메뉴 건너뛰기




Volumn 161, Issue 2, 2017, Pages 113-124

JB special review - Recent topics in ubiquitin-proteasome system and autophagy: Ubiquitin recognition by the proteasome

Author keywords

ATPase; Proteasome; Protein degradation; Ubiquitin; Ubiquitin ligase

Indexed keywords

CDC48 PROTEIN; PROTEASOME; PROTEIN; PROTEIN P97; UBIQUITIN; UBIQUITIN PROTEIN LIGASE; UNCLASSIFIED DRUG; VCP PROTEIN; ADENOSINE TRIPHOSPHATASE; ATP DEPENDENT 26S PROTEASE; CELL CYCLE PROTEIN; LYSINE; UBIQUITINATED PROTEIN;

EID: 85015888402     PISSN: 0021924X     EISSN: 17562651     Source Type: Journal    
DOI: 10.1093/jb/mvw091     Document Type: Review
Times cited : (127)

References (114)
  • 2
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley, D. (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477-513
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 3
    • 84929672785 scopus 로고    scopus 로고
    • Quantifying ubiquitin signaling
    • Ordureau, A., Munch, C., and Harper, J.W. (2015) Quantifying ubiquitin signaling. Mol. Cell. 58, 660-676
    • (2015) Mol. Cell , vol.58 , pp. 660-676
    • Ordureau, A.1    Munch, C.2    Harper, J.W.3
  • 4
    • 84988336041 scopus 로고    scopus 로고
    • Proteome complexity and the forces that drive proteome imbalance
    • Harper, J.W. and Bennett, E.J. (2016) Proteome complexity and the forces that drive proteome imbalance. Nature. 537, 328-338
    • (2016) Nature , vol.537 , pp. 328-338
    • Harper, J.W.1    Bennett, E.J.2
  • 5
    • 84871940845 scopus 로고    scopus 로고
    • Development of proteasome inhibitors as research tools and cancer drugs
    • Goldberg, A.L. (2012) Development of proteasome inhibitors as research tools and cancer drugs. J Cell Biol. 199, 583-588
    • (2012) J Cell Biol. , vol.199 , pp. 583-588
    • Goldberg, A.L.1
  • 6
    • 84920861391 scopus 로고    scopus 로고
    • Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy
    • Deshaies, R.J. (2014) Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 12, 94
    • (2014) BMC Biol. , vol.12 , pp. 94
    • Deshaies, R.J.1
  • 8
    • 84861783400 scopus 로고    scopus 로고
    • Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions
    • Husnjak, K. and Dikic, I. (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291-322
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 291-322
    • Husnjak, K.1    Dikic, I.2
  • 9
    • 84940783815 scopus 로고    scopus 로고
    • Expanding the ubiquitin code through post-translational modification
    • Herhaus, L. and Dikic, I. (2015) Expanding the ubiquitin code through post-translational modification. EMBO Rep. 16, 1071-1083
    • (2015) EMBO Rep. , vol.16 , pp. 1071-1083
    • Herhaus, L.1    Dikic, I.2
  • 10
    • 84894555108 scopus 로고    scopus 로고
    • Regulated protein turnover: Snapshots of the proteasome in action
    • Bhattacharyya, S., Yu, H., Mim, C., and Matouschek, A. (2014) Regulated protein turnover: snapshots of the proteasome in action. Nat. Rev. Mol. Cell Biol. 15, 122-133
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 122-133
    • Bhattacharyya, S.1    Yu, H.2    Mim, C.3    Matouschek, A.4
  • 11
    • 84952639230 scopus 로고    scopus 로고
    • Gates, channels, and switches: Elements of the proteasome machine
    • Finley, D., Chen, X., and Walters, K.J. (2016) Gates, channels, and switches: elements of the proteasome machine. Trends Biochem. Sci. 41, 77-93
    • (2016) Trends Biochem. Sci. , vol.41 , pp. 77-93
    • Finley, D.1    Chen, X.2    Walters, K.J.3
  • 12
    • 84991670386 scopus 로고    scopus 로고
    • Recent advances in the structural biology of the 26S proteasome
