메뉴 건너뛰기




Volumn 6, Issue 6, 2018, Pages 636-653

Phenotypic Image Analysis Software Tools for Exploring and Understanding Big Image Data from Cell-Based Assays

Author keywords

cell classification; drug screening; freely available tools; high content screening; machine learning; microscopy; oncology; phenomics; phenotypic image analysis; single cell analysis

Indexed keywords

ACCURACY; ALGORITHM; HIGH THROUGHPUT SCREENING; HUMAN; IMAGE ANALYSIS; MACHINE LEARNING; MICROSCOPY; MOLECULAR BIOLOGY; MOLECULAR MODEL; PHENOTYPE; PRIORITY JOURNAL; REVIEW; STATISTICAL ANALYSIS; SYSTEMS BIOLOGY; ANIMAL; IMAGE PROCESSING; PROCEDURES; SOFTWARE;

EID: 85048445198     PISSN: 24054712     EISSN: 24054720     Source Type: Journal    
DOI: 10.1016/j.cels.2018.06.001     Document Type: Review
Times cited : (69)

References (111)
  • 1
    • 0003368229 scopus 로고    scopus 로고
    • A comparative evaluation of sequential feature selection algorithms
    • D. Fisher H.-J. Lenz Springer
    • Aha, D.W., Bankert, R.L., A comparative evaluation of sequential feature selection algorithms. Fisher, D., Lenz, H.-J., (eds.) Learning from Data, 1996, Springer, 199–206.
    • (1996) Learning from Data , pp. 199-206
    • Aha, D.W.1    Bankert, R.L.2
  • 3
    • 85048913361 scopus 로고    scopus 로고
    • Microscopy cell segmentation via adversarial neural networks
    • 1709.05860
    • Arbelle, A., Raviv, T.R., Microscopy cell segmentation via adversarial neural networks. arXiv, 2017 1709.05860.
    • (2017) arXiv
    • Arbelle, A.1    Raviv, T.R.2
  • 4
    • 85048922713 scopus 로고    scopus 로고
    • HTX: a tool for the exploration and visualization of high-throughput image assays
    • Arteta, C., Lempitsky, V., Zak, J., Lu, X., Noble, A., Zisserman, A., HTX: a tool for the exploration and visualization of high-throughput image assays. bioRxiv, 2017, 10.1101/204016.
    • (2017) bioRxiv
    • Arteta, C.1    Lempitsky, V.2    Zak, J.3    Lu, X.4    Noble, A.5    Zisserman, A.6
  • 7
    • 84928265432 scopus 로고    scopus 로고
    • Open source software for quantification of cell migration, protrusions, and fluorescence intensities
    • Barry, D.J., Durkin, C.H., Abella, J.V., Way, M., Open source software for quantification of cell migration, protrusions, and fluorescence intensities. J. Cell Biol. 209 (2015), 163–180.
    • (2015) J. Cell Biol. , vol.209 , pp. 163-180
    • Barry, D.J.1    Durkin, C.H.2    Abella, J.V.3    Way, M.4
  • 9
    • 85048906581 scopus 로고    scopus 로고
    • Automatic problem-specific hyperparameter optimization and model selection for supervised machine learning. Technical Report, ETH Zurich.
    • Bermudez-Chacon, R., and Smith, K. Automatic problem-specific hyperparameter optimization and model selection for supervised machine learning. Technical Report, ETH Zurich, 2015.
    • (2015)
    • Bermudez-Chacon, R.1    Smith, K.2
  • 11
    • 77955985403 scopus 로고    scopus 로고
    • The beautiful cell: high-content screening in drug discovery
    • Bickle, M., The beautiful cell: high-content screening in drug discovery. Anal. Bioanal. Chem. 398 (2010), 219–226.
    • (2010) Anal. Bioanal. Chem. , vol.398 , pp. 219-226
    • Bickle, M.1
  • 12
    • 84955177655 scopus 로고    scopus 로고
    • Imaging mass spectrometry: instrumentation, applications, and combination with other visualization techniques
    • Bodzon-Kulakowska, A., Suder, P., Imaging mass spectrometry: instrumentation, applications, and combination with other visualization techniques. Mass Spectrom. Rev. 35 (2016), 147–169.
