메뉴 건너뛰기




Volumn 28, Issue 23, 2017, Pages 3428-3436

A deep learning and novelty detection framework for rapid phenotyping in high-content screening

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; AUTOANALYSIS; CELL NUCLEUS; CELL POPULATION; CELL SCREENING; CELL STRUCTURE; CONTROLLED STUDY; DNA DAMAGE; DNA REPAIR; FEMALE; HELA CELL LINE; HUMAN; HUMAN CELL; HUMAN GENOME; MACHINE LEARNING; MITOSIS; PHENOTYPE; PRIORITY JOURNAL; SOFTWARE; SUPPORT VECTOR MACHINE; ALGORITHM; ANIMAL; BIOLOGICAL VARIATION; GENETICS; HIGH THROUGHPUT SCREENING; MATHEMATICAL COMPUTING; PROCEDURES; STATISTICS; STATISTICS AND NUMERICAL DATA;

EID: 85033496825     PISSN: 10591524     EISSN: 19394586     Source Type: Journal    
DOI: 10.1091/mbc.E17-05-0333     Document Type: Article
Times cited : (77)

References (50)
  • 2
    • 34250882643 scopus 로고    scopus 로고
    • Quantitative morphological signatures define local signaling networks regulating cell morphology
    • Bakal C, Aach J, Church G, Perrimon N (2007). Quantitative morphological signatures define local signaling networks regulating cell morphology. Science 316, 1753-1756.
    • (2007) Science , vol.316 , pp. 1753-1756
    • Bakal, C.1    Aach, J.2    Church, G.3    Perrimon, N.4
  • 4
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • Boland MV, Murphy RF (2001). A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17, 1213-1223.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 6
    • 84949495449 scopus 로고    scopus 로고
    • Microscopy-based high-content screening
    • Boutros M, Heigwer F, Laufer C (2015). Microscopy-based high-content screening. Cell 163, 1314-1325.
    • (2015) Cell , vol.163 , pp. 1314-1325
    • Boutros, M.1    Heigwer, F.2    Laufer, C.3
  • 8
    • 77149130553 scopus 로고    scopus 로고
    • Automated microscopy for high-content RNAi screening
    • Conrad C, Gerlich DW (2010). Automated microscopy for high-content RNAi screening. J Cell Biol 188, 453-461.
    • (2010) J Cell Biol , vol.188 , pp. 453-461
    • Conrad, C.1    Gerlich, D.W.2
  • 11
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi J, Hazan E, Singer Y (2011). Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12, 2121-2159.
    • (2011) J Mach Learn Res , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 12
    • 84988526163 scopus 로고    scopus 로고
    • Single-cell phenotype classification using deep convolutional neural networks
    • Durr O, Sick B (2016). Single-cell phenotype classification using deep convolutional neural networks. J Biomol Screen 1-6.
    • (2016) J Biomol Screen , pp. 1-6
    • Durr, O.1    Sick, B.2
  • 13
    • 84884948356 scopus 로고    scopus 로고
    • Unsupervised automated high throughput phenotyping of RNAi time-lapse movies
    • Failmezger H, Frohlich H, Tresch A (2013). Unsupervised automated high throughput phenotyping of RNAi time-lapse movies. BMC Bioinformat 14, 292.
    • (2013) BMC Bioinformat , vol.14 , pp. 292
    • Failmezger, H.1    Frohlich, H.2    Tresch, A.3
  • 17
    • 0004235843 scopus 로고
    • Monographs on Statistics and Applied Probability, London/New York Chapman and Hall
    • Hawkins DM (1980). Identification of Outliers. Monographs on Statistics and Applied Probability, London/New York: Chapman and Hall.
    • (1980) Identification of Outliers
    • Hawkins, D.M.1
  • 19
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov RR (2006). Reducing the dimensionality of data with neural networks. Science 313, 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 21
    • 84976510674 scopus 로고    scopus 로고
    • Classifying and segmenting microscopy images with deep multiple instance learning
    • Kraus OZ, Ba JL, Frey BJ (2016). Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52-i59.
    • (2016) Bioinformatics , vol.32 , pp. i52-i59
    • Kraus, O.Z.1    Ba, J.L.2    Frey, B.J.3
  • 25
    • 84902089978 scopus 로고    scopus 로고
    • A hierarchical map of regulatory genetic interactions in membrane trafficking
    • Liberali P, Snijder B, Pelkmans L (2014). A hierarchical map of regulatory genetic interactions in membrane trafficking. Cell 157, 1473-1487.
    • (2014) Cell , vol.157 , pp. 1473-1487
    • Liberali, P.1    Snijder, B.2    Pelkmans, L.3
  • 26
    • 0002975203 scopus 로고
    • On the generalised distance in statistics
    • Mahalanobis PC (1936). On the generalised distance in statistics. Proc Natl Inst Sci India 2, 49-55.
