-
1
-
-
84866657764
-
SLIC superpixels compared to state-of-the-art superpixel methods
-
Nov.
-
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, "SLIC superpixels compared to state-of-the-art superpixel methods, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274-2282, Nov. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.11
, pp. 2274-2282
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Susstrunk, S.6
-
2
-
-
54249156699
-
Segmentation of SBFSEM volume data of neural tissue by hierarchical classification
-
LNCS
-
B. Andres, U. Koethe, M. Helmstaedter, W. Denk, and F. Hamprecht, "Segmentation of SBFSEM volume data of neural tissue by hierarchical classification, " in DAGM Symp. Pattern Recognit., 2008, vol. 5096, LNCS, pp. 142-152.
-
(2008)
DAGM Symp. Pattern Recognit.
, vol.5096
, pp. 142-152
-
-
Andres, B.1
Koethe, U.2
Helmstaedter, M.3
Denk, W.4
Hamprecht, F.5
-
3
-
-
33749033927
-
Kernels as features: On kernels, margins, and low-dimensional mappings
-
Oct.
-
M.-F. Balcan, A. Blum, and S. Vempala, "Kernels as features: On kernels, margins, and low-dimensional mappings, " Mach. Learn., vol. 65, no. 1, pp. 79-94, Oct. 2006.
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 79-94
-
-
Balcan, M.-F.1
Blum, A.2
Vempala, S.3
-
4
-
-
80052894155
-
Kernelized structural SVM learning for supervised object segmentation
-
L. Bertelli, T. Yu, D. Vu, and B. Gokturk, "Kernelized structural SVM learning for supervised object segmentation, " in Comput. Vis. Pattern Recognit. Conf., 2011, pp. 2153-2160.
-
(2011)
Comput. Vis. Pattern Recognit. Conf.
, pp. 2153-2160
-
-
Bertelli, L.1
Yu, T.2
Vu, D.3
Gokturk, B.4
-
6
-
-
0000913755
-
Spatial interaction and the statistical analysis of lattice systems
-
J. Besag, "Spatial interaction and the statistical analysis of lattice systems, " J. R. Stat. Soc. B, vol. 36, no. 2, pp. 192-225, 1974.
-
(1974)
J. R. Stat. Soc. B
, vol.36
, Issue.2
, pp. 192-225
-
-
Besag, J.1
-
7
-
-
0034844730
-
Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images
-
Y. Boykov and M. Jolly, "Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, " in Int. Conf. Comput. Vis., 2001, vol. 1, pp. 105-112.
-
(2001)
Int. Conf. Comput. Vis.
, vol.1
, pp. 105-112
-
-
Boykov, Y.1
Jolly, M.2
-
8
-
-
4344598245
-
An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
-
Sep.
-
Y. Boykov and V. Kolmogorov, "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124-1137, Sep. 2004.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.26
, Issue.9
, pp. 1124-1137
-
-
Boykov, Y.1
Kolmogorov, V.2
-
9
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
Nov.
-
Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1222-1239, Nov. 2001.
-
(2001)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.23
, Issue.11
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
10
-
-
33646371466
-
Online passive-aggressive algorithms
-
K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, "Online passive-aggressive algorithms, " J. Mach. Learn. Res., vol. 7, pp. 551-585, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 551-585
-
-
Crammer, K.1
Dekel, O.2
Keshet, J.3
Shalev-Shwartz, S.4
Singer, Y.5
-
11
-
-
77950202473
-
-
Univ. Pennsylvania, Philadelphia, PA, Tech. Rep.
-
K. Crammer, R. Mcdonald, and F. Pereira, Scalable large-margin online learning for structured classification Univ. Pennsylvania, Philadelphia, PA, Tech. Rep., 2005.
-
(2005)
Scalable Large-margin Online Learning for Structured Classification
-
-
Crammer, K.1
McDonald, R.2
Pereira, F.3
-
13
-
-
51949101231
-
A discriminatively trained, multiscale, deformable part model
-
Jun.
-
P. Felzenszwalb, D. Mcallester, and D. Ramanan, "A discriminatively trained, multiscale, deformable part model, " in Comput. Vis. Pattern Recognit. Conf., Jun. 2008, pp. 1-8.
-
(2008)
Comput. Vis. Pattern Recognit. Conf
, pp. 1-8
-
-
Felzenszwalb, P.1
McAllester, D.2
Ramanan, D.3
-
14
-
-
56449113929
-
Training structural SVMs when exact inference is intractable
-
T. Finley and T. Joachims, "Training structural SVMs when exact inference is intractable, " in Proc. Int. Conf. Mach. Learn., 2008, pp. 304-311.
