메뉴 건너뛰기




Volumn 7, Issue , 2016, Pages

Efficiency limits for photoelectrochemical water-splitting

Author keywords

[No Author keywords available]

Indexed keywords

WATER;

EID: 85000814826     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms13706     Document Type: Article
Times cited : (243)

References (35)
  • 1
    • 34548180960 scopus 로고
    • Detailed balance limit of efficiency of P-N junction solar cells
    • Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of P-N junction solar cells. J. Appl. Phys. 32, 510-519 (1961).
    • (1961) J. Appl. Phys , vol.32 , pp. 510-519
    • Shockley, W.1    Queisser, H.J.2
  • 3
    • 33750029921 scopus 로고    scopus 로고
    • Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers
    • Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).
    • (2006) J. Appl. Phys , vol.100 , pp. 074510
    • Hanna, M.C.1    Nozik, A.J.2
  • 4
    • 0030244605 scopus 로고    scopus 로고
    • Limiting efficiencies for photovoltaic energy conversion in multigap systems
    • Marti, A. & Araujo, G. L. Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol. Energy Mater. Sol. Cells 43, 203-222 (1996).
    • (1996) Sol. Energy Mater. Sol. Cells , vol.43 , pp. 203-222
    • Marti, A.1    Araujo, G.L.2
  • 5
    • 84867068008 scopus 로고    scopus 로고
    • The effect of photonic bandgap materials on the Shockley-Queisser limit
    • Munday, J. N. The effect of photonic bandgap materials on the Shockley-Queisser limit. J. Appl. Phys. 112, 064501 (2012).
    • (2012) J. Appl. Phys , vol.112 , pp. 064501
    • Munday, J.N.1
  • 6
    • 18644372483 scopus 로고    scopus 로고
    • Improving solar cell efficiencies by up-conversion of sub-band-gap light
    • Trupke, T., Green, M. A. & Wurfel, P. Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92, 4117-4122 (2002).
    • (2002) J. Appl. Phys , vol.92 , pp. 4117-4122
    • Trupke, T.1    Green, M.A.2    Wurfel, P.3
  • 7
    • 0036677427 scopus 로고    scopus 로고
    • Improving solar cell efficiencies by down-conversion of high-energy photons
    • Trupke, T., Green, M. A. & Wurfel, P. Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668-1674 (2002).
    • (2002) J. Appl. Phys , vol.92 , pp. 1668-1674
    • Trupke, T.1    Green, M.A.2    Wurfel, P.3
  • 8
    • 78049314257 scopus 로고    scopus 로고
    • Fundamental limit of nanophotonic light trapping in solar cells
    • Yu, Z. F., Raman, A. & Fan, S. H. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491-17496 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 17491-17496
    • Yu, Z.F.1    Raman, A.2    Fan, S.H.3
  • 9
    • 0019049721 scopus 로고
    • Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells
    • Henry, C. H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494-4500 (1980).
    • (1980) J. Appl. Phys , vol.51 , pp. 4494-4500
    • Henry, C.H.1
  • 10
    • 84887858384 scopus 로고    scopus 로고
    • Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
    • Haussener, S., Hu, S., Xiang, C. X., Weber, A. Z. & Lewis, N. S. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 3605-3618 (2013).
    • (2013) Energy Environ. Sci , vol.6 , pp. 3605-3618
    • Haussener, S.1    Hu, S.2    Xiang, C.X.3    Weber, A.Z.4    Lewis, N.S.5
  • 11
    • 84870900511 scopus 로고    scopus 로고
    • Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
    • Haussener, S. et al. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 5, 9922-9935 (2012).
    • (2012) Energy Environ. Sci , vol.5 , pp. 9922-9935
    • Haussener, S.1
  • 12
    • 84883669048 scopus 로고    scopus 로고
    • An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
    • Hu, S., Xiang, C. X., Haussener, S., Berger, A. D. & Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984-2993 (2013).