    • Wehmer, M. and Sakata, E. (2016) Recent advances in the structural biology of the 26S proteasome. Int. J. Biochem. Cell Biol. 79, 437-442
    • (2016) Int. J. Biochem. Cell Biol. , vol.79 , pp. 437-442
    • Wehmer, M.1    Sakata, E.2
  • 13
    • 84859827831 scopus 로고    scopus 로고
    • The proteasome: Molecular machinery and pathophysiological roles
    • Tanaka, K., Mizushima, T., and Saeki, Y. (2012) The proteasome: molecular machinery and pathophysiological roles. Biol. Chem. 393, 217-234
    • (2012) Biol. Chem. , vol.393 , pp. 217-234
    • Tanaka, K.1    Mizushima, T.2    Saeki, Y.3
  • 14
    • 0032488846 scopus 로고    scopus 로고
    • The proteasome: Paradigm of a self-compartmentalizing protease
    • Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell. 92, 367-380
    • (1998) Cell , vol.92 , pp. 367-380
    • Baumeister, W.1    Walz, J.2    Zuhl, F.3    Seemuller, E.4
  • 15
    • 84876916040 scopus 로고    scopus 로고
    • Structural biology of the proteasome
    • Kish-Trier, E. and Hill, C.P. (2013) Structural biology of the proteasome. Annu. Rev. Biophys. 42, 29-49
    • (2013) Annu. Rev. Biophys. , vol.42 , pp. 29-49
    • Kish-Trier, E.1    Hill, C.P.2
  • 18
    • 84978676943 scopus 로고    scopus 로고
    • An atomic structure of the human 26S proteasome
    • Huang, X., Luan, B., Wu, J., and Shi, Y. (2016) An atomic structure of the human 26S proteasome. Nat. Struct. Mol. Biol. 23, 778-785
    • (2016) Nat. Struct. Mol. Biol. , vol.23 , pp. 778-785
    • Huang, X.1    Luan, B.2    Wu, J.3    Shi, Y.4
  • 20
    • 84863230500 scopus 로고    scopus 로고
    • Assembly and function of the proteasome
    • Saeki, Y. and Tanaka, K. (2012) Assembly and function of the proteasome. Methods Mol. Biol. 832, 315-337
    • (2012) Methods Mol. Biol. , vol.832 , pp. 315-337
    • Saeki, Y.1    Tanaka, K.2
  • 21
    • 84878942836 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the eukaryotic proteasome
    • Tomko, R.J. Jr. and Hochstrasser, M. (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 82, 415-445
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 415-445
    • Tomko, R.J.1    Hochstrasser, M.2
  • 24
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • Sledz, P., Unverdorben, P., Beck, F., Pfeifer, G., Schweitzer, A., Forster, F., and Baumeister, W. (2013) Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl Acad. Sci. U. S. A. 110, 7264-7269
    • (2013) Proc. Natl Acad. Sci. U. S. A. , vol.110 , pp. 7264-7269
    • Sledz, P.1    Unverdorben, P.2    Beck, F.3    Pfeifer, G.4    Schweitzer, A.5    Forster, F.6    Baumeister, W.7
  • 25
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela, M.E., Lander, G.C., and Martin, A. (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20, 781-788
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 26
    • 0028235965 scopus 로고
    • A 26 S protease subunit that binds ubiquitin conjugates
    • Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994) A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059-7061
    • (1994) J. Biol. Chem. , vol.269 , pp. 7059-7061
    • Deveraux, Q.1    Ustrell, V.2    Pickart, C.3    Rechsteiner, M.4
  • 27
    • 0029806477 scopus 로고    scopus 로고
    • The multiubiquitin-chain-binding protein mcb1 is a component of the 26S proteasome in saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
    • van Nocker, S., Sadis, S., Rubin, D.M., Glickman, M., Fu, H., Coux, O., Wefes, I., Finley, D., and Vierstra, R.D. (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell Biol. 16, 6020-6028
    • (1996) Mol. Cell Biol. , vol.16 , pp. 6020-6028