-
(2008)
Proc. Int. Conf. Mach. Learn.
, pp. 304-311
-
-
Finley, T.1
Joachims, T.2
-
15
-
-
56449101964
-
Optimized cutting plane algorithm for support vector machines
-
V. Franc and S. Sonnenburg, "Optimized cutting plane algorithm for support vector machines, " in Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 320-327.
-
(2008)
Proc. 25th Int. Conf. Mach. Learn.
, pp. 320-327
-
-
Franc, V.1
Sonnenburg, S.2
-
16
-
-
77955998994
-
Harmony potentials for joint classification and segmentation
-
J. Gonfaus, X. Boix, J. Weijer, A. Bagdanov, J. Serrat, and J. Gonzalez, "Harmony potentials for joint classification and segmentation, " in Comput. Vis. Pattern Recognit. Conf., 2010, pp. 3280-3287.
-
(2010)
Comput. Vis. Pattern Recognit. Conf.
, pp. 3280-3287
-
-
Gonfaus, J.1
Boix, X.2
Weijer, J.3
Bagdanov, A.4
Serrat, J.5
Gonzalez, J.6
-
17
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
Mar.
-
W. Hoeffding, "Probability inequalities for sums of bounded random variables, " Am. Stat. Assoc. J., vol. 58, no. 301, pp. 13-30, Mar. 1963.
-
(1963)
Am. Stat. Assoc. J.
, vol.58
, Issue.301
, pp. 13-30
-
-
Hoeffding, W.1
-
18
-
-
0024885134
-
Finding the upper envelope of n line segments in time
-
Dec.
-
J. J. Hershberger, "Finding the upper envelope of n line segments in time, " Inf. Process. Lett., vol. 33, no. 4, pp. 169-174, Dec. 1989.
-
(1989)
Inf. Process. Lett.
, vol.33
, Issue.4
, pp. 169-174
-
-
Hershberger, J.J.1
-
19
-
-
69549111057
-
Cutting-plane training of structural SVMS
-
Oct.
-
T. Joachims, T. Finley, and C.-N. Yu, "Cutting-plane training of structural SVMS, " Mach. Learn., vol. 77, no. 1, pp. 27-59, Oct. 2009.
-
(2009)
Mach. Learn.
, vol.77
, Issue.1
, pp. 27-59
-
-
Joachims, T.1
Finley, T.2
Yu, C.-N.3
-
21
-
-
0025208765
-
Proximity control in bundle methods for convex non-differentiable minimization
-
Jan.
-
K. C. Kiwiel, "Proximity control in bundle methods for convex non-differentiable minimization, " Math. Program., vol. 46, no. 1-3, pp. 105-122, Jan. 1990.
-
(1990)
Math. Program.
, vol.46
, Issue.1-3
, pp. 105-122
-
-
Kiwiel, K.C.1
-
22
-
-
0742286180
-
What energy functions can be minimized via graph cuts?
-
Feb.
-
V. Kolmogorov and R. Zabih, "What energy functions can be minimized via graph cuts?, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 147-159, Feb. 2004.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.26
, Issue.2
, pp. 147-159
-
-
Kolmogorov, V.1
Zabih, R.2
-
23
-
-
84880570692
-
Block-coordinate Frank-Wolfe optimization for structural SVMs
-
S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher, "Block-coordinate Frank-Wolfe optimization for structural SVMs, " in Proc. Int. Conf. Mach. Learn., 2013, pp. 53-61.
-
(2013)
Proc. Int. Conf. Mach. Learn.
, pp. 53-61
-
-
Lacoste-Julien, S.1
Jaggi, M.2
Schmidt, M.3
Pletscher, P.4
-
25
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. Mccallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data, " in Proc. Int. Conf. Mach. Learn., 2001, pp. 282-289.
-
(2001)
Proc. Int. Conf. Mach. Learn.
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
26
-
-
44649116452
-
Bundle methods for machine learning
-
Q. V. Le, A. J. Smola, and S. Vishwanathan, "Bundle methods for machine learning, " in Adv. Neural Inf. Process. Syst., 2007, pp. 1377-1384.
-
(2007)
Adv. Neural Inf. Process. Syst.
, pp. 1377-1384
-
-
Le, Q.V.1
Smola, A.J.2
Vishwanathan, S.3
-
27
-
-
84863059942
-
Are spatial and global constraints really necessary for segmentation?
-
A. Lucchi, Y. Li, X. Boix, K. Smith, and P. Fua, "Are spatial and global constraints really necessary for segmentation?, " in Proc. Int. Conf. Comput. Vis., 2011, pp. 9-16.
