecke, J.F.4
  • 110
    • 84870930796 scopus 로고    scopus 로고
    • Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles
    • Chen, Y., Li, C. W., & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969-19972 (2012
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 19969-19972
    • Chen, Y.1    Li, C.W.2    Kanan, M.W.3
  • 111
    • 84899486343 scopus 로고    scopus 로고
    • Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
    • Li, C. W., Ciston, J., & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504-507 (2014
    • (2014) Nature , vol.508 , pp. 504-507
    • Li, C.W.1    Ciston, J.2    Kanan, M.W.3
  • 112
    • 84927928541 scopus 로고    scopus 로고
    • Grain-boundary-dependent CO2 electroreduction activity
    • Feng, X., Jiang, K., Fan, S., & Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 137, 4606-4609 (2015
    • (2015) J. Am. Chem. Soc , vol.137 , pp. 4606-4609
    • Feng, X.1    Jiang, K.2    Fan, S.3    Kanan, M.W.4
  • 114
    • 84903123908 scopus 로고    scopus 로고
    • Departures from the adsorption energy scaling relations for metal carbide catalysts
    • Michalsky, R., Zhang, Y.-J., Medford, A. J., & Peterson, A. A. Departures from the adsorption energy scaling relations for metal carbide catalysts. J. Phys. Chem. C 118, 13026-13034 (2014
    • (2014) J. Phys. Chem. C , vol.118 , pp. 13026-13034
    • Michalsky, R.1    Zhang, Y.-J.2    Medford, A.J.3    Peterson, A.A.4
  • 115
    • 84961619661 scopus 로고    scopus 로고
    • Homogeneously dispersed, multimetal oxygen-evolving catalysts
    • Zhang, B., et al. Homogeneously dispersed, multimetal oxygen-evolving catalysts. Science 352, 333-337 (2016
    • (2016) Science , vol.352 , pp. 333-337
    • Zhang, B.1
  • 116
    • 84877711220 scopus 로고    scopus 로고
    • Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene
    • Tripkovic, V., et al. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J. Phys. Chem. C 117, 9187-9195 (2013
    • (2013) J. Phys. Chem. C , vol.117 , pp. 9187-9195
    • Tripkovic, V.1
  • 117
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima, A., & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38 (1972
    • (1972) Nature , vol.238 , pp. 37-38
    • Fujishima, A.1    Honda, K.2
  • 118
    • 84949117608 scopus 로고    scopus 로고
    • Theoretical evaluation of the surface electrochemistry of perovskites with promising photon absorption properties for solar water splitting
    • Montoya, J. H., Garcia-Mota, M., Nørskov, J. K., & Vojvodic, A. Theoretical evaluation of the surface electrochemistry of perovskites with promising photon absorption properties for solar water splitting. Phys. Chem. Chem. Phys. 17, 2634-2640 (2014
    • (2014) Phys. Chem. Chem. Phys , vol.17 , pp. 2634-2640
    • Montoya, J.H.1    Garcia-Mota, M.2    Nørskov, J.K.3    Vojvodic, A.4
  • 120
    • 78449289476 scopus 로고    scopus 로고
    • Solar water splitting cells
    • Walter, M. G., et al. Solar water splitting cells. Chem. Rev. 110, 6446-6473 (2010
    • (2010) Chem. Rev , vol.110 , pp. 6446-6473
    • Walter, M.G.1
  • 121
    • 84934301407 scopus 로고    scopus 로고
    • Surface modification of semiconductor photoelectrodes
    • Guijarro, N., Prevot, M. S., & Sivula, K. Surface modification of semiconductor photoelectrodes. Phys. Chem. Chem. Phys. 17, 15655-15674 (2015
    • (2015) Phys. Chem. Chem. Phys , vol.17 , pp. 15655-15674
    • Guijarro, N.1    Prevot, M.S.2    Sivula, K.3
  • 122
    • 84966392052 scopus 로고    scopus 로고
    • Semiconductor-electrocatalyst interfaces: Theory, experiment, and applications in photoelectrochemical water splitting
    • Nellist, M. R., Laskowski, F. A. L., Lin, F., Mills, T. J., & Boettcher, S. W. Semiconductor-electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 49, 733-740 (2016
    • (2016) Acc. Chem. Res , vol.49 , pp. 733-740
    • Nellist, M.R.1    Laskowski, F.A.L.2    Lin, F.3    Mills, T.J.4    Boettcher, S.W.5
  • 123
    • 84865852020 scopus 로고    scopus 로고
    • Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode
    • Seger, B., et al. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew. Chem. Int. Ed. 51, 9128-9131 (2012
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 9128-9131
    • Seger, B.1
  • 124
    • 84921682522 scopus 로고    scopus 로고
    • Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials
    • Benck, J. D., et al. Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. Adv. Energy Mater. 4, 1400739 (2014
    • (2014) Adv. Energy Mater , vol.4 , pp. 1400739
    • Benck, J.D.1
  • 125
    • 80052203149 scopus 로고    scopus 로고
