-
1
-
-
79959951425
-
Parkin uses the UPS to ship off dysfunctional mitochondria
-
Chan NC, Chan DC., Parkin uses the UPS to ship off dysfunctional mitochondria. Autophagy 2011;7:771–2
-
(2011)
Autophagy
, vol.7
, pp. 771-772
-
-
Chan, N.C.1
Chan, D.C.2
-
2
-
-
84861204926
-
PINK1- and Parkin-mediated mitophagy at a glance
-
Jin SM, Youle RJ., PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci 2012;125:795–9
-
(2012)
J Cell Sci
, vol.125
, pp. 795-799
-
-
Jin, S.M.1
Youle, R.J.2
-
3
-
-
84867724832
-
Mitochondria and mitophagy: the yin and yang of cell death control
-
Kubli DA, Gustafsson AB., Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 2012;111:1208–21
-
(2012)
Circ Res
, vol.111
, pp. 1208-1221
-
-
Kubli, D.A.1
Gustafsson, A.B.2
-
4
-
-
84863430453
-
Mitophagy: a complex mechanism of mitochondrial removal
-
Novak I., Mitophagy: a complex mechanism of mitochondrial removal. Antioxid Redox Signal 2012;17:794–802
-
(2012)
Antioxid Redox Signal
, vol.17
, pp. 794-802
-
-
Novak, I.1
-
5
-
-
84984846443
-
Mitochondrial quality control by the Pink1/Parkin system
-
Rub C, Wilkening A, Voos W., Mitochondrial quality control by the Pink1/Parkin system. Cell Tissue Res 2017;367:111–23
-
(2017)
Cell Tissue Res
, vol.367
, pp. 111-123
-
-
Rub, C.1
Wilkening, A.2
Voos, W.3
-
6
-
-
76949092128
-
The PINK1/Parkin pathway: a mitochondrial quality control system?
-
Whitworth AJ, Pallanck LJ., The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenerg Biomem 2009;41:499–503
-
(2009)
J Bioenerg Biomem
, vol.41
, pp. 499-503
-
-
Whitworth, A.J.1
Pallanck, L.J.2
-
7
-
-
23944474123
-
Early work on the ubiquitin proteasome system, an interview with Aaron Ciechanover
-
Ciechanover A., Early work on the ubiquitin proteasome system, an interview with Aaron Ciechanover. Interview by CDD. Cell Death Differ 2005;12:1167–77
-
(2005)
Interview by CDD. Cell Death Differ
, vol.12
, pp. 1167-1177
-
-
Ciechanover, A.1
-
8
-
-
0030695478
-
Pathways of ubiquitin conjugation
-
Haas AL, Siepmann TJ., Pathways of ubiquitin conjugation. FASEB J 1997;11:1257–68
-
(1997)
FASEB J
, vol.11
, pp. 1257-1268
-
-
Haas, A.L.1
Siepmann, T.J.2
-
9
-
-
0028935165
-
Ubiquitin, proteasomes, and the regulation of intracellular protein degradation
-
Hochstrasser M., Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 1995;7:215–23
-
(1995)
Curr Opin Cell Biol
, vol.7
, pp. 215-223
-
-
Hochstrasser, M.1
-
10
-
-
0030457014
-
Ubiquitin-dependent protein degradation
-
Hochstrasser M., Ubiquitin-dependent protein degradation. Annu Rev Genet 1996;30:405–39
-
(1996)
Annu Rev Genet
, vol.30
, pp. 405-439
-
-
Hochstrasser, M.1
-
11
-
-
0034915764
-
Mechanisms underlying ubiquitination
-
Pickart CM., Mechanisms underlying ubiquitination. Annu Rev Biochem 2001;70:503–33
-
(2001)
Annu Rev Biochem
, vol.70
, pp. 503-533
-
-
Pickart, C.M.1
-
12
-
-
33748991453
-
Ubiquitin and ubiquitin-like proteins in cancer pathogenesis
-
Hoeller D, Hecker CM, Dikic I., Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 2006;6:776–88
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 776-788
-
-
Hoeller, D.1
Hecker, C.M.2
Dikic, I.3
-
13
-
-
33745816760
-
Protein degradation by the ubiquitin-proteasome pathway in normal and disease states
-
Lecker SH, Goldberg AL, Mitch WE., Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006;17:1807–19
-
(2006)
J Am Soc Nephrol
, vol.17
, pp. 1807-1819
-
-
Lecker, S.H.1
Goldberg, A.L.2
Mitch, W.E.3
-
14
-
-
23044506681
-
The ubiquitin-proteasome pathway and its role in cancer
-
Mani A, Gelmann EP., The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 2005;23:4776–89
-
(2005)
J Clin Oncol
, vol.23
, pp. 4776-4789
-
-
Mani, A.1
Gelmann, E.P.2
-
15
-
-
84959342156
-
Role of mitochondrial protein quality control in oxidative stress-induced neurodegenerative diseases
-
Cenini G, Voos W., Role of mitochondrial protein quality control in oxidative stress-induced neurodegenerative diseases. Curr Alzheimer Res 2016;13:164–73
-
(2016)
Curr Alzheimer Res
, vol.13
, pp. 164-173
-
-
Cenini, G.1
Voos, W.2
-
16
-
-
84897048042
-
Mitochondrial quality control in neurodegenerative diseases
-
Dupuis L., Mitochondrial quality control in neurodegenerative diseases. Biochimie 2014;100:177–83
-
(2014)
Biochimie
, vol.100
, pp. 177-183
-
-
Dupuis, L.1
-
17
-
-
78650034178
-
Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications
-
Huang Q, Figueiredo-Pereira ME., Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis 2010;15:1292–311
-
(2010)
Apoptosis
, vol.15
, pp. 1292-1311
-
-
Huang, Q.1
Figueiredo-Pereira, M.E.2
-
18
-
-
84865187620
-
Mitochondrial dysfunction in neurodegenerative diseases
-
Johri A, Beal MF., Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 2012;342:619–30
-
(2012)
J Pharmacol Exp Ther
, vol.342
, pp. 619-630
-
-
Johri, A.1
Beal, M.F.2
-
19
-
-
33750347347
-
Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
-
Lin MT, Beal MF., Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443:787–95
-
(2006)
Nature
, vol.443
, pp. 787-795
-
-
Lin, M.T.1
Beal, M.F.2
-
20
-
-
3142514201
-
Protein aggregation and neurodegenerative disease
-
Ross CA, Poirier MA., Protein aggregation and neurodegenerative disease. Nat Med 2004;10:S10
-
(2004)
Nat Med
, vol.10
, pp. S10
-
-
Ross, C.A.1
Poirier, M.A.2
-
21
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, Chan DC., Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 2011;20:1726–37
-
(2011)
Hum Mol Genet
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
Graham, R.L.6
Hess, S.7
Chan, D.C.8
-
22
-
-
79952369437
-
Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts
-
Rakovic A, Grunewald A, Kottwitz J, Bruggemann N, Pramstaller PP, Lohmann K, Klein C., Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts. PLoS One 2011;6:e16746
-
(2011)
PLoS One
, vol.6
, pp. e16746
-
-
Rakovic, A.1
Grunewald, A.2
Kottwitz, J.3
Bruggemann, N.4
Pramstaller, P.P.5
Lohmann, K.6
Klein, C.7
-
23
-
-
84939864925
-
Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin?