    • (2016) Mass Spectrom. Rev. , vol.35 , pp. 147-169
    • Bodzon-Kulakowska, A.1    Suder, P.2
  • 13
    • 84949495449 scopus 로고    scopus 로고
    • Microscopy-based high-content screening
    • Boutros, M., Heigwer, F., Laufer, C., Microscopy-based high-content screening. Cell 163 (2015), 1314–1325.
    • (2015) Cell , vol.163 , pp. 1314-1325
    • Boutros, M.1    Heigwer, F.2    Laufer, C.3
  • 14
    • 0016063911 scopus 로고
    • The genetics of Caenorhabditis elegans
    • Brenner, S., The genetics of Caenorhabditis elegans. Genetics 77 (1974), 71–94.
    • (1974) Genetics , vol.77 , pp. 71-94
    • Brenner, S.1
  • 17
    • 84990235978 scopus 로고    scopus 로고
    • Can we open the black box of AI?
    • Castelvecchi, D., Can we open the black box of AI?. Nat. News, 538, 2016, 20.
    • (2016) Nat. News , vol.538 , pp. 20
    • Castelvecchi, D.1
  • 21
    • 84858968655 scopus 로고    scopus 로고
    • Phaedra, a protocol-driven system for analysis and validation of high-content imaging and flow cytometry
    • Cornelissen, F., Cik, M., Gustin, E., Phaedra, a protocol-driven system for analysis and validation of high-content imaging and flow cytometry. J. Biomol. Screen. 17 (2012), 496–506.
    • (2012) J. Biomol. Screen. , vol.17 , pp. 496-506
    • Cornelissen, F.1    Cik, M.2    Gustin, E.3
  • 22
    • 84995528830 scopus 로고    scopus 로고
    • CellProfiler analyst: interactive data exploration, analysis and classification of large biological image sets
    • Dao, D., Fraser, A.N., Hung, J., Ljosa, V., Singh, S., Carpenter, A.E., CellProfiler analyst: interactive data exploration, analysis and classification of large biological image sets. Bioinformatics 32 (2016), 3210–3212.
    • (2016) Bioinformatics , vol.32 , pp. 3210-3212
    • Dao, D.1    Fraser, A.N.2    Hung, J.3    Ljosa, V.4    Singh, S.5    Carpenter, A.E.6
  • 24
    • 44349152907 scopus 로고    scopus 로고
    • High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells
    • Desbordes, S.C., Placantonakis, D.G., Ciro, A., Socci, N.D., Lee, G., Djaballah, H., Studer, L., High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2 (2008), 602–612.
    • (2008) Cell Stem Cell , vol.2 , pp. 602-612
    • Desbordes, S.C.1    Placantonakis, D.G.2    Ciro, A.3    Socci, N.D.4    Lee, G.5    Djaballah, H.6    Studer, L.7
  • 26
    • 84988526163 scopus 로고    scopus 로고
    • Single-cell phenotype classification using deep convolutional neural networks
    • Dürr, O., Sick, B., Single-cell phenotype classification using deep convolutional neural networks. J. Biomol. Screen. 21 (2016), 998–1003.
    • (2016) J. Biomol. Screen. , vol.21 , pp. 998-1003
    • Dürr, O.1    Sick, B.2
  • 29
    • 85019278512 scopus 로고    scopus 로고
    • The WEKA Workbench. Data Mining: Practical Machine Learning Tools and Techniques
    • Fourth Edition Morgan Kaufmann Appendix B
    • Frank, E., Hall, M.A., Witten, I.H., The WEKA Workbench. Data Mining: Practical Machine Learning Tools and Techniques. Fourth Edition, 2016, Morgan Kaufmann Appendix B.
    • (2016)
    • Frank, E.1    Hall, M.A.2    Witten, I.H.3
  • 30
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)
    • Friedman, J., Hastie, T., Tibshirani, R., Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 28 (2000), 337–407.
    • (2000) Ann. Stat. , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 34
    • 84937849144 scopus 로고    scopus 로고
    • Generative adversarial nets. Proceeding of the Advances in Neural Information Processing Systems conference (NIPS 2014)
    • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014). Generative adversarial nets. Proceeding of the Advances in Neural Information Processing Systems conference (NIPS 2014), pp. 2672–2680.
