메뉴 건너뛰기




Volumn 110, Issue , 2012, Pages 179-193

CellOrganizer: Image-Derived Models of Subcellular Organization and Protein Distribution

Author keywords

Algorithm; Cytoskeletal; Organelle; Simulation; Subcellular; Vesicular

Indexed keywords


EID: 84859336916     PISSN: 0091679X     EISSN: None     Source Type: Book Series    
DOI: 10.1016/B978-0-12-388403-9.00007-2     Document Type: Chapter
Times cited : (40)

References (25)
  • 1
    • 0002675486 scopus 로고    scopus 로고
    • Monte Carlo simulation of neuro-transmitter release using MCell, a general simulator of cellular physiological processes
    • Plenum, NY, J.M. Bower (Ed.)
    • Stiles J.R., Bartol T.M., Salpeter E.E., Salpeter M.M. Monte Carlo simulation of neuro-transmitter release using MCell, a general simulator of cellular physiological processes. Computational Neuroscience 1998, 279-284. Plenum, NY. J.M. Bower (Ed.).
    • (1998) Computational Neuroscience , pp. 279-284
    • Stiles, J.R.1    Bartol, T.M.2    Salpeter, E.E.3    Salpeter, M.M.4
  • 2
    • 0035478586 scopus 로고    scopus 로고
    • The virtual cell: a software environment for computational cell biology
    • Loew L.M., Schaff J.C. The virtual cell: a software environment for computational cell biology. Trends Biotechnol. 2001, 19:401-406.
    • (2001) Trends Biotechnol. , vol.19 , pp. 401-406
    • Loew, L.M.1    Schaff, J.C.2
  • 3
    • 77954301419 scopus 로고    scopus 로고
    • Communicating subcellular distributions
    • Murphy R.F. Communicating subcellular distributions. Cytometr. Part A 2010, 77:686-692.
    • (2010) Cytometr. Part A , vol.77 , pp. 686-692
    • Murphy, R.F.1
  • 4
    • 79956124247 scopus 로고    scopus 로고
    • An active role for machine learning in drug development
    • Murphy R.F. An active role for machine learning in drug development. Nature Chem. Biol. 2011, 7:327-330.
    • (2011) Nature Chem. Biol. , vol.7 , pp. 327-330
    • Murphy, R.F.1
  • 5
    • 36849013487 scopus 로고    scopus 로고
    • Automated learning of generative models for subcellular location: building blocks for systems biology
    • Zhao T., Murphy R.F. Automated learning of generative models for subcellular location: building blocks for systems biology. Cytometr. Part A. 2007, 71A:978-990.
    • (2007) Cytometr. Part A. , vol.71 A , pp. 978-990
    • Zhao, T.1    Murphy, R.F.2
  • 6
    • 42049110309 scopus 로고    scopus 로고
    • Deformation-based nuclear morphometry: capturing nuclear shape variation in HeLa cells
    • Rohde G.K., Ribeiro A.J., Dahl K.N., Murphy R.F. Deformation-based nuclear morphometry: capturing nuclear shape variation in HeLa cells. Cytometr. Part A. 2008, 73A:341-350.
    • (2008) Cytometr. Part A. , vol.73 A , pp. 341-350
    • Rohde, G.K.1    Ribeiro, A.J.2    Dahl, K.N.3    Murphy, R.F.4
  • 9
    • 77951188673 scopus 로고    scopus 로고
    • A generative model of microtubule distributions, and indirect estimation of its parameters from fluorescence microscopy images
    • Shariff A., Murphy R.F., Rohde G.K. A generative model of microtubule distributions, and indirect estimation of its parameters from fluorescence microscopy images. Cytometr. Part A. 2010, 77A:457-466.
    • (2010) Cytometr. Part A. , vol.77 A , pp. 457-466
    • Shariff, A.1    Murphy, R.F.2    Rohde, G.K.3
  • 10
    • 80055056893 scopus 로고    scopus 로고
    • Automated estimation of microtubule model parameters from 3-D live cell microscopy images
    • Shariff A., Murphy R.F., Rohde G.K. Automated estimation of microtubule model parameters from 3-D live cell microscopy images. Proc. IEEE Int. Symp. Biomed. Imaging. 2011, 2011:1330-1333.
    • (2011) Proc. IEEE Int. Symp. Biomed. Imaging. , vol.2011 , pp. 1330-1333
    • Shariff, A.1    Murphy, R.F.2    Rohde, G.K.3
  • 11
    • 79955149044 scopus 로고    scopus 로고
    • Image-derived, three-dimensional generative models of cellular organization
    • Peng T., Murphy R.F. Image-derived, three-dimensional generative models of cellular organization. Cytometr. Part A 2011, 79A:383-391.
    • (2011) Cytometr. Part A , vol.79 A , pp. 383-391
    • Peng, T.1    Murphy, R.F.2
  • 12
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology. The Gene Ontology Consortium
