-
2
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley, D. (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477-513
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
3
-
-
84929672785
-
Quantifying ubiquitin signaling
-
Ordureau, A., Munch, C., and Harper, J.W. (2015) Quantifying ubiquitin signaling. Mol. Cell. 58, 660-676
-
(2015)
Mol. Cell
, vol.58
, pp. 660-676
-
-
Ordureau, A.1
Munch, C.2
Harper, J.W.3
-
4
-
-
84988336041
-
Proteome complexity and the forces that drive proteome imbalance
-
Harper, J.W. and Bennett, E.J. (2016) Proteome complexity and the forces that drive proteome imbalance. Nature. 537, 328-338
-
(2016)
Nature
, vol.537
, pp. 328-338
-
-
Harper, J.W.1
Bennett, E.J.2
-
5
-
-
84871940845
-
Development of proteasome inhibitors as research tools and cancer drugs
-
Goldberg, A.L. (2012) Development of proteasome inhibitors as research tools and cancer drugs. J Cell Biol. 199, 583-588
-
(2012)
J Cell Biol.
, vol.199
, pp. 583-588
-
-
Goldberg, A.L.1
-
6
-
-
84920861391
-
Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy
-
Deshaies, R.J. (2014) Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 12, 94
-
(2014)
BMC Biol.
, vol.12
, pp. 94
-
-
Deshaies, R.J.1
-
8
-
-
84861783400
-
Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions
-
Husnjak, K. and Dikic, I. (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291-322
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 291-322
-
-
Husnjak, K.1
Dikic, I.2
-
9
-
-
84940783815
-
Expanding the ubiquitin code through post-translational modification
-
Herhaus, L. and Dikic, I. (2015) Expanding the ubiquitin code through post-translational modification. EMBO Rep. 16, 1071-1083
-
(2015)
EMBO Rep.
, vol.16
, pp. 1071-1083
-
-
Herhaus, L.1
Dikic, I.2
-
10
-
-
84894555108
-
Regulated protein turnover: Snapshots of the proteasome in action
-
Bhattacharyya, S., Yu, H., Mim, C., and Matouschek, A. (2014) Regulated protein turnover: snapshots of the proteasome in action. Nat. Rev. Mol. Cell Biol. 15, 122-133
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 122-133
-
-
Bhattacharyya, S.1
Yu, H.2
Mim, C.3
Matouschek, A.4
-
11
-
-
84952639230
-
Gates, channels, and switches: Elements of the proteasome machine
-
Finley, D., Chen, X., and Walters, K.J. (2016) Gates, channels, and switches: elements of the proteasome machine. Trends Biochem. Sci. 41, 77-93
-
(2016)
Trends Biochem. Sci.
, vol.41
, pp. 77-93
-
-
Finley, D.1
Chen, X.2
Walters, K.J.3
-
12
-
-
84991670386
-
Recent advances in the structural biology of the 26S proteasome
-
Wehmer, M. and Sakata, E. (2016) Recent advances in the structural biology of the 26S proteasome. Int. J. Biochem. Cell Biol. 79, 437-442
-
(2016)
Int. J. Biochem. Cell Biol.
, vol.79
, pp. 437-442
-
-
Wehmer, M.1
Sakata, E.2
-
13
-
-
84859827831
-
The proteasome: Molecular machinery and pathophysiological roles
-
Tanaka, K., Mizushima, T., and Saeki, Y. (2012) The proteasome: molecular machinery and pathophysiological roles. Biol. Chem. 393, 217-234
-
(2012)
Biol. Chem.
, vol.393
, pp. 217-234
-
-
Tanaka, K.1
Mizushima, T.2
Saeki, Y.3
-
14
-
-
0032488846
-
The proteasome: Paradigm of a self-compartmentalizing protease
-
Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell. 92, 367-380
-
(1998)
Cell
, vol.92
, pp. 367-380
-
-
Baumeister, W.1
Walz, J.2
Zuhl, F.3
Seemuller, E.4
-
15
-
-
84876916040
-
Structural biology of the proteasome
-
Kish-Trier, E. and Hill, C.P. (2013) Structural biology of the proteasome. Annu. Rev. Biophys. 42, 29-49
-
(2013)
Annu. Rev. Biophys.
, vol.42
, pp. 29-49
-
-
Kish-Trier, E.1
Hill, C.P.2
-
16
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck, F., Unverdorben, P., Bohn, S., Schweitzer, A., Pfeifer, G., Sakata, E., Nickell, S., Plitzko, J.M., Villa, E., Baumeister, W., and Forster, F. (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl Acad. Sci. U. S. A. 109, 14870-14875
-
(2012)
Proc. Natl Acad. Sci. U. S. A.
, vol.109
, pp. 14870-14875
-
-
Beck, F.1
Unverdorben, P.2
Bohn, S.3
Schweitzer, A.4
Pfeifer, G.5
Sakata, E.6
Nickell, S.7
Plitzko, J.M.8
Villa, E.9
Baumeister, W.10
Forster, F.11
-
17
-
-
84960934506
-
Structure of an endogenous yeast 26S proteasome reveals two major conformational states
-
Luan, B., Huang, X., Wu, J., Mei, Z., Wang, Y., Xue, X., Yan, C., Wang, J., Finley, D.J., Shi, Y., and Wang, F. (2016) Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc. Natl Acad. Sci. U. S. A. 113, 2642-2647
-
(2016)
Proc. Natl Acad. Sci. U. S. A.