-
Ross JM, Olson L, Coppotelli G., Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin? Int J Mol Sci 2015;16:19458–76
-
(2015)
Int J Mol Sci
, vol.16
, pp. 19458-19476
-
-
Ross, J.M.1
Olson, L.2
Coppotelli, G.3
-
24
-
-
31544460359
-
Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway
-
Desai SD, Haas AL, Wood LM, Tsai YC, Pestka S, Rubin EH, Saleem A, Nur-E-Kamal A, Liu LF., Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res 2006;66:921–8
-
(2006)
Cancer Res
, vol.66
, pp. 921-928
-
-
Desai, S.D.1
Haas, A.L.2
Wood, L.M.3
Tsai, Y.C.4
Pestka, S.5
Rubin, E.H.6
Saleem, A.7
Nur-E-Kamal, A.8
Liu, L.F.9
-
25
-
-
49849102784
-
ISG15 as a novel tumor biomarker for drug sensitivity
-
Desai SD, Wood LM, Tsai YC, Hsieh TS, Marks JS, Scott GL, Giovanella BC, Liu LF., ISG15 as a novel tumor biomarker for drug sensitivity. Mol Cancer Ther 2008;7:1430–9
-
(2008)
Mol Cancer Ther
, vol.7
, pp. 1430-1439
-
-
Desai, S.D.1
Wood, L.M.2
Tsai, Y.C.3
Hsieh, T.S.4
Marks, J.S.5
Scott, G.L.6
Giovanella, B.C.7
Liu, L.F.8
-
26
-
-
79551510429
-
A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway
-
Wood LM, Sankar S, Reed RE, Haas AL, Liu LF., A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS One 2011;6:e16422
-
(2011)
PLoS One
, vol.6
, pp. e16422
-
-
Wood, L.M.1
Sankar, S.2
Reed, R.E.3
Haas, A.L.4
Liu, L.F.5
-
27
-
-
84892600839
-
Mitochondrial form and function
-
Friedman JR, Nunnari J., Mitochondrial form and function. Nature 2014;505:335–43
-
(2014)
Nature
, vol.505
, pp. 335-343
-
-
Friedman, J.R.1
Nunnari, J.2
-
28
-
-
33746016268
-
Mitochondria: more than just a powerhouse
-
McBride HM, Neuspiel M, Wasiak S., Mitochondria: more than just a powerhouse. Curr Biol 2006;16:R551–60
-
(2006)
Curr Biol
, vol.16
, pp. R551-R560
-
-
McBride, H.M.1
Neuspiel, M.2
Wasiak, S.3
-
30
-
-
0033525924
-
Oxidative phosphorylation at the fin de siecle
-
Saraste M., Oxidative phosphorylation at the fin de siecle. Science 1999;283:1488–93
-
(1999)
Science
, vol.283
, pp. 1488-1493
-
-
Saraste, M.1
-
31
-
-
0035142151
-
Mitochondrial medicine–molecular pathology of defective oxidative phosphorylation
-
Fosslien E., Mitochondrial medicine–molecular pathology of defective oxidative phosphorylation. Ann Clin Lab Sci 2001;31:25–67
-
(2001)
Ann Clin Lab Sci
, vol.31
, pp. 25-67
-
-
Fosslien, E.1
-
32
-
-
84908213474
-
Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?
-
Sabharwal SS, Schumacker PT., Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat Rev Cancer 2014;14:709–21
-
(2014)
Nat Rev Cancer
, vol.14
, pp. 709-721
-
-
Sabharwal, S.S.1
Schumacker, P.T.2
-
33
-
-
84868007565
-
Physiological roles of mitochondrial reactive oxygen species
-
Sena LA, Chandel NS., Physiological roles of mitochondrial reactive oxygen species. Mol Cell 2012;48:158–67
-
(2012)
Mol Cell
, vol.48
, pp. 158-167
-
-
Sena, L.A.1
Chandel, N.S.2
-
34
-
-
38849105612
-
Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases
-
Gao L, Laude K, Cai H., Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin North Am Small Anim Pract 2008;38:137–55
-
(2008)
Vet Clin North Am Small Anim Pract
, vol.38
, pp. 137-155
-
-
Gao, L.1
Laude, K.2
Cai, H.3
-
35
-
-
0035782650
-
Reactive oxygen species and mitochondrial diseases
-
Kirkinezos IG, Moraes CT., Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 2001;12:449–57
-
(2001)
Semin Cell Dev Biol
, vol.12
, pp. 449-457
-
-
Kirkinezos, I.G.1
Moraes, C.T.2
-
36
-
-
0141705360
-
Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases
-
Rego AC, Oliveira CR., Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 2003;28:1563–74
-
(2003)
Neurochem Res
, vol.28
, pp. 1563-1574
-
-
Rego, A.C.1
Oliveira, C.R.2
-
37
-
-
84913554278
-
Mitochondrial dynamics and mitochondrial quality control
-
Ni HM, Williams JA, Ding WX., Mitochondrial dynamics and mitochondrial quality control. Redox Biol 2015;4:6–13
-
(2015)
Redox Biol
, vol.4
, pp. 6-13
-
-
Ni, H.M.1
Williams, J.A.2
Ding, W.X.3
-
39
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS., Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008;27:433–46
-
(2008)
EMBO J
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.3
Mohamed, H.4
Wikstrom, J.D.5
Walzer, G.6
Stiles, L.7
Haigh, S.E.8
Katz, S.9
Las, G.10
Alroy, J.11
Wu, M.12
Py, B.F.13
Yuan, J.14
Deeney, J.T.15
Corkey, B.E.16
Shirihai, O.S.17
-
40
-
-
84871537265
-
Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo
-
Soubannier V, Rippstein P, Kaufman BA, Shoubridge EA, McBride HM., Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS One 2012;7:e52830
-
(2012)
PLoS One
, vol.7
, pp. e52830
-
-
Soubannier, V.1
Rippstein, P.2
Kaufman, B.A.3
Shoubridge, E.A.4
McBride, H.M.5
-
41
-
-
84871279726
-
Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation
-
Ding WX, Guo F, Ni HM, Bockus A, Manley S, Stolz DB, Eskelinen EL, Jaeschke H, Yin XM., Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation. J Biol Chem 2012;287:42379–88
-
(2012)
J Biol Chem
, vol.287
, pp. 42379-42388
-
-
Ding, W.X.1
Guo, F.2
Ni, H.M.3
Bockus, A.4
Manley, S.5
Stolz, D.B.6
Eskelinen, E.L.7
Jaeschke, H.8