    • Ashburner M., et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25:25-29.
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 13
    • 0015581337 scopus 로고
    • Biological shape and visual science. I
    • Blum H. Biological shape and visual science. I. J. Theor. Biol. 1973, 38:205-287.
    • (1973) J. Theor. Biol. , vol.38 , pp. 205-287
    • Blum, H.1
  • 14
    • 5444276422 scopus 로고    scopus 로고
    • Computing large deformation metric mappings via geodesic flows of diffeomorphisms
    • Beg M.F., Miller M.I., Trouve A., Younes L. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 2005, 61:139-157.
    • (2005) Int. J. Comput. Vis. , vol.61 , pp. 139-157
    • Beg, M.F.1    Miller, M.I.2    Trouve, A.3    Younes, L.4
  • 15
    • 41849111686 scopus 로고    scopus 로고
    • Nonrigid registration of 3-D multichannel microscopy images of cell nuclei
    • Yang S., et al. Nonrigid registration of 3-D multichannel microscopy images of cell nuclei. IEEE Trans. Image Process. 2008, 17:493-499.
    • (2008) IEEE Trans. Image Process. , vol.17 , pp. 493-499
    • Yang, S.1
  • 16
    • 65849206909 scopus 로고    scopus 로고
    • Shape reconstruction of subcellular structures from live cell fluorescence microscopy images
    • Helmuth J.A., Burckhardt C.J., Greber U.F., Sbalzarini I.F. Shape reconstruction of subcellular structures from live cell fluorescence microscopy images. J. Struct. Biol. 2009, 167:1-10.
    • (2009) J. Struct. Biol. , vol.167 , pp. 1-10
    • Helmuth, J.A.1    Burckhardt, C.J.2    Greber, U.F.3    Sbalzarini, I.F.4
  • 17
    • 26444451080 scopus 로고    scopus 로고
    • Object type recognition for automated analysis of protein subcellular location
    • Zhao T., Velliste M., Boland M.V., Murphy R.F. Object type recognition for automated analysis of protein subcellular location. IEEE Trans. Image Process. 2005, 14:1351-1359.
    • (2005) IEEE Trans. Image Process. , vol.14 , pp. 1351-1359
    • Zhao, T.1    Velliste, M.2    Boland, M.V.3    Murphy, R.F.4
  • 18
    • 0038778615 scopus 로고    scopus 로고
    • Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle
    • Sprague B.L., et al. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J. 2003, 84:3529-3546.
    • (2003) Biophys. J. , vol.84 , pp. 3529-3546
    • Sprague, B.L.1
  • 19
    • 33745948356 scopus 로고    scopus 로고
    • Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics
    • Chen X., Velliste M., Murphy R.F. Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics. Cytometr. Part A. 2006, 69A:631-640.
    • (2006) Cytometr. Part A. , vol.69 A , pp. 631-640
    • Chen, X.1    Velliste, M.2    Murphy, R.F.3
  • 20
    • 77149130553 scopus 로고    scopus 로고
    • Automated microscopy for high-content RNAi screening
    • Conrad C., Gerlich D.W. Automated microscopy for high-content RNAi screening. J. Cell Biol. 2010, 188:453-461.
    • (2010) J. Cell Biol. , vol.188 , pp. 453-461
    • Conrad, C.1    Gerlich, D.W.2
  • 22
    • 79959442387 scopus 로고    scopus 로고
    • Sorting the nuclear proteome
    • Bauer D.C., et al. Sorting the nuclear proteome. Bioinformatics 2011, 27:i7-i14.
    • (2011) Bioinformatics , vol.27
    • Bauer, D.C.1
  • 23
    • 77649263885 scopus 로고    scopus 로고
    • Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns
    • Peng T., et al. Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:2944-2949.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 2944-2949
    • Peng, T.1
  • 24
    • 77954179297 scopus 로고    scopus 로고
    • Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing
    • Coelho L.P., Peng T., Murphy R.F. Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing. Bioinformatics 2010, 26:i7-i12.
    • (2010) Bioinformatics , vol.26
    • Coelho, L.P.1    Peng, T.2    Murphy, R.F.3
  • 25
    • 66449130653 scopus 로고    scopus 로고
    • Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry
    • Svoboda D., Kozubek M., Stejskal S. Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometr. Part A. 2009, 75A:494-509.
    • (2009) Cytometr. Part A. , vol.75 A , pp. 494-509
    • Svoboda, D.1    Kozubek, M.2    Stejskal, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.