-
(2011)
Proc. Int. Conf. Comput. Vis.
, pp. 9-16
-
-
Lucchi, A.1
Li, Y.2
Boix, X.3
Smith, K.4
Fua, P.5
-
28
-
-
84887368136
-
Learning for structured prediction using approximate subgradient descent with working sets
-
Jun.
-
A. Lucchi, Y. Li, and P. Fua, "Learning for structured prediction using approximate subgradient descent with working sets, " in Proc. Comput. Vis. Pattern Recognit. Conf, Jun. 2013, pp. 1987-1994.
-
(2013)
Proc. Comput. Vis. Pattern Recognit. Conf
, pp. 1987-1994
-
-
Lucchi, A.1
Li, Y.2
Fua, P.3
-
29
-
-
84867856488
-
Structured image segmentation using kernelized features
-
Oct.
-
A. Lucchi, Y. Li, K. Smith, and P. Fua, "Structured image segmentation using kernelized features, " in Proc. Eur. Conf. Comput. Vis., Oct. 2012, pp. 400-413.
-
(2012)
Proc. Eur. Conf. Comput. Vis
, pp. 400-413
-
-
Lucchi, A.1
Li, Y.2
Smith, K.3
Fua, P.4
-
30
-
-
84856735789
-
Supervoxel-based segmentation of mitochondria in em image stacks with learned shape features
-
Feb.
-
A. Lucchi, K. Smith, R. Achanta, G. Knott, and P. Fua, "Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features, " IEEE Trans. Med. Imag., vol. 31, no. 2, pp. 474-486, Feb. 2012.
-
(2012)
IEEE Trans. Med. Imag.
, vol.31
, Issue.2
, pp. 474-486
-
-
Lucchi, A.1
Smith, K.2
Achanta, R.3
Knott, G.4
Fua, P.5
-
31
-
-
77953184603
-
Max-margin additive classifiers for detection
-
S. Maji and A. Berg, "Max-margin additive classifiers for detection, " in Proc. Int. Conf. Comput. Vis., 2009, pp. 40-47.
-
(2009)
Proc. Int. Conf. Comput. Vis.
, pp. 40-47
-
-
Maji, S.1
Berg, A.2
-
32
-
-
85162488701
-
Direct loss minimization for structured prediction
-
D. Mcallester, T. Hazan, and J. Keshet, "Direct loss minimization for structured prediction, " in Adv. Neural Inform. Process. Syst., 2010, pp. 1594-1602.
-
(2010)
Adv. Neural Inform. Process. Syst.
, pp. 1594-1602
-
-
McAllester, D.1
Hazan, T.2
Keshet, J.3
-
33
-
-
77956951736
-
LibDAI: A free and open source C++ library for discrete approximate inference in graphical models
-
Aug.
-
J. M. Mooij, "LibDAI: A free and open source C++ library for discrete approximate inference in graphical models, " J. Mach. Learn. Res., vol. 11, pp. 2169-2173, Aug. 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2169-2173
-
-
Mooij, J.M.1
-
34
-
-
0002425879
-
Loopy belief propagation for approximate inference: An empirical study
-
K. Murphy, Y. Weiss, and M. Jordan, "Loopy belief propagation for approximate inference: An empirical study, " in Uncertainty Artif. In-tell., 1999, pp. 467-475.
-
(1999)
Uncertainty Artif. In-tell.
, pp. 467-475
-
-
Murphy, K.1
Weiss, Y.2
Jordan, M.3
-
35
-
-
65249121279
-
Primal-dual subgradient methods for convex problems
-
Aug.
-
Y. Nesterov, "Primal-dual subgradient methods for convex problems, " Math. Program., vol. 120, no. 1, pp. 221-259, Aug. 2009.
-
(2009)
Math. Program.
, vol.120
, Issue.1
, pp. 221-259
-
-
Nesterov, Y.1
-
36
-
-
78149309521
-
On parameter learning in CRF-based approaches to object class image segmentation
-
S. Nowozin, P. Gehler, and C. Lampert, "On parameter learning in CRF-based approaches to object class image segmentation, " in Proc. Eur. Conf. Comput. Vis., 2010, pp. 98-111.
-
(2010)
Proc. Eur. Conf. Comput. Vis.
, pp. 98-111
-
-
Nowozin, S.1
Gehler, P.2
Lampert, C.3
-
38
-
-
0000686629
-
A general method of solving extremum problems
-
B. Polyak, "A general method of solving extremum problems, " Soviet Math., vol. 8, no. 3, pp. 593-597, 1967.
-
(1967)
Soviet Math.
