-
1
-
-
84946584360
-
Modeltracker: Redesigning performance analysis tools for machine learning
-
S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh. Modeltracker: Redesigning performance analysis tools for machine learning. In Human Factors in Computing Systems (CHI), 2015.
-
(2015)
Human Factors in Computing Systems (CHI)
-
-
Amershi, S.1
Chickering, M.2
Drucker, S.M.3
Lee, B.4
Simard, P.5
Suh, J.6
-
2
-
-
77954665728
-
How to explain individual classification decisions
-
D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Muller. How to explain individual classification decisions. Journal of Machine Learning Research, 11, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
-
-
Baehrens, D.1
Schroeter, T.2
Harmeling, S.3
Kawanabe, M.4
Hansen, K.5
Muller, K.-R.6
-
4
-
-
84860524227
-
Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
-
J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Association for Computational Linguistics (ACL), 2007.
-
(2007)
Association for Computational Linguistics (ACL)
-
-
Blitzer, J.1
Dredze, M.2
Pereira, F.3
-
6
-
-
84954180053
-
Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission
-
R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Knowledge Discovery and Data Mining (KDD), 2015.
-
(2015)
Knowledge Discovery and Data Mining (KDD)
-
-
Caruana, R.1
Lou, Y.2
Gehrke, J.3
Koch, P.4
Sturm, M.5
Elhadad, N.6
-
8
-
-
0037939746
-
The role of trust in automation reliance
-
M. T. Dzindolet, S. A. Peterson, R. A. Pomranky, L. G. Pierce, and H. P. Beck. The role of trust in automation reliance. Int. J. Hum.-Comput. Stud. 58(6), 2003.
-
(2003)
Int. J. Hum.-Comput. Stud.
, vol.58
, Issue.6
-
-
Dzindolet, M.T.1
Peterson, S.A.2
Pomranky, R.A.3
Pierce, L.G.4
Beck, H.P.5
-
9
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32:407-499, 2004.
-
(2004)
Annals of Statistics
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
10
-
-
0032108328
-
A threshold of ln n for approximating set cover
-
July
-
U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4), July 1998.
-
(1998)
J. ACM
, vol.45
, Issue.4
-
-
Feige, U.1
-
11
-
-
84898034150
-
You are the only possible oracle: Effective test selection for end users of interactive machine learning systems
-
A. Groce, T. Kulesza, C. Zhang, S. Shamasunder, M. Burnett, W.-K. Wong, S. Stumpf, S. Das, A. Shinsel, F. Bice, and K. McIntosh. You are the only possible oracle: effective test selection for end users of interactive machine learning systems. IEEE Trans. Softw. Eng. 40(3), 2014.
-
(2014)
IEEE Trans. Softw. Eng.
, vol.40
, Issue.3
-
-
Groce, A.1
Kulesza, T.2
Zhang, C.3
Shamasunder, S.4
Burnett, M.5
Wong, W.-K.6
Stumpf, S.7
Das, S.8
Shinsel, A.9
Bice, F.10
McIntosh, K.11
-
14
-
-
80052651220
-
Leakage in data mining: Formulation, detection, and avoidance
-
S. Kaufman, S. Rosset, and C. Perlich. Leakage in data mining: Formulation, detection, and avoidance. In Knowledge Discovery and Data Mining (KDD), 2011.
-
(2011)
Knowledge Discovery and Data Mining (KDD)
-
-
Kaufman, S.1
Rosset, S.2
Perlich, C.3
-
17
-
-
84946593219
-
Interpretable classiffers using rules and Bayesian analysis: Building a better stroke prediction model
-
B. Letham, C. Rudin, T. H. McCormick, and D. Madigan. Interpretable classiffers using rules and Bayesian analysis: Building a better stroke prediction model. Annals of Applied Statistics, 2015.
-
(2015)
Annals of Applied Statistics
-
-
Letham, B.1
Rudin, C.2
McCormick, T.H.3
Madigan, D.4
-
18
-
-
84919337364
-
Explaining data-driven document classifications
-
D. Martens and F. Provost. Explaining data-driven document classifications. MIS Q. 38(1), 2014.
-
(2014)
MIS Q.
, vol.38
, Issue.1
-
-
Martens, D.1
Provost, F.2
-
20
-
-
78649593360
-
Gestalt: Integrated support for implementation and analysis in machine learning
-
K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and J. Landay. Gestalt: Integrated support for implementation and analysis in machine learning. In User Interface Software and Technology (UIST), 2010.
-
(2010)
User Interface Software and Technology (UIST)
-
-
Patel, K.1
Bancroft, N.2
Drucker, S.M.3
Fogarty, J.4
Ko, A.J.5
Landay, J.6
-
23
-
-
84965107309
-
Hidden technical debt in machine learning systems
-
D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, and J.-F. Crespo. Hidden technical debt in machine learning systems. In Neural Information Processing Systems (NIPS). 2015.
-
(2015)
Neural Information Processing Systems (NIPS)
-
-
Sculley, D.1
Holt, G.2
Golovin, D.3
Davydov, E.4
Phillips, T.5
Ebner, D.6
Chaudhary, V.7
Young, M.8
Crespo, J.-F.9
-
25
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Computer Vision and Pattern Recognition (CVPR), 2015.
-
(2015)
Computer Vision and Pattern Recognition (CVPR)
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
26
-
-
84978850304
-
Supersparse linear integer models for optimized medical scoring systems
-
B. Ustun and C. Rudin. Supersparse linear integer models for optimized medical scoring systems. Machine Learning, 2015.
-
(2015)
Machine Learning
-
-
Ustun, B.1
Rudin, C.2
-
28
-
-
84970002232
-
Show, attend and tell: Neural image caption generation with visual attention
-
K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In International Conference on Machine Learning (ICML), 2015.
-
(2015)
International Conference on Machine Learning (ICML)
-
-
Xu, K.1
Ba, J.2
Kiros, R.3
Cho, K.4
Courville, A.5
Salakhutdinov, R.6
Zemel, R.7
Bengio, Y.8
-
29
-
-
84911436141
-
Predicting failures of vision systems
-
P. Zhang, J. Wang, A. Farhadi, M. Hebert, and D. Parikh. Predicting failures of vision systems. In Computer Vision and Pattern Recognition (CVPR), 2014.
-
(2014)
Computer Vision and Pattern Recognition (CVPR)
-
-
Zhang, P.1
Wang, J.2
Farhadi, A.3
Hebert, M.4
Parikh, D.5
|