    • (1936) Proc Natl Inst Sci India , vol.2 , pp. 49-55
    • Mahalanobis, P.C.1
  • 27
    • 84936145522 scopus 로고    scopus 로고
    • CHLOE: A software tool for automatic novelty detection in microscopy image datasets
    • Manning S, Shamir L (2014). CHLOE: A software tool for automatic novelty detection in microscopy image datasets. J Open Res Software 2, e128.
    • (2014) J Open Res Software , vol.2 , pp. e128
    • Manning, S.1    Shamir, L.2
  • 30
    • 0141921564 scopus 로고    scopus 로고
    • Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images
    • Murphy RF, Velliste M, Porreca G (2003). Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. J VLSI Sig Proc Syst 35, 311-321.
    • (2003) J VLSI Sig Proc Syst , vol.35 , pp. 311-321
    • Murphy, R.F.1    Velliste, M.2    Porreca, G.3
  • 31
    • 34548480020 scopus 로고
    • A method of solving a convex programming problem with convergence rate O (1/k2
    • Nesterov Y (1983). A method of solving a convex programming problem with convergence rate O (1/k2). Soviet Mathematics Doklady 27, 372-376.
    • (1983) Soviet Mathematics Doklady , vol.27 , pp. 372-376
    • Nesterov, Y.1
  • 34
    • 85019234865 scopus 로고    scopus 로고
    • Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning
    • Parnamaa T, Parts L (2017). Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning. G3 7, 1385-1392.
    • (2017) G3 , vol.7 , pp. 1385-1392
    • Parnamaa, T.1    Parts, L.2
  • 36
    • 84863192185 scopus 로고    scopus 로고
    • PhenoRipper: Software for rapidly profiling microscopy images
    • Rajaram S, Pavie B, Wu LF, Altschuler SJ (2012). PhenoRipper: software for rapidly profiling microscopy images. Nat Methods 9, 635-637.
    • (2012) Nat Methods , vol.9 , pp. 635-637
    • Rajaram, S.1    Pavie, B.2    Wu, L.F.3    Altschuler, S.J.4
  • 40
    • 70350727266 scopus 로고    scopus 로고
    • Automated live microscopy to study mitotic gene function in fluorescent reporter cell lines
    • Schmitz MH, Gerlich DW (2009). Automated live microscopy to study mitotic gene function in fluorescent reporter cell lines. Methods Mol Biol 545, 113-134.
    • (2009) Methods Mol Biol , vol.545 , pp. 113-134
    • Schmitz, M.H.1    Gerlich, D.W.2
  • 43
    • 84890498817 scopus 로고    scopus 로고
    • Machine learning in cell biology-Teaching computers to recognize phenotypes
    • Sommer C, Gerlich DW (2013). Machine learning in cell biology-Teaching computers to recognize phenotypes. J Cell Sci 126, 5529-5539.
    • (2013) J Cell Sci , vol.126 , pp. 5529-5539
    • Sommer, C.1    Gerlich, D.W.2
  • 44
  • 45
    • 84911198048 scopus 로고    scopus 로고
    • DeepFace: Closing the gap to human-level performance in face verification
    • IEEE
    • Taigman Y, Yang M, Ranzato M, Wolf L (2014). DeepFace: Closing the gap to human-level performance in face verification. Proc CVPR IEEE 1701-1708.
    • (2014) Proc CVPR , pp. 1701-1708
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 46
    • 0010864753 scopus 로고
    • Pattern recognition using generalized portrait method
    • Vapnik V, Lerner A (1963). Pattern recognition using generalized portrait method. Autom Remote Control 24, 774-780.
    • (1963) Autom Remote Control , vol.24 , pp. 774-780
    • Vapnik, V.1    Lerner, A.2
  • 47
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11, 3371-3408.
    • (2010) J Mach Learn Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 49
    • 47149116088 scopus 로고    scopus 로고
    • Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-Throughput RNAi screens
    • Yin Z, Zhou X, Bakal C, Li F, Sun Y, Perrimon N, Wong ST (2008). Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-Throughput RNAi screens. BMC Bioinformatics 9, 264.
    • (2008) BMC Bioinformatics , vol.9 , pp. 264
    • Yin, Z.1    Zhou, X.2    Bakal, C.3    Li, F.4    Sun, Y.5    Perrimon, N.6    Wong, S.T.7
  • 50
    • 84863203974 scopus 로고    scopus 로고
    • Unsupervised modeling of cell morphology dynamics for time-lapse microscopy
    • Zhong Q, Busetto AG, Fededa JP, Buhmann JM, Gerlich DW (2012). Unsupervised modeling of cell morphology dynamics for time-lapse microscopy. Nat Methods 9, 711-713.
    • (2012) Nat Methods , vol.9 , pp. 711-713
    • Zhong, Q.1    Busetto, A.G.2    Fededa, J.P.3    Buhmann, J.M.4    Gerlich, D.W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.