    • (2014) , pp. 2672-2680
    • Goodfellow, I.1    Pouget-Abadie, J.2    Mirza, M.3    Xu, B.4    Warde-Farley, D.5    Ozair, S.6    Courville, A.7    Bengio, Y.8
  • 36
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR 2016)
    • He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR 2016), pp. 770–778.
    • (2016) , pp. 770-778
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 38
    • 80053466067 scopus 로고    scopus 로고
    • Machine learning improves the precision and robustness of high-content screens: using nonlinear multiparametric methods to analyze screening results
    • Horvath, P., Wild, T., Kutay, U., Csucs, G., Machine learning improves the precision and robustness of high-content screens: using nonlinear multiparametric methods to analyze screening results. J. Biomol. Screen. 16 (2011), 1059–1067.
    • (2011) J. Biomol. Screen. , vol.16 , pp. 1059-1067
    • Horvath, P.1    Wild, T.2    Kutay, U.3    Csucs, G.4
  • 41
    • 85057224078 scopus 로고    scopus 로고
    • Generative modeling with conditional autoencoders: building an integrated cell
    • 1705.00092
    • Johnson, G.R., Donovan-Maiye, R.M., Maleckar, M.M., Generative modeling with conditional autoencoders: building an integrated cell. arXiv, 2017 1705.00092.
    • (2017) arXiv
    • Johnson, G.R.1    Donovan-Maiye, R.M.2    Maleckar, M.M.3
  • 46
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks. Proceeding of the Advances in Neural Information Processing Systems conference (NIPS 2012)
    • Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. Proceeding of the Advances in Neural Information Processing Systems conference (NIPS 2012), pp. 1097–1105.
    • (2012) , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 47
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa, M., Goto, S., KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 (2000), 27–30.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 48
    • 84976510674 scopus 로고    scopus 로고
    • Classifying and segmenting microscopy images with deep multiple instance learning
    • Kraus, O.Z., Ba, J.L., Frey, B.J., Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32 (2016), i52–i59.
    • (2016) Bioinformatics , vol.32 , pp. i52-i59
    • Kraus, O.Z.1    Ba, J.L.2    Frey, B.J.3
  • 50
    • 84886768396 scopus 로고    scopus 로고
    • cellXpress: a fast and user-friendly software platform for profiling cellular phenotypes
    • Laksameethanasan, D., Tan, R.Z., Toh, G.W.L., Loo, L.H., cellXpress: a fast and user-friendly software platform for profiling cellular phenotypes. BMC Bioinformatics, 14, 2013, S4.
    • (2013) BMC Bioinformatics , vol.14 , pp. S4
    • Laksameethanasan, D.1    Tan, R.Z.2    Toh, G.W.L.3    Loo, L.H.4
  • 52
    • 85017124203 scopus 로고    scopus 로고
    • Correlated mass spectrometry and confocal microscopy imaging verifies the dual-targeting action of an organoruthenium anticancer complex
    • Liu, S., Zheng, W., Wu, K., Lin, Y., Jia, F., Zhang, Y., Wang, Z., Luo, Q., Zhao, Y., Wang, F., Correlated mass spectrometry and confocal microscopy imaging verifies the dual-targeting action of an organoruthenium anticancer complex. Chem. Commun. 53 (2017), 4136–4139.
    • (2017) Chem. Commun. , vol.53 , pp. 4136-4139
    • Liu, S.1    Zheng, W.2    Wu, K.3    Lin, Y.4    Jia, F.5    Zhang, Y.6    Wang, Z.7    Luo, Q.8    Zhao, Y.9    Wang, F.10
  • 53
    • 34250216344 scopus 로고    scopus 로고
    • Image-based multivariate profiling of drug responses from single cells
    • Loo, L.H., Wu, L.F., Altschuler, S.J., Image-based multivariate profiling of drug responses from single cells. Nat. Methods 4 (2007), 445–453.
    • (2007) Nat. Methods , vol.4 , pp. 445-453
    • Loo, L.H.1    Wu, L.F.2    Altschuler, S.J.3
  • 54
    • 84863198481 scopus 로고    scopus 로고
    • Annotated high-throughput microscopy image sets for validation
    • Ljosa, V., Sokolnicki, K.L., Carpenter, A.E., Annotated high-throughput microscopy image sets for validation. Nat. Methods, 9, 2012, 637.
