메뉴 건너뛰기




Volumn 34, Issue 5, 2015, Pages 1096-1110

Learning structured models for segmentation of 2-D and 3-D imagery

Author keywords

Computer vision; electron microscopy; image processing; image segmentation; kernel methods; mitochondria; segmentation; statistical machine learning; structured prediction; superpixels; supervoxels

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; ELECTRON MICROSCOPES; ELECTRON MICROSCOPY; IMAGE PROCESSING; ITERATIVE METHODS; LEARNING SYSTEMS; MEDICAL IMAGING; MITOCHONDRIA; MOBILE SECURITY;

EID: 84929484680     PISSN: 02780062     EISSN: 1558254X     Source Type: Journal    
DOI: 10.1109/TMI.2014.2376274     Document Type: Article
Times cited : (35)

References (59)
  • 2
    • 54249156699 scopus 로고    scopus 로고
    • Segmentation of SBFSEM volume data of neural tissue by hierarchical classification
    • LNCS
    • B. Andres, U. Koethe, M. Helmstaedter, W. Denk, and F. Hamprecht, "Segmentation of SBFSEM volume data of neural tissue by hierarchical classification, " in DAGM Symp. Pattern Recognit., 2008, vol. 5096, LNCS, pp. 142-152.
    • (2008) DAGM Symp. Pattern Recognit. , vol.5096 , pp. 142-152
    • Andres, B.1    Koethe, U.2    Helmstaedter, M.3    Denk, W.4    Hamprecht, F.5
  • 3
    • 33749033927 scopus 로고    scopus 로고
    • Kernels as features: On kernels, margins, and low-dimensional mappings
    • Oct.
    • M.-F. Balcan, A. Blum, and S. Vempala, "Kernels as features: On kernels, margins, and low-dimensional mappings, " Mach. Learn., vol. 65, no. 1, pp. 79-94, Oct. 2006.
    • (2006) Mach. Learn. , vol.65 , Issue.1 , pp. 79-94
    • Balcan, M.-F.1    Blum, A.2    Vempala, S.3
  • 4
    • 80052894155 scopus 로고    scopus 로고
    • Kernelized structural SVM learning for supervised object segmentation
    • L. Bertelli, T. Yu, D. Vu, and B. Gokturk, "Kernelized structural SVM learning for supervised object segmentation, " in Comput. Vis. Pattern Recognit. Conf., 2011, pp. 2153-2160.
    • (2011) Comput. Vis. Pattern Recognit. Conf. , pp. 2153-2160
    • Bertelli, L.1    Yu, T.2    Vu, D.3    Gokturk, B.4
  • 6
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag, "Spatial interaction and the statistical analysis of lattice systems, " J. R. Stat. Soc. B, vol. 36, no. 2, pp. 192-225, 1974.
    • (1974) J. R. Stat. Soc. B , vol.36 , Issue.2 , pp. 192-225
    • Besag, J.1
  • 7
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images
    • Y. Boykov and M. Jolly, "Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, " in Int. Conf. Comput. Vis., 2001, vol. 1, pp. 105-112.
    • (2001) Int. Conf. Comput. Vis. , vol.1 , pp. 105-112
    • Boykov, Y.1    Jolly, M.2
  • 8
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Sep.
    • Y. Boykov and V. Kolmogorov, "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124-1137, Sep. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 9
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Nov.
    • Y. Boykov, O. Veksler, and R. Zabih, "Fast approximate energy minimization via graph cuts, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp. 1222-1239, Nov. 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.11 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 14
    • 56449113929 scopus 로고    scopus 로고
    • Training structural SVMs when exact inference is intractable
    • T. Finley and T. Joachims, "Training structural SVMs when exact inference is intractable, " in Proc. Int. Conf. Mach. Learn., 2008, pp. 304-311.
    • (2008) Proc. Int. Conf. Mach. Learn. , pp. 304-311
    • Finley, T.1    Joachims, T.2
  • 15
    • 56449101964 scopus 로고    scopus 로고
    • Optimized cutting plane algorithm for support vector machines
