메뉴 건너뛰기




Volumn 7, Issue 1, 2017, Pages

Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: Top-performing photoanodes and scale-up challenges

Author keywords

Artificial photosynthesis; BiVO4 photoanode; Solar fuels; Tandem cells; Water oxidation

Indexed keywords


EID: 85008600471     PISSN: None     EISSN: 20734344     Source Type: Journal    
DOI: 10.3390/catal7010013     Document Type: Review
Times cited : (221)

References (103)
  • 1
    • 67849128456 scopus 로고    scopus 로고
    • Powering the planet with solar fuel
    • Gray, H.B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.
    • (2009) Nat. Chem. , vol.1 , pp. 7
    • Gray, H.B.1
  • 5
    • 84929006228 scopus 로고    scopus 로고
    • 4 as photocatalyst for solar fuels production through water splitting: A short review
    • 4 as photocatalyst for solar fuels production through water splitting: A short review. Appl. Catal. A Gen. 2015, 504, 158–170.
    • (2015) Appl. Catal. a Gen. , vol.504 , pp. 158-170
    • Martinez Suarez, C.1    Hernández, S.2    Russo, N.3
  • 6
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
    • (1972) Nature , vol.238 , pp. 37-38
    • Fujishima, A.1    Honda, K.2
  • 7
    • 77951189339 scopus 로고    scopus 로고
    • Catalysts for Solar Fuel Production
    • Hurst, J.K. Catalysts for Solar Fuel Production. Science 2010, 328, 315–316.
    • (2010) Science , vol.328 , pp. 315-316
    • Hurst, J.K.1
  • 8
    • 84955347260 scopus 로고    scopus 로고
    • Solar Energy Conversion
    • Wiley-VCH: Weiheim, Germany
    • Grätzel, M.; Moser, J. Solar Energy Conversion. In Electron Transfer in Chemistry; Wiley-VCH: Weiheim, Germany, 2001; Volume 5, pp. 589–644.
    • (2001) Electron Transfer in Chemistry , vol.5 , pp. 589-644
    • Grätzel, M.1    Moser, J.2
  • 9
    • 42149127726 scopus 로고    scopus 로고
    • Electronic design criteria for O–O bond formation via metal-oxo complexes
    • Betley, T.A.; Wu, Q.; Van Voorhis, T.; Nocera, D.G. Electronic design criteria for O–O bond formation via metal-oxo complexes. Inorg. Chem. 2008, 47, 1849–1861.
    • (2008) Inorg. Chem. , vol.47 , pp. 1849-1861
    • Betley, T.A.1    Wu, Q.2    Van Voorhis, T.3    Nocera, D.G.4
  • 10
    • 79951781583 scopus 로고    scopus 로고
    • The water oxidation bottleneck in artificial photosynthesis: How can we get through it? An alternative route involving a two-electron process
    • Inoue, H.; Shimada, T.; Kou, Y.; Nabetani, Y.; Masui, D.; Takagi, S.; Tachibana, H. The water oxidation bottleneck in artificial photosynthesis: How can we get through it? An alternative route involving a two-electron process. ChemSusChem 2011, 4, 173–179.
    • (2011) Chemsuschem , vol.4 , pp. 173-179
    • Inoue, H.1    Shimada, T.2    Kou, Y.3    Nabetani, Y.4    Masui, D.5    Takagi, S.6    Tachibana, H.7
  • 11
    • 84949595667 scopus 로고    scopus 로고
    • Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting
    • Kang, D.; Kim, T.W.; Kubota, S.R.; Cardiel, A.C.; Cha, H.G.; Choi, K.S. Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. Chem. Rev. 2015, 115, 12839–12887.
    • (2015) Chem. Rev. , vol.115 , pp. 12839-12887
    • Kang, D.1    Kim, T.W.2    Kubota, S.R.3    Cardiel, A.C.4    Cha, H.G.5    Choi, K.S.6
  • 13
    • 84864545310 scopus 로고    scopus 로고
    • Artificial photosynthesis for solar water-splitting
    • Tachibana, Y.; Vayssieres, L.; Durrant, J.R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518.