    • Evaluation of Pt Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes
    • McKone, J. R., et al. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573-3583 (2011
    • (2011) Energy Environ. Sci , vol.4 , pp. 3573-3583
    • McKone, J.R.1
  • 126
    • 84895106983 scopus 로고    scopus 로고
    • Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters
    • Kibsgaard, J., Jaramillo, T. F., & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. Nat. Chem. 6, 248-253 (2014
    • (2014) Nat. Chem , vol.6 , pp. 248-253
    • Kibsgaard, J.1    Jaramillo, T.F.2    Besenbacher, F.3
  • 127
    • 84904445324 scopus 로고    scopus 로고
    • Photoelectrochemical water splitting at semiconductor electrodes: Fundamental problems and new perspectives
    • Peter, L. M., & Upul Wijayantha, K. G. Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. ChemPhysChem 15, 1983-1995 (2014
    • (2014) Chem Phys Chem , vol.15 , pp. 1983-1995
    • Peter, L.M.1    Upul Wijayantha, K.G.2
  • 128
    • 84878062541 scopus 로고    scopus 로고
    • Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis
    • Sivula, K. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 4, 1624-1633 (2013
    • (2013) J. Phys. Chem. Lett , vol.4 , pp. 1624-1633
    • Sivula, K.1
  • 130
    • 84862545195 scopus 로고    scopus 로고
    • Splitting water with rust: Hematite photoelectrochemistry
    • Hamann, T. W. Splitting water with rust: hematite photoelectrochemistry. Dalt. Trans. 41, 7830-7834 (2012
    • (2012) Dalt. Trans , vol.41 , pp. 7830-7834
    • Hamann, T.W.1
  • 132
    • 84867353435 scopus 로고    scopus 로고
    • Photoelectrochemical and impedance spectroscopic investigation of water oxidation with ?Co-Pi?-coated hematite electrodes
    • Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J., & Hamann, T. W. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with ?Co-Pi?-coated hematite electrodes. J. Am. Chem. Soc. 134, 16693-16700 (2012
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 16693-16700
    • Klahr, B.1    Gimenez, S.2    Fabregat-Santiago, F.3    Bisquert, J.4    Hamann, T.W.5
  • 133
    • 84865118835 scopus 로고    scopus 로고
    • Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting
    • Braun, A., et al. Direct observation of two electron holes in a hematite photoanode during photoelectrochemical water splitting. J. Phys. Chem. C 116, 16870-16875 (2012
    • (2012) J. Phys. Chem. C , vol.116 , pp. 16870-16875
    • Braun, A.1
  • 134
    • 79959833462 scopus 로고    scopus 로고
    • Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers
    • Hisatomi, T., et al. Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. Energy Environ. Sci. 4, 2512-2515 (2011
    • (2011) Energy Environ. Sci , vol.4 , pp. 2512-2515
    • Hisatomi, T.1
  • 135
    • 84865956357 scopus 로고    scopus 로고
    • Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting
    • Barroso, M., et al. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl Acad. Sci. USA 109, 15640-15645 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 15640-15645
    • Barroso, M.1
  • 136
    • 84870158557 scopus 로고    scopus 로고
    • Water splitting: Catalyst or spectator?
    • Gamelin, D. R. Water splitting: catalyst or spectator? Nat. Chem. 4, 965-967 (2012
    • (2012) Nat. Chem , vol.4 , pp. 965-967
    • Gamelin, D.R.1
  • 137
    • 84856424509 scopus 로고    scopus 로고
    • Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst
    • Seabold, J. A., & Choi, K.-S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 134, 2186-2192 (2012
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 2186-2192
    • Seabold, J.A.1    Choi, K.-S.2
  • 138
    • 84896735953 scopus 로고    scopus 로고
    • Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
    • Kim, T. W., & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990-994 (2014
    • (2014) Science , vol.343 , pp. 990-994
    • Kim, T.W.1    Choi, K.-S.2
  • 139
    • 84890523711 scopus 로고    scopus 로고
    • Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes
    • Lin, F., & Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 13, 81-86 (2014
    • (2014) Nat. Mater , vol.13 , pp. 81-86
    • Lin, F.1    Boettcher, S.W.2
  • 140
    • 84940473022 scopus 로고    scopus 로고
    • Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide
    • Zhou, X., et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ. Sci. 8, 2644-2649 (2015
    • (2015) Energy Environ. Sci , vol.8 , pp. 2644-2649
    • Zhou, X.1
  • 141
    • 84963700996 scopus 로고    scopus 로고