    • (2013) Energy Environ. Sci , vol.6 , pp. 2984-2993
    • Hu, S.1    Xiang, C.X.2    Haussener, S.3    Berger, A.D.4    Lewis, N.S.5
  • 13
    • 0000658390 scopus 로고
    • Limiting and realizable efficiencies of solar photolysis of water
    • Bolton, J. R., Strickler, S. J. & Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495-500 (1985).
    • (1985) Nature , vol.316 , pp. 495-500
    • Bolton, J.R.1    Strickler, S.J.2    Connolly, J.S.3
  • 14
    • 84901022954 scopus 로고    scopus 로고
    • Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research
    • Seitz, L. C. et al. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem 7, 1372-1385 (2014).
    • (2014) ChemSusChem , vol.7 , pp. 1372-1385
    • Seitz, L.C.1
  • 15
    • 84906242019 scopus 로고    scopus 로고
    • Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices
    • Doscher, H., Geisz, J. F., Deutsch, T. G. & Turner, J. A. Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices. Energy Environ. Sci. 7, 2951-2956 (2014).
    • (2014) Energy Environ. Sci , vol.7 , pp. 2951-2956
    • Doscher, H.1    Geisz, J.F.2    Deutsch, T.G.3    Turner, J.A.4
  • 16
    • 84908424288 scopus 로고    scopus 로고
    • Interplay of light transmission and catalytic exchange current in photoelectrochemical systems
    • Fountaine, K. T., Lewerenz, H. J. & Atwater, H. A. Interplay of light transmission and catalytic exchange current in photoelectrochemical systems. Appl. Phys. Lett. 105, 173901 (2014).
    • (2014) Appl. Phys. Lett , vol.105 , pp. 173901
    • Fountaine, K.T.1    Lewerenz, H.J.2    Atwater, H.A.3
  • 17
    • 84885624160 scopus 로고    scopus 로고
    • Current-voltage characteristics of coupled photodiode-electrocatalyst devices
    • Shaner, M. R., Fountaine, K. T. & Lewerenz, H.-J. Current-voltage characteristics of coupled photodiode-electrocatalyst devices. Appl. Phys. Lett. 103, 143905 (2013).
    • (2013) Appl. Phys. Lett , vol.103 , pp. 143905
    • Shaner, M.R.1    Fountaine, K.T.2    Lewerenz, H.-J.3
  • 19
    • 41849113065 scopus 로고    scopus 로고
    • The thermodynamics of optical etendue
    • Markvart, T. The thermodynamics of optical etendue. J. Opt. A-Pure Appl. Opt. 10, 015008 (2008).
    • (2008) J. Opt. A-Pure Appl. Opt , vol.10 , pp. 015008
    • Markvart, T.1
  • 20
    • 84861329869 scopus 로고    scopus 로고
    • Radiative efficiency of state-of-The-Art photovoltaic cells
    • Green, M. A. Radiative efficiency of state-of-the-art photovoltaic cells. Prog. Photovoltaics 20, 472-476 (2012).
    • (2012) Prog. Photovoltaics , vol.20 , pp. 472-476
    • Green, M.A.1
  • 22
    • 0017543589 scopus 로고
    • Model for current-voltage curve of photoexcited semiconductor electrodes
    • Wilson, R. H. Model for current-voltage curve of photoexcited semiconductor electrodes. J. Appl. Phys. 48, 4292-4297 (1977).
    • (1977) J. Appl. Phys , vol.48 , pp. 4292-4297
    • Wilson, R.H.1
  • 23
    • 0001581185 scopus 로고
    • The current-voltage characteristics of semiconductor-electrolyte junction photo-voltaic cells
    • Reichman, J. The current-voltage characteristics of semiconductor-electrolyte junction photo-voltaic cells. Appl. Phys. Lett. 36, 574-577 (1980).
    • (1980) Appl. Phys. Lett , vol.36 , pp. 574-577
    • Reichman, J.1
  • 24
    • 0017982902 scopus 로고
    • Photocharacteristics for electrolyte-semiconductor junctions
    • Reiss, H. Photocharacteristics for electrolyte-semiconductor junctions. J. Electrochem. Soc. 125, 937-949 (1978).
    • (1978) J. Electrochem. Soc , vol.125 , pp. 937-949
    • Reiss, H.1
  • 25
    • 84963547251 scopus 로고    scopus 로고
    • Photovoltaic materials: Present efficiencies and future challenges
    • Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, 6283 (2016).
    • (2016) Science , vol.352 , pp. 6283
    • Polman, A.1    Knight, M.2    Garnett, E.C.3    Ehrler, B.4    Sinke, W.C.5
  • 26
    • 33750804271 scopus 로고
    • Work function, electronegativity, and electrochemical behavior of metals: III. Electrolytic hydrogen evolution in acid solutions
    • Trasatti, S. Work function, electronegativity, and electrochemical behavior of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39, 163-184 (1972).
    • (1972) J. Electroanal. Chem , vol.39 , pp. 163-184
    • Trasatti, S.1
  • 27
    • 0031075876 scopus 로고    scopus 로고
    • Activation of ruthenium oxide, iridium oxide, and mixed RuxIr1-x oxide electrodes during cathodic polarization and hydrogen evolution
    • Blouin, M. & Guay, D. Activation of ruthenium oxide, iridium oxide, and mixed RuxIr1-x oxide electrodes during cathodic polarization and hydrogen evolution. J. Electrochem. Soc. 144, 573-581 (1997).
    • (1997) J. Electrochem. Soc , vol.144 , pp. 573-581
    • Blouin, M.1    Guay, D.2
  • 28
    • 84926444089 scopus 로고    scopus 로고
    • Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
    • McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347-4357 (2015).
    • (2015) J. Am. Chem. Soc , vol.137 , pp. 4347-4357
    • McCrory, C.C.L.1
  • 29
    • 0033634510 scopus 로고    scopus 로고
    • Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis
    • Licht, S. et al. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920-8924 (2000).
    • (2000) J. Phys. Chem B , vol.104 , pp. 8920-8924
    • Licht, S.1
  • 30
    • 84941618794 scopus 로고    scopus 로고
    • Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure
    • May, M. M., Lewerenz, H.-J., Lackner, D., Dimroth, F. & Hannappel, T. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015).
    • (2015) Nat. Commun , vol.6 , pp. 8286
    • May, M.M.1    Lewerenz, H.-J.2    Lackner, D.3    Dimroth, F.4    Hannappel, T.5
  • 31
    • 84921522623 scopus 로고    scopus 로고
    • Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells
    • Han, L. H. et al. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. ChemSusChem 7, 2832-2838 (2014).
    • (2014) ChemSusChem , vol.7 , pp. 2832-2838
    • Han, L.H.1
  • 32
    • 84941690718 scopus 로고    scopus 로고
    • Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
    • Ager, J. W., Shaner, M. R., Walczak, K. A., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811-2824 (2015).
    • (2015) Energy Environ. Sci , vol.8 , pp. 2811-2824
    • Ager, J.W.1    Shaner, M.R.2    Walczak, K.A.3    Sharp, I.D.4    Ardo, S.5
  • 33
    • 20544450530 scopus 로고    scopus 로고
    • Equilibrium limits of coherency in strained nanowire heterostructures
    • Ertekin, E., Greaney, P. A., Chrzan, D. C. & Sands, T. D. Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys. 97, 114325 (2005).
    • (2005) J. Appl. Phys , vol.97 , pp. 114325
    • Ertekin, E.1    Greaney, P.A.2    Chrzan, D.C.3    Sands, T.D.4
  • 34
    • 52949112244 scopus 로고    scopus 로고
    • 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions
    • Geisz, J. F. et al. 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions. Appl. Phys. Lett. 93, 123505 (2008).
    • (2008) Appl. Phys. Lett , vol.93 , pp. 123505
    • Geisz, J.F.1
  • 35
    • 84865181077 scopus 로고    scopus 로고
    • Bifacial growth InGaP/GaAs/InGaAs concentrator solar cells
    • Wojtczuk, S. et al. Bifacial growth InGaP/GaAs/InGaAs concentrator solar cells. IEEE J. Photovolt. 2, 371-376 (2012).
    • (2012) IEEE J. Photovolt , vol.2 , pp. 371-376
    • Wojtczuk, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.