Yin, X.M.9
-
42
-
-
84929582993
-
The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications
-
Durcan TM, Fon EA., The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev 2015;29:989–99
-
(2015)
Genes Dev
, vol.29
, pp. 989-999
-
-
Durcan, T.M.1
Fon, E.A.2
-
43
-
-
79960493052
-
Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1
-
Glauser L, Sonnay S, Stafa K, Moore DJ., Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem 2011;118:636–45
-
(2011)
J Neurochem
, vol.118
, pp. 636-645
-
-
Glauser, L.1
Sonnay, S.2
Stafa, K.3
Moore, D.J.4
-
44
-
-
84991826660
-
Deciphering the molecular signals of PINK1/Parkin mitophagy
-
Nguyen TN, Padman BS, Lazarou M., Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 2016;26:733–44
-
(2016)
Trends Cell Biol
, vol.26
, pp. 733-744
-
-
Nguyen, T.N.1
Padman, B.S.2
Lazarou, M.3
-
45
-
-
34447320182
-
Structural insights into early events in the conjugation of ubiquitin and ubiquitin-like proteins
-
Haas AL., Structural insights into early events in the conjugation of ubiquitin and ubiquitin-like proteins. Mol Cell 2007;27:174–5
-
(2007)
Mol Cell
, vol.27
, pp. 174-175
-
-
Haas, A.L.1
-
46
-
-
49249120530
-
Polyubiquitin chains: functions, structures, and mechanisms
-
Li W, Ye Y., Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci 2008;65:2397–406
-
(2008)
Cell Mol Life Sci
, vol.65
, pp. 2397-2406
-
-
Li, W.1
Ye, Y.2
-
47
-
-
84960324799
-
Ubiquitin chain diversity at a glance
-
Akutsu M, Dikic I, Bremm A., Ubiquitin chain diversity at a glance. J Cell Sci 2016;129:875–80
-
(2016)
J Cell Sci
, vol.129
, pp. 875-880
-
-
Akutsu, M.1
Dikic, I.2
Bremm, A.3
-
48
-
-
5644259751
-
Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains
-
Tenno T, Fujiwara K, Tochio H, Iwai K, Morita EH, Hayashi H, Murata S, Hiroaki H, Sato M, Tanaka K, Shirakawa M., Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells 2004;9:865–75
-
(2004)
Genes Cells
, vol.9
, pp. 865-875
-
-
Tenno, T.1
Fujiwara, K.2
Tochio, H.3
Iwai, K.4
Morita, E.H.5
Hayashi, H.6
Murata, S.7
Hiroaki, H.8
Sato, M.9
Tanaka, K.10
Shirakawa, M.11
-
49
-
-
84864222562
-
Atypical ubiquitylation – the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages
-
Kulathu Y, Komander D., Atypical ubiquitylation – the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 2012;13:508–23
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 508-523
-
-
Kulathu, Y.1
Komander, D.2
-
50
-
-
0034967925
-
The ubiquitin-proteasome pathway and proteasome inhibitors
-
Myung J, Kim KB, Crews CM., The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 2001;21:245–73
-
(2001)
Med Res Rev
, vol.21
, pp. 245-273
-
-
Myung, J.1
Kim, K.B.2
Crews, C.M.3
-
51
-
-
85015837513
-
The emerging complexity of ubiquitin architecture
-
Ohtake F, Tsuchiya H., The emerging complexity of ubiquitin architecture. J Biochem 2017;161:125–33
-
(2017)
J Biochem
, vol.161
, pp. 125-133
-
-
Ohtake, F.1
Tsuchiya, H.2
-
52
-
-
84855879644
-
Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes
-
Sadowski M, Suryadinata R, Tan AR, Roesley SN, Sarcevic B., Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life 2012;64:136–42
-
(2012)
IUBMB Life
, vol.64
, pp. 136-142
-
-
Sadowski, M.1
Suryadinata, R.2
Tan, A.R.3
Roesley, S.N.4
Sarcevic, B.5
-
53
-
-
85015888402
-
Ubiquitin recognition by the proteasome
-
Saeki Y., Ubiquitin recognition by the proteasome. J Biochem 2017;161:113–24
-
(2017)
J Biochem
, vol.161
, pp. 113-124
-
-
Saeki, Y.1
-
54
-
-
77950499364
-
Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network
-
Tanak A., Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. FEBS Lett 2010;584:1386–92
-
(2010)
FEBS Lett
, vol.584
, pp. 1386-1392
-
-
Tanak, A.1
-
55
-
-
84859428688
-
Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
-
Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA., Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 2012;13:378–85
-
(2012)
EMBO Rep
, vol.13
, pp. 378-385
-
-
Greene, A.W.1
Grenier, K.2
Aguileta, M.A.3
Muise, S.4
Farazifard, R.5
Haque, M.E.6
McBride, H.M.7
Park, D.S.8
Fon, E.A.9
-
56
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ., Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 2010;191:933–42
-
(2010)
J Cell Biol
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
Narendra, D.P.5
Youle, R.J.6
-
57
-
-
84938742614
-
Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation
-
Kazlauskaite A, Martínez-Torres RJ, Wilkie S, Kumar A, Peltier J, Gonzalez A, Johnson C, Zhang J, Hope AG, Peggie M, Trost M, van Aalten DM, Alessi DR, Prescott AR, Knebel A, Walden H, Muqit MM., Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep 2015;16:939–54
-
(2015)
EMBO Rep
, vol.16
, pp. 939-954
-
-
Kazlauskaite, A.1
Martínez-Torres, R.J.2
Wilkie, S.3
Kumar, A.4
Peltier, J.5
Gonzalez, A.6
Johnson, C.7
Zhang, J.8
Hope, A.G.9
Peggie, M.10
Trost, M.11
van Aalten, D.M.12
Alessi, D.R.13
Prescott, A.R.14
Knebel, A.15
Walden, H.16
Muqit, M.M.17
-
58
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ., PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 2014;205:143–53
-