    • (2012) Nat. Methods , vol.9 , pp. 637
    • Ljosa, V.1    Sokolnicki, K.L.2    Carpenter, A.E.3
  • 57
    • 84964335749 scopus 로고    scopus 로고
    • Towards generic image classification using tree-based learning: an extensive empirical study
    • Marée, R., Geurts, P., Wehenkel, L., Towards generic image classification using tree-based learning: an extensive empirical study. Pattern Recognit. Lett. 74 (2016), 15–23.
    • (2016) Pattern Recognit. Lett. , vol.74 , pp. 15-23
    • Marée, R.1    Geurts, P.2    Wehenkel, L.3
  • 58
    • 84874584139 scopus 로고    scopus 로고
    • Correlated imaging - a grand challenge in chemical analysis
    • Masyuko, R., Lanni, E.J., Sweedler, J.V., Bohn, P.W., Correlated imaging - a grand challenge in chemical analysis. Analyst 138 (2013), 1924–1939.
    • (2013) Analyst , vol.138 , pp. 1924-1939
    • Masyuko, R.1    Lanni, E.J.2    Sweedler, J.V.3    Bohn, P.W.4
  • 59
    • 85048914881 scopus 로고    scopus 로고
    • (n.d.).
    • Medical Image Net. (n.d.). http://langlotzlab.stanford.edu/projects/medical-image-net/.
  • 61
    • 84859336916 scopus 로고    scopus 로고
    • CellOrganizer: image-derived models of subcellular organization and protein distribution
    • Murphy, R.F., CellOrganizer: image-derived models of subcellular organization and protein distribution. Methods Cell Biol. 110 (2012), 179–193.
    • (2012) Methods Cell Biol. , vol.110 , pp. 179-193
    • Murphy, R.F.1
  • 62
    • 84882631243 scopus 로고    scopus 로고
    • Machine learning of hierarchical clustering to segment 2D and 3D images
    • Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., Chklovskii, D.B., Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS One, 8, 2013, e71715.
    • (2013) PLoS One , vol.8 , pp. e71715
    • Nunez-Iglesias, J.1    Kennedy, R.2    Parag, T.3    Shi, J.4    Chklovskii, D.B.5
  • 63
    • 0019133661 scopus 로고
    • Mutations affecting segment number and polarity in Drosophila
    • Nüsslein-Volhard, C., Wieschaus, E., Mutations affecting segment number and polarity in Drosophila. Nature 287 (1980), 795–801.
    • (1980) Nature , vol.287 , pp. 795-801
    • Nüsslein-Volhard, C.1    Wieschaus, E.2
  • 64
    • 84864116998 scopus 로고    scopus 로고
    • HCS-Analyzer: open source software for high-content screening data correction and analysis
    • Ogier, A., Dorval, T., HCS-Analyzer: open source software for high-content screening data correction and analysis. Bioinformatics 28 (2012), 1945–1946.
    • (2012) Bioinformatics , vol.28 , pp. 1945-1946
    • Ogier, A.1    Dorval, T.2
  • 65
    • 84953933150 scopus 로고    scopus 로고
    • Is object localization for free? Weakly supervised learning with convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
    • Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2015). Is object localization for free? Weakly supervised learning with convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 685–694.
    • (2015) , pp. 685-694
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 68
    • 84870504324 scopus 로고    scopus 로고
    • The flavonoid isoquercitrin promotes neurite elongation by reducing RhoA activity
    • Palazzolo, G., Horvath, P., Zenobi-Wong, M., The flavonoid isoquercitrin promotes neurite elongation by reducing RhoA activity. PLoS One, 7, 2012, e49979.
    • (2012) PLoS One , vol.7 , pp. e49979
    • Palazzolo, G.1    Horvath, P.2    Zenobi-Wong, M.3
  • 70
    • 77951959633 scopus 로고    scopus 로고
    • EBImage—an R package for image processing with applications to cellular phenotypes
    • Pau, G., Fuchs, F., Sklyar, O., Boutros, M., Huber, W., EBImage—an R package for image processing with applications to cellular phenotypes. Bioinformatics 26 (2010), 979–981.
    • (2010) Bioinformatics , vol.26 , pp. 979-981
    • Pau, G.1    Fuchs, F.2    Sklyar, O.3    Boutros, M.4    Huber, W.5
  • 71
    • 85048923256 scopus 로고    scopus 로고
    • imageHTS: Analysis of high-throughput microscopy-based screens. R package version 1.28.1.