    • Van Nocker, S.1    Sadis, S.2    Rubin, D.M.3    Glickman, M.4    Fu, H.5    Coux, O.6    Wefes, I.7    Finley, D.8    Vierstra, R.D.9
  • 28
    • 0033600798 scopus 로고    scopus 로고
    • Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome
    • Hiyama, H., Yokoi, M., Masutani, C., Sugasawa, K., Maekawa, T., Tanaka, K., Hoeijmakers, J.H., and Hanaoka, F. (1999) Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem. 274, 28019-28025
    • (1999) J. Biol. Chem. , vol.274 , pp. 28019-28025
    • Hiyama, H.1    Yokoi, M.2    Masutani, C.3    Sugasawa, K.4    Maekawa, T.5    Tanaka, K.6    Hoeijmakers, J.H.7    Hanaoka, F.8
  • 29
    • 84937574462 scopus 로고    scopus 로고
    • Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in arabidopsis
    • Marshall, R.S., Li, F., Gemperline, D.C., Book, A.J., and Vierstra, R.D. (2015) Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in arabidopsis. Mol. Cell. 58, 1053-1066
    • (2015) Mol. Cell , vol.58 , pp. 1053-1066
    • Marshall, R.S.1    Li, F.2    Gemperline, D.C.3    Book, A.J.4    Vierstra, R.D.5
  • 30
    • 3142566639 scopus 로고    scopus 로고
    • Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system
    • Verma, R., Oania, R., Graumann, J., and Deshaies, R.J. (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell. 118, 99-110
    • (2004) Cell , vol.118 , pp. 99-110
    • Verma, R.1    Oania, R.2    Graumann, J.3    Deshaies, R.J.4
  • 31
    • 34748859663 scopus 로고    scopus 로고
    • Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development
    • Hamazaki, J., Sasaki, K., Kawahara, H., Hisanaga, S., Tanaka, K., and Murata, S. (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol. Cell Biol. 27, 6629-6638
    • (2007) Mol. Cell Biol. , vol.27 , pp. 6629-6638
    • Hamazaki, J.1    Sasaki, K.2    Kawahara, H.3    Hisanaga, S.4    Tanaka, K.5    Murata, S.6
  • 32
    • 0037129213 scopus 로고    scopus 로고
    • A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal
    • Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L., and Pickart, C.M. (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature. 416, 763-767
    • (2002) Nature , vol.416 , pp. 763-767
    • Lam, Y.A.1    Lawson, T.G.2    Velayutham, M.3    Zweier, J.L.4    Pickart, C.M.5
  • 36
    • 78649289427 scopus 로고    scopus 로고
    • ATPdependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation
    • Peth, A., Uchiki, T., and Goldberg, A.L. (2010) ATPdependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol. Cell. 40, 671-681
    • (2010) Mol. Cell , vol.40 , pp. 671-681
    • Peth, A.1    Uchiki, T.2    Goldberg, A.L.3
  • 37
    • 84938782305 scopus 로고    scopus 로고
    • Redundant roles of rpn10 and rpn13 in recognition of ubiquitinated proteins and cellular homeostasis
    • Hamazaki, J., Hirayama, S., and Murata, S. (2015) Redundant roles of Rpn10 and Rpn13 in recognition of ubiquitinated proteins and cellular homeostasis. PLoS Genet. 11, e1005401
    • (2015) PLoS Genet. , vol.11 , pp. e1005401
    • Hamazaki, J.1    Hirayama, S.2    Murata, S.3
  • 38
    • 84923894408 scopus 로고    scopus 로고
    • Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G
    • Sahtoe, D.D., van Dijk, W.J., El Oualid, F., Ekkebus, R., Ovaa, H., and Sixma, T.K. (2015) Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol. Cell. 57, 887-900
    • (2015) Mol. Cell , vol.57 , pp. 887-900
    • Sahtoe, D.D.1    Van Dijk, W.J.2    El Oualid, F.3    Ekkebus, R.4    Ovaa, H.5    Sixma, T.K.6
  • 43
    • 63049125531 scopus 로고    scopus 로고
    • Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