    • (2012) Nat. Photonics , vol.6 , pp. 511-518
    • Tachibana, Y.1    Vayssieres, L.2    Durrant, J.R.3
  • 14
    • 84982077198 scopus 로고    scopus 로고
    • Molecular Catalysts for Water Oxidation
    • Blakemore, J.D.; Crabtree, R.H.; Brudvig, G.W. Molecular Catalysts for Water Oxidation. Chem. Rev. 2015, 115, 12974–13005.
    • (2015) Chem. Rev. , vol.115 , pp. 12974-13005
    • Blakemore, J.D.1    Crabtree, R.H.2    Brudvig, G.W.3
  • 15
    • 37049070337 scopus 로고
    • Metal Oxides as Heterogeneous Catalysts for Oxygen Evolution under Photochemical Conditions
    • Harriman, A.; Pickering, I.J.; Thomas, J.M.; Christensen, P.A. Metal Oxides as Heterogeneous Catalysts for Oxygen Evolution under Photochemical Conditions. J. Chem. Soc. Faraday Trans. 1 1988, 84, 2795–2806.
    • (1988) J. Chem. Soc. Faraday Trans. , vol.1 , Issue.84 , pp. 2795-2806
    • Harriman, A.1    Pickering, I.J.2    Thomas, J.M.3    Christensen, P.A.4
  • 16
    • 0018691403 scopus 로고
    • Hydrogen evolution from water induced by visible light mediated by redox catalysis
    • Kiwi, J.; Grätzel, M. Hydrogen evolution from water induced by visible light mediated by redox catalysis. Nature 1979, 281, 657–658.
    • (1979) Nature , vol.281 , pp. 657-658
    • Kiwi, J.1    Grätzel, M.2
  • 19
    • 0033573094 scopus 로고    scopus 로고
    • 4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties
    • 4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc. 1999, 121, 11459–11467.
    • (1999) J. Am. Chem. Soc. , vol.121 , pp. 11459-11467
    • Kudo, A.1    Omori, K.2    Kato, H.3
  • 25
    • 84883669048 scopus 로고    scopus 로고
    • An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
    • Hu, S.; Xiang, C.; Haussener, S.; Berger, A.D.; Lewis, N.S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 2013, 6, 2984–2993.
    • (2013) Energy Environ. Sci. , vol.6 , pp. 2984-2993
    • Hu, S.1    Xiang, C.2    Haussener, S.3    Berger, A.D.4    Lewis, N.S.5
  • 26
    • 84873146782 scopus 로고    scopus 로고
    • 4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-doping
    • 4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-doping. ChemCatChem 2013, 5, 490–496.
    • (2013) Chemcatchem , vol.5 , pp. 490-496
    • Abdi, F.F.1    Firet, N.2    Van De Krol, R.3
  • 27
    • 84874491562 scopus 로고    scopus 로고
    • Progress in bismuth vanadate photoanodes for use in solar water oxidation
    • Park, Y.; McDonald, K.J.; Choi, K.S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 2321–2337.
    • (2013) Chem. Soc. Rev. , pp. 2321-2337
    • Park, Y.1    McDonald, K.J.2    Choi, K.S.3
  • 28
    • 84945260853 scopus 로고    scopus 로고
    • Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting
    • Kim, T.W.; Ping, Y.; Galli, G.A.; Choi, K.S. Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat. Commun. 2015, 6, 8769.
    • (2015) Nat. Commun. , vol.6 , pp. 8769
    • Kim, T.W.1    Ping, Y.2    Galli, G.A.3    Choi, K.S.4
  • 30
    • 33749715714 scopus 로고
    • Abundance of chemical elements in the continental crust: A new table
    • Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285.
    • (1964) Geochim. Cosmochim. Acta , vol.28 , pp. 1273-1285
    • Taylor, S.R.1
  • 32
    • 84900029257 scopus 로고    scopus 로고
    • Research update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes
    • Cho, S.; Jang, J.W.; Lee, K.H.; Lee, J.S. Research update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Mater. 2014, 2, 10703.