(2014)
J Cell Biol
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
Banerjee, S.7
Youle, R.J.8
-
59
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N., Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014;510:162–6
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
Tamura, Y.4
Go, E.5
Kimura, M.6
Kimura, Y.7
Tsuchiya, H.8
Yoshihara, H.9
Hirokawa, T.10
Endo, T.11
Fon, E.A.12
Trempe, J.F.13
Saeki, Y.14
Tanaka, K.15
Matsuda, N.16
-
60
-
-
84922794336
-
Phosphorylated ubiquitin chain is the genuine Parkin receptor
-
Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, Matsuda N., Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol 2015;209:111–28
-
(2015)
J Cell Biol
, vol.209
, pp. 111-128
-
-
Okatsu, K.1
Koyano, F.2
Kimura, M.3
Kosako, H.4
Saeki, Y.5
Tanaka, K.6
Matsuda, N.7
-
61
-
-
84919629959
-
Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering
-
Shiba-Fukushima K, Arano T, Matsumoto G, Inoshita T, Yoshida S, Ishihama Y, Ryu KY, Nukina N, Hattori N, Imai Y., Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet 2014;10:e1004861
-
(2014)
PLoS Genet
, vol.10
, pp. e1004861
-
-
Shiba-Fukushima, K.1
Arano, T.2
Matsumoto, G.3
Inoshita, T.4
Yoshida, S.5
Ishihama, Y.6
Ryu, K.Y.7
Nukina, N.8
Hattori, N.9
Imai, Y.10
-
62
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ., The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015;524:309–14
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
Burman, J.L.6
Sideris, D.P.7
Fogel, A.I.8
Youle, R.J.9
-
63
-
-
84961743030
-
Ubiquitin modifications
-
Swatek KN, Komander D., Ubiquitin modifications. Cell Res 2016;26:399–422
-
(2016)
Cell Res
, vol.26
, pp. 399-422
-
-
Swatek, K.N.1
Komander, D.2
-
64
-
-
84903179483
-
The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy
-
Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Foreman O, Kirkpatrick DS, Sheng M., The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014;510:370–5
-
(2014)
Nature
, vol.510
, pp. 370-375
-
-
Bingol, B.1
Tea, J.S.2
Phu, L.3
Reichelt, M.4
Bakalarski, C.E.5
Song, Q.6
Foreman, O.7
Kirkpatrick, D.S.8
Sheng, M.9
-
65
-
-
84920095272
-
The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy
-
Cornelissen T, Haddad D, Wauters F, Van Humbeeck C, Mandemakers W, Koentjoro B, Sue C, Gevaert K, D, Strooper B, Verstreken P, Vandenberghe W., The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet 2014;23:5227–42
-
(2014)
Hum Mol Genet
, vol.23
, pp. 5227-5242
-
-
Cornelissen, T.1
Haddad, D.2
Wauters, F.3
Van Humbeeck, C.4
Mandemakers, W.5
Koentjoro, B.6
Sue, C.7
Gevaert, K.D.8
Strooper, B.9
Verstreken, P.10
Vandenberghe, W.11
-
66
-
-
84954550048
-
USP8 and PARK2/parkin-mediated mitophagy
-
Durcan TM, Fon EA., USP8 and PARK2/parkin-mediated mitophagy. Autophagy 2015;11:428–9
-
(2015)
Autophagy
, vol.11
, pp. 428-429
-
-
Durcan, T.M.1
Fon, E.A.2
-
67
-
-
84920892842
-
USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin
-
Durcan TM, Tang MY, Pérusse JR, Dashti EA, Aguileta MA, McLelland GL, Gros P, Shaler TA, Faubert D, Coulombe B, Fon EA., USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 2014;33:2473–91
-
(2014)
EMBO J
, vol.33
, pp. 2473-2491
-
-
Durcan, T.M.1
Tang, M.Y.2
Pérusse, J.R.3
Dashti, E.A.4
Aguileta, M.A.5
McLelland, G.L.6
Gros, P.7
Shaler, T.A.8
Faubert, D.9
Coulombe, B.10
Fon, E.A.11
-
68
-
-
84946811613
-
Quantitative nature of overexpression experiments
-
Moriya H., Quantitative nature of overexpression experiments. Mol Biol Cell 2015;26:3932–9
-
(2015)
Mol Biol Cell
, vol.26
, pp. 3932-3939
-
-
Moriya, H.1
-
69
-
-
84873843566
-
Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons
-
Rakovic A, Shurkewitsch K, Seibler P, Grünewald A, Zanon A, Hagenah J, Krainc D, Klein C., Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem 2013;288:2223–37
-
(2013)
J Biol Chem
, vol.288
, pp. 2223-2237
-
-
Rakovic, A.1
Shurkewitsch, K.2
Seibler, P.3
Grünewald, A.4
Zanon, A.5
Hagenah, J.6
Krainc, D.7
Klein, C.8
-
70
-
-
84868575932
-
Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism
-
Narendra D, Walker JE, Youle R., Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 2012;4:pii a011338
-
(2012)
Cold Spring Harb Perspect Biol
, vol.4
, pp. a011338
-
-
Narendra, D.1
Walker, J.E.2
Youle, R.3
-
71
-
-
85030661011
-
Mechanism and regulation of the Lys6-selective deubiquitinase USP30
-
Gersch M, Gladkova C, Schubert AF, Michel MA, Maslen S, Komander D., Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nat Struct Mol Biol 2017;11:920–30
-
(2017)
Nat Struct Mol Biol
, vol.11
, pp. 920-930
-
-
Gersch, M.1
Gladkova, C.2
Schubert, A.F.3
Michel, M.A.4
Maslen, S.5
Komander, D.6
-
72
-
-
82455179484
-
Systematic and quantitative assessment of the ubiquitin-modified proteome
-
Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP., Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011;44:325–40
-
(2011)
Mol Cell
, vol.44
, pp. 325-340
-
-
Kim, W.1
Bennett, E.J.2
Huttlin, E.L.3
Guo, A.4
Li, J.5
Possemato, A.6
Sowa, M.E.7
Rad, R.8
Rush, J.9
Comb, M.J.10
Harper, J.W.11
Gygi, S.P.12
-
73
-
-
84953849073
-