    • Pau, G., Zhang, X., Boutros, M. and Huber, W. (2018). imageHTS: Analysis of high-throughput microscopy-based screens. R package version 1.28.1.
    • (2018)
    • Pau, G.1    Zhang, X.2    Boutros, M.3    Huber, W.4
  • 72
    • 85019234865 scopus 로고    scopus 로고
    • Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning
    • Pärnamaa, T., Parts, L., Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning. G3 (Bethesda) 7 (2017), 1385–1392.
    • (2017) G3 (Bethesda) , vol.7 , pp. 1385-1392
    • Pärnamaa, T.1    Parts, L.2
  • 73
    • 85030094149 scopus 로고    scopus 로고
    • Automating morphological profiling with generic deep convolutional networks
    • Pawlowski, N., Caicedo, J.C., Singh, S., Carpenter, A.E., Storkey, A., Automating morphological profiling with generic deep convolutional networks. bioRxiv, 2016, 10.1101/085118.
    • (2016) bioRxiv
    • Pawlowski, N.1    Caicedo, J.C.2    Singh, S.3    Carpenter, A.E.4    Storkey, A.5
  • 74
    • 34548295338 scopus 로고    scopus 로고
    • Origin and evolution of high throughput screening
    • Pereira, D.A., Williams, J.A., Origin and evolution of high throughput screening. Br. J. Pharmacol. 152 (2007), 53–61.
    • (2007) Br. J. Pharmacol. , vol.152 , pp. 53-61
    • Pereira, D.A.1    Williams, J.A.2
  • 78
    • 84863192185 scopus 로고    scopus 로고
    • PhenoRipper: software for rapidly profiling microscopy images
    • Rajaram, S., Pavie, B., Wu, L.F., Altschuler, S.J., PhenoRipper: software for rapidly profiling microscopy images. Nat. Methods 9 (2012), 635–637.
    • (2012) Nat. Methods , vol.9 , pp. 635-637
    • Rajaram, S.1    Pavie, B.2    Wu, L.F.3    Altschuler, S.J.4
  • 79
    • 59249092115 scopus 로고    scopus 로고
    • Correlative light and electron microscopy
    • Razi, M., Tooze, S.A., Correlative light and electron microscopy. Methods Enzymol. 452 (2009), 261–275.
    • (2009) Methods Enzymol. , vol.452 , pp. 261-275
    • Razi, M.1    Tooze, S.A.2
  • 80
    • 84984985889 scopus 로고    scopus 로고
    • Why should I trust you? Explaining the predictions of any classifier. Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD)
    • Ribeiro, M.T., Singh, S., and Guestrin, C. (2016). Why should I trust you? Explaining the predictions of any classifier. Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD), pp. 1135–1144.
    • (2016) , pp. 1135-1144
    • Ribeiro, M.T.1    Singh, S.2    Guestrin, C.3
  • 81
    • 84856769427 scopus 로고    scopus 로고
    • Getting the whole picture: combining throughput with content in microscopy
    • Rimon, N., Schuldiner, M., Getting the whole picture: combining throughput with content in microscopy. J. Cell Sci. 124 (2011), 3743–3751.
    • (2011) J. Cell Sci. , vol.124 , pp. 3743-3751
    • Rimon, N.1    Schuldiner, M.2
  • 82
    • 85036635168 scopus 로고    scopus 로고
    • Digital image analysis in breast pathology – from image processing techniques to artificial intelligence
    • Robertson, S., Azizpour, H., Smith, K., Hartman, J., Digital image analysis in breast pathology – from image processing techniques to artificial intelligence. Transl. Res. 194 (2017), 19–35.
    • (2017) Transl. Res. , vol.194 , pp. 19-35
    • Robertson, S.1    Azizpour, H.2    Smith, K.3    Hartman, J.4
  • 83
    • 84951834022 scopus 로고    scopus 로고
    • U-net: convolutional networks for biomedical image segmentation. Proceedings of the international conference on medical image computing and computer-assisted intervention (MICCAI 2015)
    • Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: convolutional networks for biomedical image segmentation. Proceedings of the international conference on medical image computing and computer-assisted intervention (MICCAI 2015), pp. 234–241.