, vol.8
, Issue.3
, pp. 593-597
-
-
Polyak, B.1
-
39
-
-
85161980201
-
Random features for large-scale kernel machines
-
A. Rahimi and B. Recht, "Random features for large-scale kernel machines, " in Adv. Neural Inf. Process. Syst., 2007, pp. 1177-1184.
-
(2007)
Adv. Neural Inf. Process. Syst.
, pp. 1177-1184
-
-
Rahimi, A.1
Recht, B.2
-
40
-
-
84862297087
-
Subgradient Methods for Structured Prediction
-
N. Ratliff, J. A. Bagnell, and M. Zinkevich, "Subgradient Methods for Structured Prediction, " in Proc. Int. Conf. Artif. Intell. Stat., 2007, pp. 380-387.
-
(2007)
Proc. Int. Conf. Artif. Intell. Stat.
, pp. 380-387
-
-
Ratliff, N.1
Bagnell, J.A.2
Zinkevich, M.3
-
41
-
-
0345225542
-
Linear convergence of epsilon-subgradient descent methods for a class of convex functions
-
Sep.
-
S. M. Robinson, "Linear convergence of epsilon-subgradient descent methods for a class of convex functions, " Math. Program., vol. 86, no. 1, pp. 41-50, Sep. 1999.
-
(1999)
Math. Program.
, vol.86
, Issue.1
, pp. 41-50
-
-
Robinson, S.M.1
-
42
-
-
84867135840
-
Efficient decomposed learning for structured prediction
-
R. Samdani and D. Roth, "Efficient decomposed learning for structured prediction, " in Proc. Int. Conf. Mach. Learn., 2012, vol. 1206.4630, pp. 217-224.
-
(2012)
Proc. Int. Conf. Mach. Learn.
, vol.1206
, Issue.4630
, pp. 217-224
-
-
Samdani, R.1
Roth, D.2
-
43
-
-
0033338205
-
Local gain adaptation in stochastic gradient descent
-
N. Schraudolph, "Local gain adaptation in stochastic gradient descent, " in Proc. Int. Conf. Artif. Neural Netw., 1999, pp. 569-574.
-
(1999)
Proc. Int. Conf. Artif. Neural Netw.
, pp. 569-574
-
-
Schraudolph, N.1
-
44
-
-
80052419154
-
Fast support vector machines for structural kernels
-
A. Severyn and A. Moschitti, "Fast support vector machines for structural kernels, " in Proc. Eur. Conf. Mach. Learn., 2011, pp. 175-190.
-
(2011)
Proc. Eur. Conf. Mach. Learn.
, pp. 175-190
-
-
Severyn, A.1
Moschitti, A.2
-
45
-
-
84898825227
-
Image segmentation with cascaded hierarchical models and logistic disjunctive normal networks
-
M. Seyedhosseini, M. Sajjadi, and T. Tasdizen, "Image segmentation with cascaded hierarchical models and logistic disjunctive normal networks, " in Proc. Int. Conf. Comput. Vis., 2013, pp. 2168-2175.
-
(2013)
Proc. Int. Conf. Comput. Vis.
, pp. 2168-2175
-
-
Seyedhosseini, M.1
Sajjadi, M.2
Tasdizen, T.3
-
46
-
-
79952748054
-
Pegasos: Primal estimated sub-gradient solver for SVM
-
Mar.
-
S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal estimated sub-gradient solver for SVM, " Math. Program., vol. 127, no. 1, pp. 3-30, Mar. 2011.
-
(2011)
Math. Program.
, vol.127
, Issue.1
, pp. 3-30
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
Cotter, A.4
-
47
-
-
0003995427
-
-
Berlin, Germany: Springer
-
N. Shor, K. Kiwiel, and A. Ruszcaynski, Minimization methods for non-differentiable functions, ser. Springer series in computational mathematics. Berlin, Germany: Springer, 1985, vol. 3.
-
(1985)
Minimization Methods for Non-differentiable Functions, Ser. Springer Series in Computational Mathematics
, vol.3
-
-
Shor, N.1
Kiwiel, K.2
Ruszcaynski, A.3
-
48
-
-
58149151266
-
Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
-
Jan.
-
J. Shotton, J. Winn, C. Rother, and A. Criminisi, "Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context, " Int. J. Comput. Vis., vol. 81, no. 1, pp. 2-23, Jan. 2009.
-
(2009)
Int. J. Comput. Vis.