The PARK2/Parkin receptor on damaged mitochondria revisited-uncovering the role of phosphorylated ubiquitin chains
-
Matsuda N, Tanaka K., The PARK2/Parkin receptor on damaged mitochondria revisited-uncovering the role of phosphorylated ubiquitin chains. Autophagy 2015;11:1700–1
-
(2015)
Autophagy
, vol.11
, pp. 1700-1701
-
-
Matsuda, N.1
Tanaka, K.2
-
74
-
-
79955470830
-
Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes
-
Lee MJ, Lee BH, Hanna J, King RW, Finley D., Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics 2011;10:R110 003871
-
(2011)
Mol Cell Proteomics
, vol.10
, pp. 3871
-
-
Lee, M.J.1
Lee, B.H.2
Hanna, J.3
King, R.W.4
Finley, D.5
-
75
-
-
84922235969
-
Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis
-
Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, Michel MA, Gersch M, Johnson CM, Freund SM, Komander D., Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J 2015;34:307–25
-
(2015)
EMBO J
, vol.34
, pp. 307-325
-
-
Wauer, T.1
Swatek, K.N.2
Wagstaff, J.L.3
Gladkova, C.4
Pruneda, J.N.5
Michel, M.A.6
Gersch, M.7
Johnson, C.M.8
Freund, S.M.9
Komander, D.10
-
76
-
-
78650716707
-
The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila
-
Imai Y, Kanao T, Sawada T, Kobayashi Y, Moriwaki Y, Ishida Y, Takeda K, Ichijo H, Lu B, Takahashi R., The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila. PLoS Genet 2010;6:e1001229
-
(2010)
PLoS Genet
, vol.6
, pp. e1001229
-
-
Imai, Y.1
Kanao, T.2
Sawada, T.3
Kobayashi, Y.4
Moriwaki, Y.5
Ishida, Y.6
Takeda, K.7
Ichijo, H.8
Lu, B.9
Takahashi, R.10
-
77
-
-
84911946743
-
Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder
-
Lu W, Karuppagounder SS, Springer DA, Allen MD, Zheng L, Chao B, Zhang Y, Dawson VL, Dawson TM, Lenardo M., Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nat Commun 2014;5:4930
-
(2014)
Nat Commun
, vol.5
, pp. 4930
-
-
Lu, W.1
Karuppagounder, S.S.2
Springer, D.A.3
Allen, M.D.4
Zheng, L.5
Chao, B.6
Zhang, Y.7
Dawson, V.L.8
Dawson, T.M.9
Lenardo, M.10
-
78
-
-
84867257217
-
Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5
-
Sekine S, Kanamaru Y, Koike M, Nishihara A, Okada M, Kinoshita H, Kamiyama M, Maruyama J, Uchiyama Y, Ishihara N, Takeda K, Ichijo H., Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J Biol Chem 2012;287:34635–45
-
(2012)
J Biol Chem
, vol.287
, pp. 34635-34645
-
-
Sekine, S.1
Kanamaru, Y.2
Koike, M.3
Nishihara, A.4
Okada, M.5
Kinoshita, H.6
Kamiyama, M.7
Maruyama, J.8
Uchiyama, Y.9
Ishihara, N.10
Takeda, K.11
Ichijo, H.12
-
79
-
-
85026358001
-
Activation of mitophagy leads to decline in Mfn2 and loss of mitochondrial mass in Fuchs endothelial corneal dystrophy
-
Benischke AS, Vasanth S, Miyai T, Katikireddy KR, White T, Chen Y, Halilovic A, Price M, Price F, Jr Liton PB, Jurkunas UV., Activation of mitophagy leads to decline in Mfn2 and loss of mitochondrial mass in Fuchs endothelial corneal dystrophy. Sci Rep 2017;7:6656
-
(2017)
Sci Rep
, vol.7
, pp. 6656
-
-
Benischke, A.S.1
Vasanth, S.2
Miyai, T.3
Katikireddy, K.R.4
White, T.5
Chen, Y.6
Halilovic, A.7
Price, M.8
Price, F.9
Liton, P.B.10
Jurkunas, U.V.11
-
80
-
-
84963566230
-
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
-
Richter B, Sliter DA, Herhaus L, Stolz A, Wang C, Beli P, Zaffagnini G, Wild P, Martens S, Wagner SA, Youle RJ, Dikic I., Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A 2016;113:4039–44
-
(2016)
Proc Natl Acad Sci U S A
, vol.113
, pp. 4039-4044
-
-
Richter, B.1
Sliter, D.A.2
Herhaus, L.3
Stolz, A.4
Wang, C.5
Beli, P.6
Zaffagnini, G.7
Wild, P.8
Martens, S.9
Wagner, S.A.10
Youle, R.J.11
Dikic, I.12
-
81
-
-
33750604073
-
Functional modulation of parkin through physical interaction with SUMO-1
-
Um JW, Chung KC., Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Res 2006;84:1543–54
-
(2006)
J Neurosci Res
, vol.84
, pp. 1543-1554
-
-
Um, J.W.1
Chung, K.C.2
-
82
-
-
84862829058
-
Neddylation positively regulates the ubiquitin E3 ligase activity of parkin
-
Um JW, Han KA, Im E, Oh Y, Lee K, Chung KC., Neddylation positively regulates the ubiquitin E3 ligase activity of parkin. J Neurosci Res 2012;90:1030–42
-
(2012)
J Neurosci Res
, vol.90
, pp. 1030-1042
-
-
Um, J.W.1
Han, K.A.2
Im, E.3
Oh, Y.4
Lee, K.5
Chung, K.C.6
-
83
-
-
84990933993
-
Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin
-
Im E, Yoo L, Hyun M, Shin WH, Chung KC., Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin. Open Biol 2016;6:pii160193
-
(2016)
Open Biol
, vol.6
, pp. pii160193
-
-
Im, E.1
Yoo, L.2
Hyun, M.3
Shin, W.H.4
Chung, K.C.5
-
84
-
-
85015644654
-
Neuronal mitophagy in neurodegenerative diseases
-
Martinez-Vicente M., Neuronal mitophagy in neurodegenerative diseases. Front Mol Neurosci 2017;10:64
-
(2017)
Front Mol Neurosci
, vol.10
, pp. 64
-
-
Martinez-Vicente, M.1
-
85
-
-
84876335261
-
Mitophagy in neurodegeneration and aging
-
Palikaras K, Tavernarakis N., Mitophagy in neurodegeneration and aging. Front Genet. 2012;3:297
-
(2012)
Front Genet
, vol.3
, pp. 297
-
-
Palikaras, K.1
Tavernarakis, N.2
-
86
-
-
85012975461
-
PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo?