    • Band edge engineering of oxide photoanodes for photoelectrochemical water splitting: Integration of subsurface dipoles with atomic-scale control
    • Hikita, Y., et al. Band edge engineering of oxide photoanodes for photoelectrochemical water splitting: integration of subsurface dipoles with atomic-scale control. Adv. Energy Mater. 6, 1502154 (2016
    • (2016) Adv. Energy Mater , vol.6 , pp. 1502154
    • Hikita, Y.1
  • 142
    • 65549144095 scopus 로고    scopus 로고
    • Improved photoelectrochemical performance of Ti-doped α-Fe2O3 thin films by surface modification with fluoride
    • Hu, Y.-S., Kleiman-Shwarsctein, A., Stucky, G. D., & McFarland, E. W. Improved photoelectrochemical performance of Ti-doped α-Fe2O3 thin films by surface modification with fluoride. Chem.commun. 2009, 2652-2654 (2009
    • (2009) Chem.commun , vol.2009 , pp. 2652-2654
    • Hu, Y.-S.1    Kleiman-Shwarsctein, A.2    Stucky, G.D.3    McFarland, E.W.4
  • 143
    • 33749233464 scopus 로고    scopus 로고
    • Chemical and electronic characterization of methyl-terminated Si 111) surfaces by high-resolution synchrotron photoelectron spectroscopy
    • Hunger, R., et al. Chemical and electronic characterization of methyl-terminated Si(111) surfaces by high-resolution synchrotron photoelectron spectroscopy. Phys. Rev. B 72, 045317 (2005
    • (2005) Phys. Rev. B , vol.72 , pp. 045317
    • Hunger, R.1
  • 144
    • 79959495747 scopus 로고    scopus 로고
    • Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
    • Chen, Y. W., et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539-544 (2011
    • (2011) Nat. Mater , vol.10 , pp. 539-544
    • Chen, Y.W.1
  • 146
    • 84936888359 scopus 로고    scopus 로고
    • Crystalline TiO2: A generic and effective electron-conducting protection layer for photoanodes and -cathodes
    • Mei, B., et al. Crystalline TiO2: a generic and effective electron-conducting protection layer for photoanodes and -cathodes. J. Phys. Chem. C 119, 15019-15027 (2015
    • (2015) J. Phys. Chem. C , vol.119 , pp. 15019-15027
    • Mei, B.1
  • 147
    • 84925428446 scopus 로고    scopus 로고
    • Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films
    • Sun, K., et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Proc. Natl Acad. Sci. USA 112, 3612-3617 (2015
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 3612-3617
    • Sun, K.1
  • 148
    • 84908079695 scopus 로고    scopus 로고
    • Iron-treated NiO as a highly transparent p-type protection layer for efficient Si-based photoanodes
    • Mei, B., et al. Iron-treated NiO as a highly transparent p-type protection layer for efficient Si-based photoanodes. J. Phys. Chem. Lett. 5, 3456-3461 (2014
    • (2014) J. Phys. Chem. Lett , vol.5 , pp. 3456-3461
    • Mei, B.1
  • 149
    • 84919625050 scopus 로고    scopus 로고
    • Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2
    • Shaner, M. R., Hu, S., Sun, K., & Lewis, N. S. Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2. Energy Environ. Sci. 8, 203-207 (2015
    • (2015) Energy Environ. Sci , vol.8 , pp. 203-207
    • Shaner, M.R.1    Hu, S.2    Sun, K.3    Lewis, N.S.4
  • 150
    • 84928742224 scopus 로고    scopus 로고
    • Energetics and solvation effects at the photoanode/catalyst interface: Ohmic contact versus Schottky barrier
    • Ping, Y., Goddard, W. A., & Galli, G. A. Energetics and solvation effects at the photoanode/catalyst interface: ohmic contact versus Schottky barrier. J. Am. Chem. Soc. 137, 5264-5267 (2015
    • (2015) J. Am. Chem. Soc , vol.137 , pp. 5264-5267
    • Ping, Y.1    Goddard, W.A.2    Galli, G.A.3
  • 151
    • 84987602259 scopus 로고    scopus 로고
    • Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water
    • Matsubu, J. C., et al. Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water. Catal. Sci. Technol. 6, 6836-6844 (2016
    • (2016) Catal. Sci. Technol , vol.6 , pp. 6836-6844
    • Matsubu, J.C.1
  • 152
    • 84922897090 scopus 로고    scopus 로고
    • Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system
    • Walczak, K., et al. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. Chem Sus Chem 8, 544-551 (2015
    • (2015) Chem Sus Chem , vol.8 , pp. 544-551
    • Walczak, K.1
  • 153
    • 84906948119 scopus 로고    scopus 로고
    • Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles
    • Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S., & Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 126, 5531-5534 (2014
    • (2014) Angew. Chem. Int. Ed. , vol.126 , pp. 5531-5534
    • Popczun, E.J.1    Read, C.G.2    Roske, C.W.3    Lewis, N.S.4    Schaak, R.E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.