    • V. Franc and S. Sonnenburg, "Optimized cutting plane algorithm for support vector machines, " in Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 320-327.
    • (2008) Proc. 25th Int. Conf. Mach. Learn. , pp. 320-327
    • Franc, V.1    Sonnenburg, S.2
  • 17
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • Mar.
    • W. Hoeffding, "Probability inequalities for sums of bounded random variables, " Am. Stat. Assoc. J., vol. 58, no. 301, pp. 13-30, Mar. 1963.
    • (1963) Am. Stat. Assoc. J. , vol.58 , Issue.301 , pp. 13-30
    • Hoeffding, W.1
  • 18
    • 0024885134 scopus 로고
    • Finding the upper envelope of n line segments in time
    • Dec.
    • J. J. Hershberger, "Finding the upper envelope of n line segments in time, " Inf. Process. Lett., vol. 33, no. 4, pp. 169-174, Dec. 1989.
    • (1989) Inf. Process. Lett. , vol.33 , Issue.4 , pp. 169-174
    • Hershberger, J.J.1
  • 19
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMS
    • Oct.
    • T. Joachims, T. Finley, and C.-N. Yu, "Cutting-plane training of structural SVMS, " Mach. Learn., vol. 77, no. 1, pp. 27-59, Oct. 2009.
    • (2009) Mach. Learn. , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.-N.3
  • 21
    • 0025208765 scopus 로고
    • Proximity control in bundle methods for convex non-differentiable minimization
    • Jan.
    • K. C. Kiwiel, "Proximity control in bundle methods for convex non-differentiable minimization, " Math. Program., vol. 46, no. 1-3, pp. 105-122, Jan. 1990.
    • (1990) Math. Program. , vol.46 , Issue.1-3 , pp. 105-122
    • Kiwiel, K.C.1
  • 22
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • Feb.
    • V. Kolmogorov and R. Zabih, "What energy functions can be minimized via graph cuts?, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 147-159, Feb. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabih, R.2
  • 24
  • 25
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. Mccallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data, " in Proc. Int. Conf. Mach. Learn., 2001, pp. 282-289.
    • (2001) Proc. Int. Conf. Mach. Learn. , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 27
    • 84863059942 scopus 로고    scopus 로고
    • Are spatial and global constraints really necessary for segmentation?
    • A. Lucchi, Y. Li, X. Boix, K. Smith, and P. Fua, "Are spatial and global constraints really necessary for segmentation?, " in Proc. Int. Conf. Comput. Vis., 2011, pp. 9-16.
    • (2011) Proc. Int. Conf. Comput. Vis. , pp. 9-16
    • Lucchi, A.1    Li, Y.2    Boix, X.3    Smith, K.4    Fua, P.5
  • 28
    • 84887368136 scopus 로고    scopus 로고
    • Learning for structured prediction using approximate subgradient descent with working sets
    • Jun.
    • A. Lucchi, Y. Li, and P. Fua, "Learning for structured prediction using approximate subgradient descent with working sets, " in Proc. Comput. Vis. Pattern Recognit. Conf, Jun. 2013, pp. 1987-1994.
    • (2013) Proc. Comput. Vis. Pattern Recognit. Conf , pp. 1987-1994
    • Lucchi, A.1    Li, Y.2    Fua, P.3
  • 29
    • 84867856488 scopus 로고    scopus 로고
    • Structured image segmentation using kernelized features
    • Oct.
    • A. Lucchi, Y. Li, K. Smith, and P. Fua, "Structured image segmentation using kernelized features, " in Proc. Eur. Conf. Comput. Vis., Oct. 2012, pp. 400-413.
    • (2012) Proc. Eur. Conf. Comput. Vis , pp. 400-413
    • Lucchi, A.1    Li, Y.2    Smith, K.3    Fua, P.4
  • 30
    • 84856735789 scopus 로고    scopus 로고
    • Supervoxel-based segmentation of mitochondria in em image stacks with learned shape features
    • Feb.