-
Whitworth AJ, Pallanck LJ., PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr Opin Genet Dev 2017;44:47–53
-
(2017)
Curr Opin Genet Dev
, vol.44
, pp. 47-53
-
-
Whitworth, A.J.1
Pallanck, L.J.2
-
87
-
-
84925298301
-
Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease
-
Ryan BJ, Hoek S, Fon EA, Wade-Martins R., Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease. Trends Biochem Sci 2015;40:200–10
-
(2015)
Trends Biochem Sci
, vol.40
, pp. 200-210
-
-
Ryan, B.J.1
Hoek, S.2
Fon, E.A.3
Wade-Martins, R.4
-
88
-
-
79952693640
-
Mitophagy and Parkinson's disease: the PINK1-parkin link
-
Deas E, Wood NW, Plun-Favreau H., Mitophagy and Parkinson's disease: the PINK1-parkin link. Biochim Biophys Acta 2011;1813:623–33
-
(2011)
Biochim Biophys Acta
, vol.1813
, pp. 623-633
-
-
Deas, E.1
Wood, N.W.2
Plun-Favreau, H.3
-
89
-
-
77951665859
-
Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
-
Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D, Cuervo AM., Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat Neurosci 2010;13:567–76
-
(2010)
Nat Neurosci
, vol.13
, pp. 567-576
-
-
Martinez-Vicente, M.1
Talloczy, Z.2
Wong, E.3
Tang, G.4
Koga, H.5
Kaushik, S.6
de Vries, R.7
Arias, E.8
Harris, S.9
Sulzer, D.10
Cuervo, A.M.11
-
90
-
-
84928771736
-
A cohort study of MFN2 mutations and phenotypic spectrums in Charcot-Marie-Tooth disease 2A patients
-
Choi BO, Nakhro K, Park HJ, Hyun YS, Lee JH, Kanwal S, Jung SC, Chung KW., A cohort study of MFN2 mutations and phenotypic spectrums in Charcot-Marie-Tooth disease 2A patients. Clin Genet 2015;87:594–8
-
(2015)
Clin Genet
, vol.87
, pp. 594-598
-
-
Choi, B.O.1
Nakhro, K.2
Park, H.J.3
Hyun, Y.S.4
Lee, J.H.5
Kanwal, S.6
Jung, S.C.7
Chung, K.W.8
-
91
-
-
79955964218
-
The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability
-
Durcan TM, Kontogiannea M, Thorarinsdottir T, Fallon L, Williams AJ, Djarmati A, Fantaneanu T, Paulson HL, Fon EA., The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Hum Mol Genet 2011;20:141–54
-
(2011)
Hum Mol Genet
, vol.20
, pp. 141-154
-
-
Durcan, T.M.1
Kontogiannea, M.2
Thorarinsdottir, T.3
Fallon, L.4
Williams, A.J.5
Djarmati, A.6
Fantaneanu, T.7
Paulson, H.L.8
Fon, E.A.9
-
92
-
-
84947555821
-
Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis
-
Natale G, Lenzi P, Lazzeri G, Falleni A, Biagioni F, Ryskalin L, Fornai F., Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis. Front Cell Neurosci 2015;9:434
-
(2015)
Front Cell Neurosci
, vol.9
, pp. 434
-
-
Natale, G.1
Lenzi, P.2
Lazzeri, G.3
Falleni, A.4
Biagioni, F.5
Ryskalin, L.6
Fornai, F.7
-
93
-
-
79954616075
-
Activation of interferon signaling pathways in spinal cord astrocytes from an ALS mouse model
-
Wang R, Yang B, Zhang D., Activation of interferon signaling pathways in spinal cord astrocytes from an ALS mouse model. Glia 2011;59:946–58
-
(2011)
Glia
, vol.59
, pp. 946-958
-
-
Wang, R.1
Yang, B.2
Zhang, D.3
-
94
-
-
84926019373
-
Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control
-
Palomo GM, Manfredi G., Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control. Brain Res 2015;1607:36–46
-
(2015)
Brain Res
, vol.1607
, pp. 36-46
-
-
Palomo, G.M.1
Manfredi, G.2
-
95
-
-
84886239490
-
Mitochondrial damage revealed by immunoselection for ALS-linked misfolded SOD1
-
Pickles S, Destroismaisons L, Peyrard SL, Cadot S, Rouleau GA, Brown RH, Jr Julien JP, Arbour N, Vande Velde C., Mitochondrial damage revealed by immunoselection for ALS-linked misfolded SOD1. Hum Mol Genet 2013;22:3947–59
-
(2013)
Hum Mol Genet
, vol.22
, pp. 3947-3959
-
-
Pickles, S.1
Destroismaisons, L.2
Peyrard, S.L.3
Cadot, S.4
Rouleau, G.A.5
Brown, R.H.6
Julien, J.P.7
Arbour, N.8
Vande Velde, C.9
-
96
-
-
84938063858
-
Mitochondrial dynamic abnormalities in amyotrophic lateral sclerosis
-
Jiang Z, Wang W, Perry G, Zhu X, Wang X., Mitochondrial dynamic abnormalities in amyotrophic lateral sclerosis. Transl Neurodegener 2015;4:14
-
(2015)
Transl Neurodegener
, vol.4
, pp. 14
-
-
Jiang, Z.1
Wang, W.2
Perry, G.3
Zhu, X.4
Wang, X.5
-
97
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K., Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006;441:880–4
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
Ueno, T.7
Koike, M.8
Uchiyama, Y.9
Kominami, E.10
Tanaka, K.11
-
98
-
-
33746548027
-
Expression of ubiquitin and proteasome in motorneurons and astrocytes of spinal cords from patients with amyotrophic lateral sclerosis
-
Mendonca DM, Chimelli L, Martinez AM., Expression of ubiquitin and proteasome in motorneurons and astrocytes of spinal cords from patients with amyotrophic lateral sclerosis. Neurosci Lett 2006;404:315–9