    • (2014) APL Mater , vol.2 , pp. 10703
    • Cho, S.1    Jang, J.W.2    Lee, K.H.3    Lee, J.S.4
  • 34
    • 85008620874 scopus 로고    scopus 로고
    • Materials Horizons Factors affecting bismuth vanadate photoelectrochemical performance
    • Sinclair, T.S.; Hunter, B.M.; Winkler, J.R.; Gray, H.B.; Astrid, M.M. Materials Horizons Factors affecting bismuth vanadate photoelectrochemical performance. Mater. Horiz. 2015, 22–24.
    • (2015) Mater. Horiz. , pp. 22-24
    • Sinclair, T.S.1    Hunter, B.M.2    Winkler, J.R.3    Gray, H.B.4    Astrid, M.M.5
  • 40
    • 84863230204 scopus 로고    scopus 로고
    • 4 with the electrocatalyst as an oxidation cocatalyst: Essential relations between electrocatalyst and photocatalyst
    • 4 with the electrocatalyst as an oxidation cocatalyst: Essential relations between electrocatalyst and photocatalyst. J. Phys. Chem. C 2012, 116, 5082–5089.
    • (2012) J. Phys. Chem. C , vol.116 , pp. 5082-5089
    • Wang, D.1    Li, R.2    Zhu, J.3    Shi, J.4    Han, J.5    Zong, X.6    Li, C.7
  • 41
    • 84856424509 scopus 로고    scopus 로고
    • Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst
    • Seabold, J.A.; Choi, K.S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186–2192.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 2186-2192
    • Seabold, J.A.1    Choi, K.S.2
  • 43
    • 84896735953 scopus 로고    scopus 로고
    • 4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
    • 4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science 2014, 343, 990–994.
    • (2014) Science , vol.343 , pp. 990-994
    • Kim, T.W.1    Choi, K.-S.2
  • 44
    • 84907372202 scopus 로고    scopus 로고
    • Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures
    • Shi, X.; Choi, I.Y.; Zhang, K.; Kwon, J.; Kim, D.Y.; Lee, J.K.; Oh, S.H.; Kim, J.K.; Park, J.H. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 2014, 5, 4775.
    • (2014) Nat. Commun. , vol.5 , pp. 4775
    • Shi, X.1    Choi, I.Y.2    Zhang, K.3    Kwon, J.4    Kim, D.Y.5    Lee, J.K.6    Oh, S.H.7    Kim, J.K.8    Park, J.H.9
  • 45
    • 84975818912 scopus 로고    scopus 로고
    • Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling
    • 11943
    • Shi, X.; Jeong, H.; Oh, S.J.; Ma, M.; Zhang, K.; Kwon, J.; Choi, I.T.; Choi, I.Y.; Kim, H.K.; Kim, J.K. Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling. Nat. Commun. 2016, 7, 11943.
    • (2016) Nat. Commun. , vol.7
    • Shi, X.1    Jeong, H.2    Oh, S.J.3    Ma, M.4    Zhang, K.5    Kwon, J.6    Choi, I.T.7    Choi, I.Y.8    Kim, H.K.9    Kim, J.K.10
  • 48
    • 84881162564 scopus 로고    scopus 로고
    • Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
    • Abdi, F.F.; Han, L.; Smets, A.H.M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 1–7.
    • (2013) Nat. Commun. , vol.4 , pp. 1-7
    • Abdi, F.F.1    Han, L.2    Smets, A.H.M.3    Zeman, M.4    Dam, B.5    Van De Krol, R.6
  • 49
    • 77950271962 scopus 로고    scopus 로고
    • 3 Composite Photoanodes Oxygen Evolution and Resolution of a Kinetic Bottleneck
    • 3 Composite Photoanodes Oxygen Evolution and Resolution of a Kinetic Bottleneck. J. Am. Chem. Soc. 2010, 132, 4202–4207.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 4202-4207
    • Zhong, D.K.1    Gamelin, D.R.2
  • 55
    • 84952362034 scopus 로고    scopus 로고
    • Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf
    • Kim, J.H.; Jo, Y.; Kim, J.H.; Jang, J.W.; Kang, H.J.; Lee, Y.H.; Kim, D.S.; Jun, Y.; Lee, J.S. Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. ACS Nano 2015, 9, 11820–11829.