    • (2015) , pp. 234-241
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 85
    • 85027498089 scopus 로고    scopus 로고
    • Automated training of deep convolutional neural networks for cell segmentation
    • Sadanandan, S.K., Ranefall, P., Le Guyader, S., Wählby, C., Automated training of deep convolutional neural networks for cell segmentation. Sci. Rep., 7, 2017, 7860.
    • (2017) Sci. Rep. , vol.7 , pp. 7860
    • Sadanandan, S.K.1    Ranefall, P.2    Le Guyader, S.3    Wählby, C.4
  • 86
    • 85046250587 scopus 로고    scopus 로고
    • Spheroid segmentation using multiscale deep adversarial networks. Proceedings of the IEEE international conference on computer vision workshops (ICCV 2017)
    • Sadanandan, S., Karlsson, J., and Wählby, C. (2017b). Spheroid segmentation using multiscale deep adversarial networks. Proceedings of the IEEE international conference on computer vision workshops (ICCV 2017), pp. 36–41.
    • (2017) , pp. 36-41
    • Sadanandan, S.1    Karlsson, J.2    Wählby, C.3
  • 87
    • 85046293226 scopus 로고    scopus 로고
    • Discovery of rare phenotypes in cellular images using weakly supervised deep learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017)
    • Sailem, H., Arias-Garcia, M., Bakal, C., Zisserman, A., and Rittscher, J. (2017). Discovery of rare phenotypes in cellular images using weakly supervised deep learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 49–55.
    • (2017) , pp. 49-55
    • Sailem, H.1    Arias-Garcia, M.2    Bakal, C.3    Zisserman, A.4    Rittscher, J.5
  • 88
    • 84882338791 scopus 로고    scopus 로고
    • Methods and applications of Raman microspectroscopy to single-cell analysis
    • Schie, I.W., Huser, T., Methods and applications of Raman microspectroscopy to single-cell analysis. Appl. Spectrosc. 67 (2013), 813–828.
    • (2013) Appl. Spectrosc. , vol.67 , pp. 813-828
    • Schie, I.W.1    Huser, T.2
  • 90
  • 91
    • 84902210226 scopus 로고    scopus 로고
    • Increasing the content of high-content screening: an overview
    • Singh, S., Carpenter, A.E., Genovesio, A., Increasing the content of high-content screening: an overview. J. Biomol. Screen. 19 (2014), 640–650.
    • (2014) J. Biomol. Screen. , vol.19 , pp. 640-650
    • Singh, S.1    Carpenter, A.E.2    Genovesio, A.3
  • 92
    • 40049095363 scopus 로고    scopus 로고
    • Modern Raman Spectroscopy: A Practical Approach
    • John Wiley
    • Smith, E., Dent, G., Modern Raman Spectroscopy: A Practical Approach. 2005, John Wiley, 1–210.
    • (2005) , pp. 1-210
    • Smith, E.1    Dent, G.2
  • 93
    • 84902152908 scopus 로고    scopus 로고
    • Active learning strategies for phenotypic profiling of high-content screens
    • Smith, K., Horvath, P., Active learning strategies for phenotypic profiling of high-content screens. J. Biomol. Screen. 19 (2014), 685–695.
    • (2014) J. Biomol. Screen. , vol.19 , pp. 685-695
    • Smith, K.1    Horvath, P.2
  • 94
    • 84890498817 scopus 로고    scopus 로고
    • Machine learning in cell biology–teaching computers to recognize phenotypes
    • Sommer, C., Gerlich, D.W., Machine learning in cell biology–teaching computers to recognize phenotypes. J. Cell Sci. 126 (2013), 5529–5539.
    • (2013) J. Cell Sci. , vol.126 , pp. 5529-5539
    • Sommer, C.1    Gerlich, D.W.2
  • 95
    • 79961198540 scopus 로고    scopus 로고
    • Ilastik: Interactive learning and segmentation toolkit. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE
    • Sommer, C., Straehle, C., Koethe, U., Hamprecht, F.A. (2011). Ilastik: Interactive learning and segmentation toolkit. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, pp. 230-233.
    • (2011) , pp. 230-233
    • Sommer, C.1    Straehle, C.2    Koethe, U.3    Hamprecht, F.A.4
  • 96
    • 85033496825 scopus 로고    scopus 로고
    • A deep learning and novelty detection framework for rapid phenotyping in high-content screening
    • Sommer, C., Hoefler, R., Samwer, M., Gerlich, D.W., A deep learning and novelty detection framework for rapid phenotyping in high-content screening. bioRxiv, 2017, 10.1091/mbc.e17-05-0333.