    • Xu, P., Duong, D.M., Seyfried, N.T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M., Finley, D., and Peng, J. (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. 137, 133-145
    • (2009) Cell , vol.137 , pp. 133-145
    • Xu, P.1    Duong, D.M.2    Seyfried, N.T.3    Cheng, D.4    Xie, Y.5    Robert, J.6    Rush, J.7    Hochstrasser, M.8    Finley, D.9    Peng, J.10
  • 45
    • 84879478354 scopus 로고    scopus 로고
    • Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in arabidopsis
    • Kim, D.Y., Scalf, M., Smith, L.M., and Vierstra, R.D. (2013) Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell. 25, 1523-1540
    • (2013) Plant Cell , vol.25 , pp. 1523-1540
    • Kim, D.Y.1    Scalf, M.2    Smith, L.M.3    Vierstra, R.D.4
  • 47
    • 79961000536 scopus 로고    scopus 로고
    • Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools
    • Kaiser, S.E., Riley, B.E., Shaler, T.A., Trevino, R.S., Becker, C.H., Schulman, H., and Kopito, R.R. (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat. Methods. 8, 691-696
    • (2011) Nat. Methods. , vol.8 , pp. 691-696
    • Kaiser, S.E.1    Riley, B.E.2    Shaler, T.A.3    Trevino, R.S.4    Becker, C.H.5    Schulman, H.6    Kopito, R.R.7
  • 48
    • 0024514688 scopus 로고
    • A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein
    • Chau, V., Tobias, J.W., Bachmair, A., Marriott, D., Ecker, D.J., Gonda, D.K., and Varshavsky, A. (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science. 243, 1576-1583
    • (1989) Science , vol.243 , pp. 1576-1583
    • Chau, V.1    Tobias, J.W.2    Bachmair, A.3    Marriott, D.4    Ecker, D.J.5    Gonda, D.K.6    Varshavsky, A.7
  • 49
    • 0028146192 scopus 로고
    • Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant
    • Finley, D., Sadis, S., Monia, B.P., Boucher, P., Ecker, D.J., Crooke, S.T., and Chau, V. (1994) Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol. Cell Biol. 14, 5501-5509
    • (1994) Mol. Cell Biol. , vol.14 , pp. 5501-5509
    • Finley, D.1    Sadis, S.2    Monia, B.P.3    Boucher, P.4    Ecker, D.J.5    Crooke, S.T.6    Chau, V.7
  • 51
  • 52
    • 0033791447 scopus 로고    scopus 로고
    • Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
    • Verma, R., Chen, S., Feldman, R., Schieltz, D., Yates, J., Dohmen, J., and Deshaies, R.J. (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell. 11, 3425-3439
    • (2000) Mol. Biol. Cell , vol.11 , pp. 3425-3439
    • Verma, R.1    Chen, S.2    Feldman, R.3    Schieltz, D.4    Yates, J.5    Dohmen, J.6    Deshaies, R.J.7
  • 53
    • 0034845197 scopus 로고    scopus 로고
    • Selective degradation of ubiquitinated sic1 by purified 26S proteasome yields active S phase cyclin-cdk
    • Verma, R., McDonald, H., Yates, J.R. 3rd., and Deshaies, R.J. (2001) Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk. Mol. Cell 8, 439-448
    • (2001) Mol. Cell , vol.8 , pp. 439-448
    • Verma, R.1    McDonald, H.2    Yates, J.R.3    Deshaies, R.J.4
  • 54
    • 4344559454 scopus 로고    scopus 로고
    • An unstructured initiation site is required for efficient proteasome-mediated degradation
    • Prakash, S., Tian, L., Ratliff, K.S., Lehotzky, R.E., and Matouschek, A. (2004) An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11, 830-837
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 830-837
    • Prakash, S.1    Tian, L.2    Ratliff, K.S.3    Lehotzky, R.E.4    Matouschek, A.5
  • 55
    • 84962467507 scopus 로고    scopus 로고
    • A rapid and versatile method for generating proteins with defined ubiquitin chains
    • Martinez-Fonts, K. and Matouschek, A. (2016) A rapid and versatile method for generating proteins with defined ubiquitin chains. Biochemistry. 55, 1898-1908