    • A. Lucchi, K. Smith, R. Achanta, G. Knott, and P. Fua, "Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features, " IEEE Trans. Med. Imag., vol. 31, no. 2, pp. 474-486, Feb. 2012.
    • (2012) IEEE Trans. Med. Imag. , vol.31 , Issue.2 , pp. 474-486
    • Lucchi, A.1    Smith, K.2    Achanta, R.3    Knott, G.4    Fua, P.5
  • 31
    • 77953184603 scopus 로고    scopus 로고
    • Max-margin additive classifiers for detection
    • S. Maji and A. Berg, "Max-margin additive classifiers for detection, " in Proc. Int. Conf. Comput. Vis., 2009, pp. 40-47.
    • (2009) Proc. Int. Conf. Comput. Vis. , pp. 40-47
    • Maji, S.1    Berg, A.2
  • 33
    • 77956951736 scopus 로고    scopus 로고
    • LibDAI: A free and open source C++ library for discrete approximate inference in graphical models
    • Aug.
    • J. M. Mooij, "LibDAI: A free and open source C++ library for discrete approximate inference in graphical models, " J. Mach. Learn. Res., vol. 11, pp. 2169-2173, Aug. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2169-2173
    • Mooij, J.M.1
  • 34
    • 0002425879 scopus 로고    scopus 로고
    • Loopy belief propagation for approximate inference: An empirical study
    • K. Murphy, Y. Weiss, and M. Jordan, "Loopy belief propagation for approximate inference: An empirical study, " in Uncertainty Artif. In-tell., 1999, pp. 467-475.
    • (1999) Uncertainty Artif. In-tell. , pp. 467-475
    • Murphy, K.1    Weiss, Y.2    Jordan, M.3
  • 35
    • 65249121279 scopus 로고    scopus 로고
    • Primal-dual subgradient methods for convex problems
    • Aug.
    • Y. Nesterov, "Primal-dual subgradient methods for convex problems, " Math. Program., vol. 120, no. 1, pp. 221-259, Aug. 2009.
    • (2009) Math. Program. , vol.120 , Issue.1 , pp. 221-259
    • Nesterov, Y.1
  • 36
    • 78149309521 scopus 로고    scopus 로고
    • On parameter learning in CRF-based approaches to object class image segmentation
    • S. Nowozin, P. Gehler, and C. Lampert, "On parameter learning in CRF-based approaches to object class image segmentation, " in Proc. Eur. Conf. Comput. Vis., 2010, pp. 98-111.
    • (2010) Proc. Eur. Conf. Comput. Vis. , pp. 98-111
    • Nowozin, S.1    Gehler, P.2    Lampert, C.3
  • 38
    • 0000686629 scopus 로고
    • A general method of solving extremum problems
    • B. Polyak, "A general method of solving extremum problems, " Soviet Math., vol. 8, no. 3, pp. 593-597, 1967.
    • (1967) Soviet Math. , vol.8 , Issue.3 , pp. 593-597
    • Polyak, B.1
  • 39
    • 85161980201 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • A. Rahimi and B. Recht, "Random features for large-scale kernel machines, " in Adv. Neural Inf. Process. Syst., 2007, pp. 1177-1184.
    • (2007) Adv. Neural Inf. Process. Syst. , pp. 1177-1184
    • Rahimi, A.1    Recht, B.2
  • 41
    • 0345225542 scopus 로고    scopus 로고
    • Linear convergence of epsilon-subgradient descent methods for a class of convex functions
    • Sep.
    • S. M. Robinson, "Linear convergence of epsilon-subgradient descent methods for a class of convex functions, " Math. Program., vol. 86, no. 1, pp. 41-50, Sep. 1999.
    • (1999) Math. Program. , vol.86 , Issue.1 , pp. 41-50
    • Robinson, S.M.1
  • 42
    • 84867135840 scopus 로고    scopus 로고
    • Efficient decomposed learning for structured prediction
    • R. Samdani and D. Roth, "Efficient decomposed learning for structured prediction, " in Proc. Int. Conf. Mach. Learn., 2012, vol. 1206.4630, pp. 217-224.
    • (2012) Proc. Int. Conf. Mach. Learn. , vol.1206 , Issue.4630 , pp. 217-224
    • Samdani, R.1    Roth, D.2
  • 43
    • 0033338205 scopus 로고    scopus 로고
    • Local gain adaptation in stochastic gradient descent