-
(2006)
Neurosci Lett
, vol.404
, pp. 315-319
-
-
Mendonca, D.M.1
Chimelli, L.2
Martinez, A.M.3
-
99
-
-
84891909212
-
Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model
-
Luo G, Yi J, Ma C, Xiao Y, Yi F, Yu T, Zhou J., Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model. PLoS One 2013;8:e82112
-
(2013)
PLoS One
, vol.8
, pp. e82112
-
-
Luo, G.1
Yi, J.2
Ma, C.3
Xiao, Y.4
Yi, F.5
Yu, T.6
Zhou, J.7
-
100
-
-
84941009269
-
Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis
-
Ruffoli R, Bartalucci A, Frati A, Fornai F., Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis. Front Cell Neurosci 2015;9:341
-
(2015)
Front Cell Neurosci
, vol.9
, pp. 341
-
-
Ruffoli, R.1
Bartalucci, A.2
Frati, A.3
Fornai, F.4
-
101
-
-
34548430918
-
Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells
-
Ambrose M, Goldstine JV, Gatti RA., Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum Mol Genet 2007;16:2154–64
-
(2007)
Hum Mol Genet
, vol.16
, pp. 2154-2164
-
-
Ambrose, M.1
Goldstine, J.V.2
Gatti, R.A.3
-
102
-
-
84856893251
-
Mitochondrial dysfunction in ataxia-telangiectasia
-
Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M, Dorsey FC, Cleveland JL, Green DR, Kastan MB., Mitochondrial dysfunction in ataxia-telangiectasia. Blood 2012;119:1490–500
-
(2012)
Blood
, vol.119
, pp. 1490-1500
-
-
Valentin-Vega, Y.A.1
Maclean, K.H.2
Tait-Mulder, J.3
Milasta, S.4
Steeves, M.5
Dorsey, F.C.6
Cleveland, J.L.7
Green, D.R.8
Kastan, M.B.9
-
103
-
-
84873823359
-
ISG15 Deregulates autophagy in genotoxin-treated ataxia telangiectasia cells
-
Desai SD, Reed RE, Babu S, Lorio EA., ISG15 Deregulates autophagy in genotoxin-treated ataxia telangiectasia cells. J Biol Chem 2013;288:2388–402
-
(2013)
J Biol Chem
, vol.288
, pp. 2388-2402
-
-
Desai, S.D.1
Reed, R.E.2
Babu, S.3
Lorio, E.A.4
-
105
-
-
0030292679
-
In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine
-
D'Cunha J, Ramanujam S, Wagner RJ, Witt PL, Knight E, Jr Borden EC., In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine. J Immunol 1996;157:4100–8
-
(1996)
J Immunol
, vol.157
, pp. 4100-4108
-
-
D'Cunha, J.1
Ramanujam, S.2
Wagner, R.J.3
Witt, P.L.4
Knight, E.5
Borden, E.C.6
-
106
-
-
84944549597
-
ISG15: a double edged sword in cancer
-
Desai SD., ISG15: a double edged sword in cancer. Oncoimmunology 2015;4:e1052935
-
(2015)
Oncoimmunology
, vol.4
, pp. e1052935
-
-
Desai, S.D.1
-
107
-
-
21344473677
-
ISG15: a ubiquitin-like enigma
-
Dao CT, Zhang DE., ISG15: a ubiquitin-like enigma. Front Biosci 2005;10:2701–22
-
(2005)
Front Biosci
, vol.10
, pp. 2701-2722
-
-
Dao, C.T.1
Zhang, D.E.2
-
108
-
-
84889624219
-
ISG15-dependent Regulation
-
Mayer R.J., Ciechnover A., Rechsteiner M., (eds), Weinheim, Germany, Wiley-VCH Verlag GmbH & Co, In:, (eds)
-
Haas AL., ISG15-dependent Regulation. In: Mayer RJ, Ciechnover A, Rechsteiner M, (eds) Protein degradation. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 2006, pp.103–31
-
(2006)
Protein degradation
, pp. 103-131
-
-
Haas, A.L.1
-
109
-
-
22544474366
-
ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus
-
Osiak A, Utermohlen O, Niendorf S, Horak I, Knobeloch KP., ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol Cell Biol 2005;25:6338–45
-
(2005)
Mol Cell Biol
, vol.25
, pp. 6338-6345
-
-
Osiak, A.1
Utermohlen, O.2
Niendorf, S.3
Horak, I.4
Knobeloch, K.P.5
-
110
-
-
84893644001
-
ISGylation governs the oncogenic function of Ki-Ras in breast cancer
-
Burks J, Reed RE, Desai SD., ISGylation governs the oncogenic function of Ki-Ras in breast cancer. Oncogene 2014;33:794–803
-
(2014)
Oncogene
, vol.33
, pp. 794-803
-
-
Burks, J.1
Reed, R.E.2
Desai, S.D.3
-
111
-
-
33645230779
-
Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells
-
Dastur A, Beaudenon S, Kelley M, Krug RM, Huibregtse JM., Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J Biol Chem 2006;281:4334–8
-
(2006)
J Biol Chem
, vol.281
, pp. 4334-4338
-
-
Dastur, A.1
Beaudenon, S.2
Kelley, M.3
Krug, R.M.4
Huibregtse, J.M.5
-
112
-
-
0030042942
-
Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin
-
Narasimhan J, Potter JL, Haas AL., Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin. J Biol Chem 1996;271:324–30
-
(1996)
J Biol Chem
, vol.271
, pp. 324-330
-
-
Narasimhan, J.1
Potter, J.L.2
Haas, A.L.3
-
113
-
-
65849226334
-
The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15) is a potential prognostic marker in human breast cancer
-
Bektas N, Noetzel E, Veeck J, Press MF, Kristiansen G, Naami A, Hartmann A, Dimmler A, Beckmann MW, Knüchel R, Fasching PA, Dahl E., The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15) is a potential prognostic marker in human breast cancer. Breast Cancer Res 2008;10:R58