    • (2016) Biochemistry , vol.55 , pp. 1898-1908
    • Martinez-Fonts, K.1    Matouschek, A.2
  • 57
    • 84927555890 scopus 로고    scopus 로고
    • Specificity of the anaphase-promoting complex: A single-molecule study
    • Lu, Y., Wang, W., and Kirschner, M.W. (2015) Specificity of the anaphase-promoting complex: a single-molecule study. Science. 348, 1248737
    • (2015) Science , vol.348 , pp. 1248737
    • Lu, Y.1    Wang, W.2    Kirschner, M.W.3
  • 58
    • 84927535922 scopus 로고    scopus 로고
    • Substrate degradation by the proteasome: A single-molecule kinetic analysis
    • Lu, Y., Lee, B.H., King, R.W., Finley, D., and Kirschner, M.W. (2015) Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science. 348, 1250834
    • (2015) Science , vol.348 , pp. 1250834
    • Lu, Y.1    Lee, B.H.2    King, R.W.3    Finley, D.4    Kirschner, M.W.5
  • 60
    • 84900337781 scopus 로고    scopus 로고
    • Enhanced protein degradation by branched ubiquitin chains
    • Meyer, H.J. and Rape, M. (2014) Enhanced protein degradation by branched ubiquitin chains. Cell. 157, 910-921
    • (2014) Cell , vol.157 , pp. 910-921
    • Meyer, H.J.1    Rape, M.2
  • 61
    • 84947045877 scopus 로고    scopus 로고
    • The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains
    • Grice, G.L., Lobb, I.T., Weekes, M.P., Gygi, S.P., Antrobus, R., and Nathan, J.A. (2015) The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains. Cell Rep. 12, 545-553
    • (2015) Cell Rep. , vol.12 , pp. 545-553
    • Grice, G.L.1    Lobb, I.T.2    Weekes, M.P.3    Gygi, S.P.4    Antrobus, R.5    Nathan, J.A.6
  • 62
    • 84994895357 scopus 로고    scopus 로고
    • The K48-K63 branched ubiquitin chain regulates NF-kappaB signaling
    • Ohtake, F., Saeki, Y., Ishido, S., Kanno, J., and Tanaka, K. (2016) The K48-K63 branched ubiquitin chain regulates NF-kappaB signaling. Mol. Cell. 64, 251-266
    • (2016) Mol. Cell , vol.64 , pp. 251-266
    • Ohtake, F.1    Saeki, Y.2    Ishido, S.3    Kanno, J.4    Tanaka, K.5
  • 63
    • 60549107173 scopus 로고    scopus 로고
    • Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
    • Saeki, Y., Kudo, T., Sone, T., Kikuchi, Y., Yokosawa, H., Toh-e, A., and Tanaka, K. (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 28, 359-371
    • (2009) EMBO J. , vol.28 , pp. 359-371
    • Saeki, Y.1    Kudo, T.2    Sone, T.3    Kikuchi, Y.4    Yokosawa, H.5    Toh-E, A.6    Tanaka, K.7
  • 64
    • 84875231510 scopus 로고    scopus 로고
    • Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?
    • Nathan, J.A., Kim, H.T., Ting, L., Gygi, S.P., and Goldberg, A.L. (2013) Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J. 32, 552-565
    • (2013) EMBO J. , vol.32 , pp. 552-565
    • Nathan, J.A.1    Kim, H.T.2    Ting, L.3    Gygi, S.P.4    Goldberg, A.L.5
  • 65
    • 28844484999 scopus 로고    scopus 로고
    • Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity
    • Saeki, Y., Isono, E., and Toh-e, A. (2005) Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity. Methods Enzymol. 399, 215-227
    • (2005) Methods Enzymol. , vol.399 , pp. 215-227
    • Saeki, Y.1    Isono, E.2    Toh-E, A.3
  • 67
    • 60849126138 scopus 로고    scopus 로고
    • Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor
    • Kravtsova-Ivantsiv, Y., Cohen, S., and Ciechanover, A. (2009) Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor. Mol. Cell. 33, 496-504
    • (2009) Mol. Cell , vol.33 , pp. 496-504
    • Kravtsova-Ivantsiv, Y.1    Cohen, S.2    Ciechanover, A.3
  • 70
    • 26944465404 scopus 로고    scopus 로고