, vol.81
, Issue.1
, pp. 2-23
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
49
-
-
33750032384
-
Introduction to Conditional Random Fields for Relational Learning
-
L. Getoor and B. Taskar, Eds. Cambridge, MA: MIT Press
-
C. Sutton and A. McCallum, "Introduction to Conditional Random Fields for Relational Learning, " in Introduction to Statistical Relational Learning, L. Getoor and B. Taskar, Eds. Cambridge, MA: MIT Press, 2006.
-
(2006)
Introduction to Statistical Relational Learning
-
-
Sutton, C.1
McCallum, A.2
-
50
-
-
56749103990
-
Learning CRFs using graph cuts
-
M. Szummer, P. Kohli, and D. Hoiem, "Learning CRFs using graph cuts, " in Proc. Eur. Conf. Comput. Vis., 2008, pp. 582-595.
-
(2008)
Proc. Eur. Conf. Comput. Vis.
, pp. 582-595
-
-
Szummer, M.1
Kohli, P.2
Hoiem, D.3
-
51
-
-
31844442382
-
Learning structured prediction models: A large margin approach
-
B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin, "Learning structured prediction models: A large margin approach, " in Proc. Int. Conf. Mach. Learn., 2005, pp. 896-903.
-
(2005)
Proc. Int. Conf. Mach. Learn.
, pp. 896-903
-
-
Taskar, B.1
Chatalbashev, V.2
Koller, D.3
Guestrin, C.4
-
52
-
-
14344253870
-
Max-margin Markov networks
-
B. Taskar, C. Guestrin, and D. Koller, "Max-margin Markov networks, " in Adv. Neural Inform. Process. Sys., 2003, pp. 25-32.
-
(2003)
Adv. Neural Inform. Process. Sys.
, pp. 25-32
-
-
Taskar, B.1
Guestrin, C.2
Koller, D.3
-
53
-
-
33745771086
-
Structured prediction, dual extragradient and bregman projections
-
B. Taskar, S. Lacoste-Julien, and M. Jordan, "Structured prediction, dual extragradient and bregman projections, " J. Mach. Learn. Res., vol. 7, pp. 1627-1653, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1627-1653
-
-
Taskar, B.1
Lacoste-Julien, S.2
Jordan, M.3
-
54
-
-
76749161402
-
Bundle methods for regularized risk minimization
-
C. H. Teo, S. Vishwanthan, A. J. Smola, and Q. V. Le, "Bundle methods for regularized risk minimization, " J. Mach. Learn. Res., vol. 11, pp. 311-365, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 311-365
-
-
Teo, C.H.1
Vishwanthan, S.2
Smola, A.J.3
Le, Q.V.4
-
55
-
-
14344250451
-
Support vector machine learning for interdependent and structured output spaces
-
I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, "Support vector machine learning for interdependent and structured output spaces, " in Proc. Int. Conf. Mach. Learn., 2004, p. 104.
-
(2004)
Proc. Int. Conf. Mach. Learn.
, pp. 104
-
-
Tsochantaridis, I.1
Hofmann, T.2
Joachims, T.3
Altun, Y.4
-
56
-
-
84856194352
-
Efficient additive kernels via explicit feature maps
-
Mar.
-
A. Vedaldi and A. Zisserman, "Efficient additive kernels via explicit feature maps, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3, pp. 480-492, Mar. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.3
, pp. 480-492
-
-
Vedaldi, A.1
Zisserman, A.2
-
57
-
-
80053457712
-
Samplerank: Training factor graphs with atomic gradients
-
M. Wick, K. Rohanimanesh, K. Bellare, A. Culotta, and A. Mccallum, "Samplerank: Training factor graphs with atomic gradients, " in Proc. Int. Conf. Mach. Learn., 2011, pp. 777-784.
-
(2011)
Proc. Int. Conf. Mach. Learn.
, pp. 777-784
-
-
Wick, M.1
Rohanimanesh, K.2
Bellare, K.3
Culotta, A.4
McCallum, A.5
-
58
-
-
78649396336
-
Dual averaging methods for regularized stochastic learning and online optimization
-
Dec.
-
L. Xiao, "Dual averaging methods for regularized stochastic learning and online optimization, " J. Mach. Learn. Res., vol. 11, pp. 2543-2596, Dec. 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2543-2596
-
-
Xiao, L.1
-
59
-
-
65449143358
-
Training structural SVMs with kernels using sampled cuts
-
C.-N. Yu and T. Joachims, "Training structural SVMs with kernels using sampled cuts, " in Knowl. Discov. Data Mining Conf., 2008, pp. 794-802.
-
(2008)
Knowl. Discov. Data Mining Conf.
, pp. 794-802
-
-
Yu, C.-N.1
Joachims, T.2
|