    • (2015) ACS Nano , vol.9 , pp. 11820-11829
    • Kim, J.H.1    Jo, Y.2    Kim, J.H.3    Jang, J.W.4    Kang, H.J.5    Lee, Y.H.6    Kim, D.S.7    Jun, Y.8    Lee, J.S.9
  • 56
    • 84887680701 scopus 로고    scopus 로고
    • Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
    • McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 16977-16987
    • McCrory, C.C.L.1    Jung, S.2    Peters, J.C.3    Jaramillo, T.F.4
  • 57
    • 84926444089 scopus 로고    scopus 로고
    • Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
    • McCrory, C.C.L.; Jung, S.; Ferrer, I.M.; Chatman, S.M.; Peters, J.C.; Jaramillo, T.F. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 4347-4357
    • McCrory, C.C.L.1    Jung, S.2    Ferrer, I.M.3    Chatman, S.M.4    Peters, J.C.5    Jaramillo, T.F.6
  • 59
    • 84863974121 scopus 로고    scopus 로고
    • 4 thin film electrode for water splitting under visible light irradiation
    • 4 thin film electrode for water splitting under visible light irradiation. Proc. Natl. Acad. Sci. USA 2012, 109, 11564–11569.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 11564-11569
    • Jia, Q.1    Iwashina, K.2    Kudo, A.3
  • 65
    • 84924362162 scopus 로고    scopus 로고
    • Double-deck Inverse Opal Photoanodes: Efficient Light Absorption and Charge Separation in Heterojunction
    • Ma, M.; Kim, J.K.; Zhang, K.; Shi, X.; Kim, S.J.; Moon, J.H.; Park, J.H. Double-deck Inverse Opal Photoanodes: Efficient Light Absorption and Charge Separation in Heterojunction. Chem. Mater. 2014, 26, 5592–5597.
    • (2014) Chem. Mater. , vol.26 , pp. 5592-5597
    • Ma, M.1    Kim, J.K.2    Zhang, K.3    Shi, X.4    Kim, S.J.5    Moon, J.H.6    Park, J.H.7
  • 68
    • 80052580714 scopus 로고    scopus 로고
    • 4 for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy (SECM) and First-Principles Density-Functional Calculation
    • 4 for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy (SECM) and First-Principles Density-Functional Calculation. J. Phys. Chem. C 2011, 115, 17870–17879.
    • (2011) J. Phys. Chem. C , vol.115 , pp. 17870-17879
    • Park, H.S.1    Kweon, K.E.2    Ye, H.3    Paek, E.4    Hwang, G.S.5
  • 77
    • 84968544681 scopus 로고    scopus 로고
    • 4 photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering
    • 4 photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering. AIP Adv. 2016, 6, 45108.
    • (2016) AIP Adv , vol.6 , pp. 45108
    • Gong, H.1    Freudenberg, N.2    Nie, M.3    Van De Krol, R.4    Ellmer, K.5
  • 79
    • 84904013363 scopus 로고    scopus 로고
    • Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances
    • Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 5234-5244
    • Wang, H.1    Zhang, L.2    Chen, Z.3    Hu, J.4    Li, S.5    Wang, Z.6    Liu, J.7    Wang, X.8
  • 80
    • 79955927165 scopus 로고    scopus 로고
    • 4 heterojunction films for efficient photoelectrochemical water splitting
    • 4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 2011, 11, 1928–1933.
    • (2011) Nano Lett , vol.11 , pp. 1928-1933
    • Su, J.1    Guo, L.2    Bao, N.3    Grimes, C.A.4
  • 85
    • 84904544602 scopus 로고    scopus 로고
    • Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers
    • Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 2014, 7, 2504–2517.