    • Diverse polyubiquitin interaction properties of ubiquitin-associated domains
    • Raasi, S., Varadan, R., Fushman, D., and Pickart, C.M. (2005) Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat. Struct. Mol. Biol. 12, 708-714
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 708-714
    • Raasi, S.1    Varadan, R.2    Fushman, D.3    Pickart, C.M.4
  • 71
    • 11844263929 scopus 로고    scopus 로고
    • A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting
    • Richly, H., Rape, M., Braun, S., Rumpf, S., Hoege, C., and Jentsch, S. (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell. 120, 73-84
    • (2005) Cell , vol.120 , pp. 73-84
    • Richly, H.1    Rape, M.2    Braun, S.3    Rumpf, S.4    Hoege, C.5    Jentsch, S.6
  • 72
    • 80051998695 scopus 로고    scopus 로고
    • The cdc48 ATPase modulates the interaction between two proteolytic factors ufd2 and rad23
    • Baek, G.H., Kim, I., and Rao, H. (2011) The Cdc48 ATPase modulates the interaction between two proteolytic factors Ufd2 and Rad23. Proc. Natl Acad. Sci. U. S. A. 108, 13558-13563
    • (2011) Proc. Natl Acad. Sci. U. S. A. , vol.108 , pp. 13558-13563
    • Baek, G.H.1    Kim, I.2    Rao, H.3
  • 73
    • 0029119522 scopus 로고
    • A proteolytic pathway that recognizes ubiquitin as a degradation signal
    • Johnson, E.S., Ma, P.C., Ota, I.M., and Varshavsky, A. (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442-17456
    • (1995) J. Biol. Chem. , vol.270 , pp. 17442-17456
    • Johnson, E.S.1    Ma, P.C.2    Ota, I.M.3    Varshavsky, A.4
  • 75
    • 84898631587 scopus 로고    scopus 로고
    • The ubiquilin gene family: Evolutionary patterns and functional insights
    • Marin, I. (2014) The ubiquilin gene family: evolutionary patterns and functional insights. BMC Evol. Biol. 14, 63
    • (2014) BMC Evol. Biol. , vol.14 , pp. 63
    • Marin, I.1
  • 76
    • 84988013632 scopus 로고    scopus 로고
    • Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation
    • Itakura, E., Zavodszky, E., Shao, S., Wohlever, M.L., Keenan, R.J., and Hegde, R.S. (2016) Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol Cell. 63, 21-33
    • (2016) Mol Cell , vol.63 , pp. 21-33
    • Itakura, E.1    Zavodszky, E.2    Shao, S.3    Wohlever, M.L.4    Keenan, R.J.5    Hegde, R.S.6
  • 78
    • 70449084692 scopus 로고    scopus 로고
    • Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities
    • Hjerpe, R., Aillet, F., Lopitz-Otsoa, F., Lang, V., England, P., and Rodriguez, M.S. (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 10, 1250-1258
    • (2009) EMBO Rep. , vol.10 , pp. 1250-1258
    • Hjerpe, R.1    Aillet, F.2    Lopitz-Otsoa, F.3    Lang, V.4    England, P.5    Rodriguez, M.S.6
  • 79
    • 84971516837 scopus 로고    scopus 로고
    • UBQLN4 recognizes mislocalized transmembrane domain proteins and targets these to proteasomal degradation
    • Suzuki, R. and Kawahara, H. (2016) UBQLN4 recognizes mislocalized transmembrane domain proteins and targets these to proteasomal degradation. EMBO Rep. 17, 842-857
    • (2016) EMBO Rep. , vol.17 , pp. 842-857
    • Suzuki, R.1    Kawahara, H.2
  • 82
    • 33644513063 scopus 로고    scopus 로고
    • Unique role for the UbL-UbA protein ddi1 in turnover of SCFUfo1 complexes
    • Ivantsiv, Y., Kaplun, L., Tzirkin-Goldin, R., Shabek, N., and Raveh, D. (2006) Unique role for the UbL-UbA protein Ddi1 in turnover of SCFUfo1 complexes. Mol. Cell Biol. 26, 1579-1588
    • (2006) Mol. Cell Biol. , vol.26 , pp. 1579-1588
    • Ivantsiv, Y.1    Kaplun, L.2    Tzirkin-Goldin, R.3    Shabek, N.4    Raveh, D.5
  • 84
    • 84983027579 scopus 로고    scopus 로고
    • Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1
    • Lehrbach, N.J. and Ruvkun, G. (2016) Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife. 5, e17721
    • (2016) ELife , vol.5 , pp. e17721
    • Lehrbach, N.J.1    Ruvkun, G.2
  • 85
    • 77950366349 scopus 로고    scopus 로고
    • Transcription factor nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
    • Radhakrishnan, S.K., Lee, C.S., Young, P., Beskow, A., Chan, J.Y., and Deshaies, R.J. (2010) Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell. 38, 17-28
    • (2010) Mol. Cell , vol.38 , pp. 17-28
    • Radhakrishnan, S.K.1    Lee, C.S.2    Young, P.3    Beskow, A.4    Chan, J.Y.5    Deshaies, R.J.6
  • 86
    • 0041856380 scopus 로고    scopus 로고
    • Regulation of the NEDD8 conjugation system by a splicing variant, NUB1L
    • Tanaka, T., Kawashima, H., Yeh, E.T., and Kamitani, T. (2003) Regulation of the NEDD8 conjugation system by a splicing variant, NUB1L. J. Biol. Chem. 278, 32905-32913
    • (2003) J. Biol. Chem. , vol.278 , pp. 32905-32913
    • Tanaka, T.1    Kawashima, H.2    Yeh, E.T.3    Kamitani, T.4
  • 88
    • 84859175458 scopus 로고    scopus 로고
    • FAT10 and NUB1L bind to the VWA domain of rpn10 and rpn1 to enable proteasomemediated proteolysis
    • Rani, N., Aichem, A., Schmidtke, G., Kreft, S.G., and Groettrup, M. (2012) FAT10 and NUB1L bind to the VWA domain of Rpn10 and Rpn1 to enable proteasomemediated proteolysis. Nat. Commun. 3, 749
    • (2012) Nat. Commun. , vol.3 , pp. 749
    • Rani, N.1    Aichem, A.2    Schmidtke, G.3    Kreft, S.G.4    Groettrup, M.5
  • 93
    • 84856474838 scopus 로고    scopus 로고
    • Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system
    • Meyer, H., Bug, M., and Bremer, S. (2012) Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117-123
    • (2012) Nat. Cell Biol. , vol.14 , pp. 117-123
    • Meyer, H.1    Bug, M.2    Bremer, S.3
  • 94
    • 84963617847 scopus 로고    scopus 로고
    • Structure and function of the AAA+ ATPase p97/Cdc48p
    • Xia, D., Tang, W.K., and Ye, Y. (2016) Structure and function of the AAA+ ATPase p97/Cdc48p. Gene. 583, 64-77
    • (2016) Gene , vol.583 , pp. 64-77
    • Xia, D.1    Tang, W.K.2    Ye, Y.3
  • 95
    • 0038487228 scopus 로고    scopus 로고
    • Function of the p97-ufd1-npl4 complex in retrotranslocation from the ER to the cytosol: Dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains
    • Ye, Y., Meyer, H.H., and Rapoport, T.A. (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol. 162, 71-84
    • (2003) J. Cell Biol. , vol.162 , pp. 71-84
    • Ye, Y.1    Meyer, H.H.2    Rapoport, T.A.3
  • 96
    • 0036845476 scopus 로고    scopus 로고
    • Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and ufd1-npl4
    • Meyer, H.H., Wang, Y., and Warren, G. (2002) Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 21, 5645-5652
    • (2002) EMBO J. , vol.21 , pp. 5645-5652
    • Meyer, H.H.1    Wang, Y.2    Warren, G.3
  • 97
  • 98
    • 52049085050 scopus 로고    scopus 로고
    • DOA1/UFD3 plays a role in sorting ubiquitinated membrane proteins into multivesicular bodies
    • Ren, J., Pashkova, N., Winistorfer, S., and Piper, R.C. (2008) DOA1/UFD3 plays a role in sorting ubiquitinated membrane proteins into multivesicular bodies. J. Biol. Chem. 283, 21599-21611
    • (2008) J. Biol. Chem. , vol.283 , pp. 21599-21611
    • Ren, J.1    Pashkova, N.2    Winistorfer, S.3    Piper, R.C.4
  • 99
    • 79953771687 scopus 로고    scopus 로고
    • Cellular functions of ufd2 and ufd3 in proteasomal protein degradation depend on cdc48 binding