-
(2008)
Breast Cancer Res
, vol.10
, pp. R58
-
-
Bektas, N.1
Noetzel, E.2
Veeck, J.3
Press, M.F.4
Kristiansen, G.5
Naami, A.6
Hartmann, A.7
Dimmler, A.8
Beckmann, M.W.9
Knüchel, R.10
Fasching, P.A.11
Dahl, E.12
-
114
-
-
84971621261
-
ISG15 predicts poor prognosis and promotes cancer stem cell phenotype in nasopharyngeal carcinoma
-
Chen RH, Du Y, Han P, Wang HB, Liang FY, Feng GK, Zhou AJ, Cai MY, Zhong Q, Zeng MS, Huang XM., ISG15 predicts poor prognosis and promotes cancer stem cell phenotype in nasopharyngeal carcinoma. Oncotarget 2016;7:16910–22
-
(2016)
Oncotarget
, vol.7
, pp. 16910-16922
-
-
Chen, R.H.1
Du, Y.2
Han, P.3
Wang, H.B.4
Liang, F.Y.5
Feng, G.K.6
Zhou, A.J.7
Cai, M.Y.8
Zhong, Q.9
Zeng, M.S.10
Huang, X.M.11
-
115
-
-
84995767791
-
ISG15 in the tumorigenesis and treatment of cancer: an emerging role in malignancies of the digestive system
-
Zuo C, Sheng X, Ma M, Xia M, Ouyang L., ISG15 in the tumorigenesis and treatment of cancer: an emerging role in malignancies of the digestive system. Oncotarget 2016;7:74393–409
-
(2016)
Oncotarget
, vol.7
, pp. 74393-74409
-
-
Zuo, C.1
Sheng, X.2
Ma, M.3
Xia, M.4
Ouyang, L.5
-
116
-
-
84866748115
-
Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency
-
Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, Salem S, Radovanovic I, Grant AV, Adimi P, Mansouri N, Okada S, Bryant VL, Kong XF, Kreins A, Velez MM, Boisson B, Khalilzadeh S, Ozcelik U, Darazam IA, Schoggins JW, Rice CM, Al-Muhsen S, Behr M, Vogt G, Puel A, Bustamante J, Gros P, Huibregtse JM, Abel L, Boisson-Dupuis S, Casanova JL., Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science 2012;337:1684–8
-
(2012)
Science
, vol.337
, pp. 1684-1688
-
-
Bogunovic, D.1
Byun, M.2
Durfee, L.A.3
Abhyankar, A.4
Sanal, O.5
Mansouri, D.6
Salem, S.7
Radovanovic, I.8
Grant, A.V.9
Adimi, P.10
Mansouri, N.11
Okada, S.12
Bryant, V.L.13
Kong, X.F.14
Kreins, A.15
Velez, M.M.16
Boisson, B.17
Khalilzadeh, S.18
Ozcelik, U.19
Darazam, I.A.20
Schoggins, J.W.21
Rice, C.M.22
Al-Muhsen, S.23
Behr, M.24
Vogt, G.25
Puel, A.26
Bustamante, J.27
Gros, P.28
Huibregtse, J.M.29
Abel, L.30
Boisson-Dupuis, S.31
Casanova, J.L.32
more..
-
117
-
-
80053904402
-
ISG15 facilitates cellular antiviral response to dengue and west nile virus infection in vitro
-
Dai J, Pan W, Wang P., ISG15 facilitates cellular antiviral response to dengue and west nile virus infection in vitro. Virol J 2011;8:468
-
(2011)
Virol J
, vol.8
, pp. 468
-
-
Dai, J.1
Pan, W.2
Wang, P.3
-
118
-
-
79952151589
-
Antiviral Properties of ISG15
-
Lenschow DJ., Antiviral Properties of ISG15. Viruses 2010;2:2154–68
-
(2010)
Viruses
, vol.2
, pp. 2154-2168
-
-
Lenschow, D.J.1
-
119
-
-
44049102828
-
ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response
-
Malakhova OA, Zhang DE., ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J Biol Chem 2008;283:8783–7
-
(2008)
J Biol Chem
, vol.283
, pp. 8783-8787
-
-
Malakhova, O.A.1
Zhang, D.E.2
-
120
-
-
24344477111
-
ISG15 modification of Ubc13 suppresses its ubiquitin-conjugating activity
-
Takeuchi T, Yokosawa H., ISG15 modification of Ubc13 suppresses its ubiquitin-conjugating activity. Biochem Biophys Res Commun 2005;336:9–13
-
(2005)
Biochem Biophys Res Commun
, vol.336
, pp. 9-13
-
-
Takeuchi, T.1
Yokosawa, H.2
-
121
-
-
84938375011
-
Identification and characterization of a novel ISG15-ubiquitin mixed chain and its role in regulating protein homeostasis
-
Fan JB, Arimoto K, Motamedchaboki K, Yan M, Wolf DA, Zhang DE., Identification and characterization of a novel ISG15-ubiquitin mixed chain and its role in regulating protein homeostasis. Sci Rep 2015;5:12704
-
(2015)
Sci Rep
, vol.5
, pp. 12704
-
-
Fan, J.B.1
Arimoto, K.2
Motamedchaboki, K.3
Yan, M.4
Wolf, D.A.5
Zhang, D.E.6
-
122
-
-
85019594259
-
Evidence for the deregulation of protein turnover pathways in Atm-deficient mouse cerebellum: an organotypic study
-
Kim CD, Reed RE, Juncker MA, Fang Z, Desai SD., Evidence for the deregulation of protein turnover pathways in Atm-deficient mouse cerebellum: an organotypic study. J Neuropathol Exp Neurol 2017;76:578–84
-
(2017)
J Neuropathol Exp Neurol
, vol.76
, pp. 578-584
-
-
Kim, C.D.1
Reed, R.E.2
Juncker, M.A.3
Fang, Z.4
Desai, S.D.5
-
123
-
-
85006282618
-
Interferon-stimulated gene 15 as a general marker for acute and chronic neuronal injuries
-
Wang RG, Kaul M, Zhang DX., Interferon-stimulated gene 15 as a general marker for acute and chronic neuronal injuries. Sheng Li Xue Bao 2012;64:577–83
-
(2012)
Sheng Li Xue Bao
, vol.64
, pp. 577-583
-
-
Wang, R.G.1
Kaul, M.2
Zhang, D.X.3
|