    • N. Schraudolph, "Local gain adaptation in stochastic gradient descent, " in Proc. Int. Conf. Artif. Neural Netw., 1999, pp. 569-574.
    • (1999) Proc. Int. Conf. Artif. Neural Netw. , pp. 569-574
    • Schraudolph, N.1
  • 44
    • 80052419154 scopus 로고    scopus 로고
    • Fast support vector machines for structural kernels
    • A. Severyn and A. Moschitti, "Fast support vector machines for structural kernels, " in Proc. Eur. Conf. Mach. Learn., 2011, pp. 175-190.
    • (2011) Proc. Eur. Conf. Mach. Learn. , pp. 175-190
    • Severyn, A.1    Moschitti, A.2
  • 45
    • 84898825227 scopus 로고    scopus 로고
    • Image segmentation with cascaded hierarchical models and logistic disjunctive normal networks
    • M. Seyedhosseini, M. Sajjadi, and T. Tasdizen, "Image segmentation with cascaded hierarchical models and logistic disjunctive normal networks, " in Proc. Int. Conf. Comput. Vis., 2013, pp. 2168-2175.
    • (2013) Proc. Int. Conf. Comput. Vis. , pp. 2168-2175
    • Seyedhosseini, M.1    Sajjadi, M.2    Tasdizen, T.3
  • 46
    • 79952748054 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • Mar.
    • S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal estimated sub-gradient solver for SVM, " Math. Program., vol. 127, no. 1, pp. 3-30, Mar. 2011.
    • (2011) Math. Program. , vol.127 , Issue.1 , pp. 3-30
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3    Cotter, A.4
  • 48
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • Jan.
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi, "Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context, " Int. J. Comput. Vis., vol. 81, no. 1, pp. 2-23, Jan. 2009.
    • (2009) Int. J. Comput. Vis. , vol.81 , Issue.1 , pp. 2-23
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 49
    • 33750032384 scopus 로고    scopus 로고
    • Introduction to Conditional Random Fields for Relational Learning
    • L. Getoor and B. Taskar, Eds. Cambridge, MA: MIT Press
    • C. Sutton and A. McCallum, "Introduction to Conditional Random Fields for Relational Learning, " in Introduction to Statistical Relational Learning, L. Getoor and B. Taskar, Eds. Cambridge, MA: MIT Press, 2006.
    • (2006) Introduction to Statistical Relational Learning
    • Sutton, C.1    McCallum, A.2
  • 53
    • 33745771086 scopus 로고    scopus 로고
    • Structured prediction, dual extragradient and bregman projections
    • B. Taskar, S. Lacoste-Julien, and M. Jordan, "Structured prediction, dual extragradient and bregman projections, " J. Mach. Learn. Res., vol. 7, pp. 1627-1653, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1627-1653
    • Taskar, B.1    Lacoste-Julien, S.2    Jordan, M.3
  • 54
  • 56
    • 84856194352 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • Mar.
    • A. Vedaldi and A. Zisserman, "Efficient additive kernels via explicit feature maps, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3, pp. 480-492, Mar. 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.3 , pp. 480-492
    • Vedaldi, A.1    Zisserman, A.2
  • 58
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • Dec.
    • L. Xiao, "Dual averaging methods for regularized stochastic learning and online optimization, " J. Mach. Learn. Res., vol. 11, pp. 2543-2596, Dec. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2543-2596
    • Xiao, L.1
  • 59
    • 65449143358 scopus 로고    scopus 로고
    • Training structural SVMs with kernels using sampled cuts
    • C.-N. Yu and T. Joachims, "Training structural SVMs with kernels using sampled cuts, " in Knowl. Discov. Data Mining Conf., 2008, pp. 794-802.
    • (2008) Knowl. Discov. Data Mining Conf. , pp. 794-802
    • Yu, C.-N.1    Joachims, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.