    • (2017) bioRxiv
    • Sommer, C.1    Hoefler, R.2    Samwer, M.3    Gerlich, D.W.4
  • 97
    • 0003547502 scopus 로고    scopus 로고
    • JPEG2000 Image Compression Fundamentals, Standards and Practice: Image Compression Fundamentals, Standards and Practice
    • Springer Science and Business Media
    • Taubman, D., Marcellin, M., JPEG2000 Image Compression Fundamentals, Standards and Practice: Image Compression Fundamentals, Standards and Practice. 2012, Springer Science and Business Media, 642.
    • (2012) , pp. 642
    • Taubman, D.1    Marcellin, M.2
  • 100
    • 84956574418 scopus 로고    scopus 로고
    • CP-CHARM: segmentation-free image classification made accessible
    • Uhlmann, V., Singh, S., Carpenter, A.E., CP-CHARM: segmentation-free image classification made accessible. BMC Bioinformatics, 17, 2016, 51.
    • (2016) BMC Bioinformatics , vol.17 , pp. 51
    • Uhlmann, V.1    Singh, S.2    Carpenter, A.E.3
  • 102
    • 0035895505 scopus 로고    scopus 로고
    • The sequence of the human genome
    • Venter, J.C., Zhu, X., The sequence of the human genome. Science 291 (2001), 1304–1351.
    • (2001) Science , vol.291 , pp. 1304-1351
    • Venter, J.C.1    Zhu, X.2
  • 103
    • 70349531263 scopus 로고    scopus 로고
    • Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging
    • Wagner, M., Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63 (2009), 411–429.
    • (2009) Annu. Rev. Microbiol. , vol.63 , pp. 411-429
    • Wagner, M.1
  • 105
    • 85046261624 scopus 로고    scopus 로고
    • Deep convolutional neural networks for detecting cellular changes due to malignancy. Proceedings of the IEEE International Conference on Computer Vision workshops (ICCV 2017)
    • Wieslander, H. and Forslid, G. (2017). Deep convolutional neural networks for detecting cellular changes due to malignancy. Proceedings of the IEEE International Conference on Computer Vision workshops (ICCV 2017), pp. 82–89.
    • (2017) , pp. 82-89
    • Wieslander, H.1    Forslid, G.2
  • 106
    • 85040287819 scopus 로고    scopus 로고
    • Multi-label prediction of subcellular localization in confocal images using deep neural networks
    • Winsnes, C.F., Sullivan, D.P., Smith, K., Lundberg, E., Multi-label prediction of subcellular localization in confocal images using deep neural networks. Mol. Biol. Cell 27 (2016), 26–39.
    • (2016) Mol. Biol. Cell , vol.27 , pp. 26-39
    • Winsnes, C.F.1    Sullivan, D.P.2    Smith, K.3    Lundberg, E.4
  • 109
    • 77951975169 scopus 로고    scopus 로고
    • High content screening: seeing is believing
    • Zanella, F., Lorens, J.B., Link, W., High content screening: seeing is believing. Trends Biotechnol. 28 (2010), 237–245.
    • (2010) Trends Biotechnol. , vol.28 , pp. 237-245
    • Zanella, F.1    Lorens, J.B.2    Link, W.3
  • 110
    • 84887983821 scopus 로고    scopus 로고
    • A novel phenotypic dissimilarity method for image-based high-throughput screens
    • Zhang, X., Boutros, M., A novel phenotypic dissimilarity method for image-based high-throughput screens. BMC Bioinformatics, 14, 2013, 336.
    • (2013) BMC Bioinformatics , vol.14 , pp. 336
    • Zhang, X.1    Boutros, M.2
  • 111
    • 85048925005 scopus 로고    scopus 로고
    • High-throughput, high-resolution generated adversarial network microscopy
    • 1801.07330
    • Zhang, H., Xie, X., Fang, C., Yang, Y., Jin, D., Fei, P., High-throughput, high-resolution generated adversarial network microscopy. arXiv, 2018 1801.07330.
    • (2018) arXiv
    • Zhang, H.1    Xie, X.2    Fang, C.3    Yang, Y.4    Jin, D.5    Fei, P.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.