-
1
-
-
85032750965
-
Cell segmentation: 50 years down the road (life sciences)
-
Meijering, E. Cell segmentation: 50 years down the road (life sciences). IEEE Signal Proc. Mag. 29, 140-145 (2012).
-
(2012)
IEEE Signal Proc. Mag.
, vol.29
, pp. 140-145
-
-
Meijering, E.1
-
2
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
3
-
-
84951834022
-
U-net: Convolutional networks for biomedical image segmentation
-
Springer
-
Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241 (Springer, 2015).
-
(2015)
International Conference on Medical Image Computing and Computer-Assisted Intervention
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
4
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
Ciresan, D., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Deep neural networks segment neuronal membranes in electron microscopy images. In Advances in neural information processing systems, 2843-2851 (2012).
-
(2012)
Advances in Neural Information Processing Systems
, pp. 2843-2851
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
5
-
-
84999836246
-
Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments
-
Van Valen, D. A. et al. Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput Biol 12, e1005177 (2016).
-
(2016)
PLoS Comput Biol
, vol.12
, pp. e1005177
-
-
Van Valen, D.A.1
-
6
-
-
85027508892
-
Deep learning for imaging flow cytometry: Cell cycle analysis of jurkat cells
-
Eulenberg, P. et al. Deep learning for imaging flow cytometry: Cell cycle analysis of jurkat cells. bioRxiv 081364 (2016).
-
(2016)
BioRxiv
, pp. 081364
-
-
Eulenberg, P.1
-
7
-
-
33845792555
-
Cellprofiler: Image analysis software for identifying and quantifying cell phenotypes
-
Carpenter, A. E., Jones, T. R. & Lamprecht, M. R. et al. Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 7, R100 (2006).
-
(2006)
Genome Biology
, vol.7
, pp. R100
-
-
Carpenter, A.E.1
Jones, T.R.2
Lamprecht, M.R.3
-
8
-
-
84978389035
-
Supervised method for cell counting from bright field focus stacks
-
IEEE
-
Liimatainen, K., Ruusuvuori, P., Latonen, L. & Huttunen, H. Supervised method for cell counting from bright field focus stacks. In Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on 391-394 (IEEE, 2016).
-
(2016)
Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on
, pp. 391-394
-
-
Liimatainen, K.1
Ruusuvuori, P.2
Latonen, L.3
Huttunen, H.4
-
9
-
-
84891388151
-
Multiplex cytological profiling assay to measure diverse cellular states
-
Gustafsdottir, S. M. et al. Multiplex cytological profiling assay to measure diverse cellular states. PloS one 8, e80999 (2013).
-
(2013)
PloS One
, vol.8
, pp. e80999
-
-
Gustafsdottir, S.M.1
-
10
-
-
84863198481
-
Annotated high-throughput microscopy image sets for validation
-
Ljosa, V., Sokolnicki, K. L. & Carpenter, A. E. Annotated high-throughput microscopy image sets for validation. Nat Methods 9, 637 (2012).
-
(2012)
Nat Methods
, vol.9
, pp. 637
-
-
Ljosa, V.1
Sokolnicki, K.L.2
Carpenter, A.E.3
-
11
-
-
0011384911
-
A comparison of methods for estimation of intensity non uniformities in 2d and 3d microscope images of fluorescence stained cells
-
Lindblad, J. & Bengtsson, E. A comparison of methods for estimation of intensity non uniformities in 2d and 3d microscope images of fluorescence stained cells. In Proceedings of the Scandinavian Conference On Image Analysis 264-271 (2001).
-
(2001)
Proceedings of the Scandinavian Conference on Image Analysis
, pp. 264-271
-
-
Lindblad, J.1
Bengtsson, E.2
-
12
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 770-778 (2016).
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
13
-
-
84992493183
-
The importance of skip connections in biomedical image segmentation
-
Springer
-
Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S. & Pal, C. The importance of skip connections in biomedical image segmentation. In International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis 179-187 (Springer, 2016).
-
(2016)
International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
, pp. 179-187
-
-
Drozdzal, M.1
Vorontsov, E.2
Chartrand, G.3
Kadoury, S.4
Pal, C.5
-
15
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision 1026-1034 (2015).
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
|