    • Bohm, S., Lamberti, G., Fernandez-Saiz, V., Stapf, C., and Buchberger, A. (2011) Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding. Mol. Cell Biol. 31, 1528-1539
    • (2011) Mol. Cell Biol. , vol.31 , pp. 1528-1539
    • Bohm, S.1    Lamberti, G.2    Fernandez-Saiz, V.3    Stapf, C.4    Buchberger, A.5
  • 100
    • 30744451400 scopus 로고    scopus 로고
    • Functional division of substrate processing cofactors of the ubiquitin-selective cdc48 chaperone
    • Rumpf, S. and Jentsch, S. (2006) Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Mol. Cell. 21, 261-269
    • (2006) Mol. Cell , vol.21 , pp. 261-269
    • Rumpf, S.1    Jentsch, S.2
  • 101
    • 84954286268 scopus 로고    scopus 로고
    • Cdc48-independent proteasomal degradation coincides with a reduced need for ubiquitylation
    • Godderz, D., Heinen, C., Marchese, F.P., Kurz, T., Acs, K., and Dantuma, N.P. (2015) Cdc48-independent proteasomal degradation coincides with a reduced need for ubiquitylation. Sci. Rep. 5, 7615
    • (2015) Sci. Rep. , vol.5 , pp. 7615
    • Godderz, D.1    Heinen, C.2    Marchese, F.P.3    Kurz, T.4    Acs, K.5    Dantuma, N.P.6
  • 102
    • 1842483843 scopus 로고    scopus 로고
    • Inclusion body myopathy associated with paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein
    • Watts, G.D., Wymer, J., Kovach, M.J., Mehta, S.G., Mumm, S., Darvish, D., Pestronk, A., Whyte, M.P., and Kimonis, V.E. (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 36, 377-381
    • (2004) Nat. Genet. , vol.36 , pp. 377-381
    • Watts, G.D.1    Wymer, J.2    Kovach, M.J.3    Mehta, S.G.4    Mumm, S.5    Darvish, D.6    Pestronk, A.7    Whyte, M.P.8    Kimonis, V.E.9
  • 106
    • 0034646298 scopus 로고    scopus 로고
    • Physical association of ubiquitin ligases and the 26S proteasome
    • Xie, Y. and Varshavsky, A. (2000) Physical association of ubiquitin ligases and the 26S proteasome. Proc. Natl Acad. Sci. U. S. A. 97, 2497-2502
    • (2000) Proc. Natl Acad. Sci. U. S. A. , vol.97 , pp. 2497-2502
    • Xie, Y.1    Varshavsky, A.2
  • 107
    • 80455122748 scopus 로고    scopus 로고
    • Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins
    • Fang, N.N., Ng, A.H., Measday, V., and Mayor, T. (2011) Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat. Cell Biol. 13, 1344-1352
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1344-1352
    • Fang, N.N.1    Ng, A.H.2    Measday, V.3    Mayor, T.4
  • 108
    • 75749101057 scopus 로고    scopus 로고
    • Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases ubr1 and san1
    • Heck, J.W., Cheung, S.K., and Hampton, R.Y. (2010) Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl Acad. Sci. U. S. A. 107, 1106-1111
    • (2010) Proc. Natl Acad. Sci. U. S. A. , vol.107 , pp. 1106-1111
    • Heck, J.W.1    Cheung, S.K.2    Hampton, R.Y.3
  • 109
    • 84902668478 scopus 로고    scopus 로고
    • Autoregulation of the 26S proteasome by in situ ubiquitination
    • Jacobson, A.D., MacFadden, A., Wu, Z., Peng, J., and Liu, C.W. (2014) Autoregulation of the 26S proteasome by in situ ubiquitination. Mol. Biol. Cell. 25, 1824-1835
    • (2014) Mol. Biol. Cell , vol.25 , pp. 1824-1835
    • Jacobson, A.D.1    MacFadden, A.2    Wu, Z.3    Peng, J.4    Liu, C.W.5
  • 111
    • 84959481890 scopus 로고    scopus 로고
    • The ubiquitin signal and autophagy: An orchestrated dance leading to mitochondrial degradation
    • Yamano, K., Matsuda, N., and Tanaka, K. (2016) The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 17, 300-316
    • (2016) EMBO Rep. , vol.17 , pp. 300-316
    • Yamano, K.1    Matsuda, N.2    Tanaka, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.