    • (2014) Energy Environ. Sci. , vol.7 , pp. 2504-2517
    • Liu, R.1    Zheng, Z.2    Spurgeon, J.3    Yang, X.4
  • 86
    • 84907919620 scopus 로고    scopus 로고
    • Enhanced Photoelectrochemical Water Oxidation on Bismuth
    • Eisenberg, D.; Ahn, H.S.; Bard, A.J. Enhanced Photoelectrochemical Water Oxidation on Bismuth. J. Am. Chem. Soc. 2014, 136, 14011–14014.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 14011-14014
    • Eisenberg, D.1    Ahn, H.S.2    Bard, A.J.3
  • 91
    • 79955404740 scopus 로고    scopus 로고
    • Periodic macroporous nanocrystalline antimony-doped tin oxide electrode
    • Arsenault, E.; Soheilnia, N.; Ozin, G.A. Periodic macroporous nanocrystalline antimony-doped tin oxide electrode. ACS Nano 2011, 5, 2984–2988.
    • (2011) ACS Nano , vol.5 , pp. 2984-2988
    • Arsenault, E.1    Soheilnia, N.2    Ozin, G.A.3
  • 92
    • 84904506869 scopus 로고    scopus 로고
    • A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction
    • Long, X.; Li, J.; Xiao, S.; Yan, K.; Wang, Z.; Chen, H.; Yang, S. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2014, 53, 7584–7588.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 7584-7588
    • Long, X.1    Li, J.2    Xiao, S.3    Yan, K.4    Wang, Z.5    Chen, H.6    Yang, S.7
  • 93
  • 94
    • 84907090677 scopus 로고    scopus 로고
    • Electric investigation of a photo-electrochemical water splitting device based on a proton exchange membrane within drilled FTO-covered quartz electrodes: Under dark and light conditions
    • Hernández, S.; Saracco, G.; Alexe-Ionescu, A.L.; Barbero, G. Electric investigation of a photo-electrochemical water splitting device based on a proton exchange membrane within drilled FTO-covered quartz electrodes: Under dark and light conditions. Electrochim. Acta 2014, 144, 352–360.
    • (2014) Electrochim. Acta , vol.144 , pp. 352-360
    • Hernández, S.1    Saracco, G.2    Alexe-Ionescu, A.L.3    Barbero, G.4
  • 95
    • 84883008345 scopus 로고    scopus 로고
    • Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
    • Pinaud, B.A.; Benck, J.D.; Seitz, L.C.; Forman, A.J.; Chen, Z.; Deutsch, T.G. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983–2002.
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1983-2002
    • Pinaud, B.A.1    Benck, J.D.2    Seitz, L.C.3    Forman, A.J.4    Chen, Z.5    Deutsch, T.G.6
  • 96
    • 84890410163 scopus 로고    scopus 로고
    • Will Solar-Driven Water-Splitting Devices See the Light of Day?
    • Mckone, J.R.; Lewis, N.S.; Gray, H.B. Will Solar-Driven Water-Splitting Devices See the Light of Day? Chem. Mater. 2013, 26, 407–414.
    • (2013) Chem. Mater. , vol.26 , pp. 407-414
    • McKone, J.R.1    Lewis, N.S.2    Gray, H.B.3
  • 97
    • 0000574755 scopus 로고
    • Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen Water Splitting
    • Bard, A.J.; Fox, M.A. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen Water Splitting. Acc. Chem. Res. 1995, 28, 141–145.
    • (1995) Acc. Chem. Res. , vol.28 , pp. 141-145
    • Bard, A.J.1    Fox, M.A.2
  • 100
    • 85008634944 scopus 로고    scopus 로고
    • (accessed on 20 November 2016)
    • Artiphyction. Available online: http://www.artiphyction.org (accessed on 20 November 2016).
    • Artiphyction
  • 103
    • 84878886829 scopus 로고    scopus 로고
    • Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands
    • Olateju, B.; Kumar, A. Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands. Appl. Energy 2013, 111, 428–440.
    • (2013) Appl. Energy , vol.111 , pp. 428-440
    • Olateju, B.1    Kumar, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.