, vol.113
, pp. 2642-2647
-
-
Luan, B.1
Huang, X.2
Wu, J.3
Mei, Z.4
Wang, Y.5
Xue, X.6
Yan, C.7
Wang, J.8
Finley, D.J.9
Shi, Y.10
Wang, F.11
-
18
-
-
84978676943
-
An atomic structure of the human 26S proteasome
-
Huang, X., Luan, B., Wu, J., and Shi, Y. (2016) An atomic structure of the human 26S proteasome. Nat. Struct. Mol. Biol. 23, 778-785
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 778-785
-
-
Huang, X.1
Luan, B.2
Wu, J.3
Shi, Y.4
-
19
-
-
84978042613
-
Structure of the human 26S proteasome at a resolution of 3.9 A
-
Schweitzer, A., Aufderheide, A., Rudack, T., Beck, F., Pfeifer, G., Plitzko, J.M., Sakata, E., Schulten, K., Forster, F., and Baumeister, W. (2016) Structure of the human 26S proteasome at a resolution of 3.9 A. Proc. Natl Acad. Sci. U.S.A. 113, 7816-7821
-
(2016)
Proc. Natl Acad. Sci. U.S.A.
, vol.113
, pp. 7816-7821
-
-
Schweitzer, A.1
Aufderheide, A.2
Rudack, T.3
Beck, F.4
Pfeifer, G.5
Plitzko, J.M.6
Sakata, E.7
Schulten, K.8
Forster, F.9
Baumeister, W.10
-
20
-
-
84863230500
-
Assembly and function of the proteasome
-
Saeki, Y. and Tanaka, K. (2012) Assembly and function of the proteasome. Methods Mol. Biol. 832, 315-337
-
(2012)
Methods Mol. Biol.
, vol.832
, pp. 315-337
-
-
Saeki, Y.1
Tanaka, K.2
-
21
-
-
84878942836
-
Molecular architecture and assembly of the eukaryotic proteasome
-
Tomko, R.J. Jr. and Hochstrasser, M. (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 82, 415-445
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 415-445
-
-
Tomko, R.J.1
Hochstrasser, M.2
-
22
-
-
84863115607
-
Localization of the proteasomal ubiquitin receptors rpn10 and rpn13 by electron cryomicroscopy
-
Sakata, E., Bohn, S., Mihalache, O., Kiss, P., Beck, F., Nagy, I., Nickell, S., Tanaka, K., Saeki, Y., Forster, F., and Baumeister, W. (2012) Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy. Proc. Natl Acad. Sci. U. S. A. 109, 1479-1484
-
(2012)
Proc. Natl Acad. Sci. U. S. A.
, vol.109
, pp. 1479-1484
-
-
Sakata, E.1
Bohn, S.2
Mihalache, O.3
Kiss, P.4
Beck, F.5
Nagy, I.6
Nickell, S.7
Tanaka, K.8
Saeki, Y.9
Forster, F.10
Baumeister, W.11
-
23
-
-
0036713383
-
Proteasome subunit rpn1 binds ubiquitin-like protein domains
-
Elsasser, S., Gali, R.R., Schwickart, M., Larsen, C.N., Leggett, D.S., Muller, B., Feng, M.T., Tubing, F., Dittmar, G.A., and Finley, D. (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 4, 725-730
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 725-730
-
-
Elsasser, S.1
Gali, R.R.2
Schwickart, M.3
Larsen, C.N.4
Leggett, D.S.5
Muller, B.6
Feng, M.T.7
Tubing, F.8
Dittmar, G.A.9
Finley, D.10
-
24
-
-
84876909425
-
Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
-
Sledz, P., Unverdorben, P., Beck, F., Pfeifer, G., Schweitzer, A., Forster, F., and Baumeister, W. (2013) Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl Acad. Sci. U. S. A. 110, 7264-7269
-
(2013)
Proc. Natl Acad. Sci. U. S. A.
, vol.110
, pp. 7264-7269
-
-
Sledz, P.1
Unverdorben, P.2
Beck, F.3
Pfeifer, G.4
Schweitzer, A.5
Forster, F.6
Baumeister, W.7
-
25
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela, M.E., Lander, G.C., and Martin, A. (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20, 781-788
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 781-788
-
-
Matyskiela, M.E.1
Lander, G.C.2
Martin, A.3
-
26
-
-
0028235965
-
A 26 S protease subunit that binds ubiquitin conjugates
-
Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994) A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059-7061
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 7059-7061
-
-
Deveraux, Q.1
Ustrell, V.2
Pickart, C.3
Rechsteiner, M.4
-
27
-
-
0029806477
-
The multiubiquitin-chain-binding protein mcb1 is a component of the 26S proteasome in saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
-
van Nocker, S., Sadis, S., Rubin, D.M., Glickman, M., Fu, H., Coux, O., Wefes, I., Finley, D., and Vierstra, R.D. (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell Biol. 16, 6020-6028
-
(1996)
Mol. Cell Biol.
, vol.16
, pp. 6020-6028
-
-
Van Nocker, S.1
Sadis, S.2
Rubin, D.M.3
Glickman, M.4
Fu, H.5
Coux, O.6
Wefes, I.7
Finley, D.8
Vierstra, R.D.9
-
28
-
-
0033600798
-
Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome
-
Hiyama, H., Yokoi, M., Masutani, C., Sugasawa, K., Maekawa, T., Tanaka, K., Hoeijmakers, J.H., and Hanaoka, F. (1999) Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem. 274, 28019-28025
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 28019-28025
-
-
Hiyama, H.1
Yokoi, M.2
Masutani, C.3
Sugasawa, K.4
Maekawa, T.5
Tanaka, K.6
Hoeijmakers, J.H.7
Hanaoka, F.8
-
29
-
-
84937574462
-
Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in arabidopsis
-
Marshall, R.S., Li, F., Gemperline, D.C., Book, A.J., and Vierstra, R.D. (2015) Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in arabidopsis. Mol. Cell. 58, 1053-1066
-
(2015)
Mol. Cell
, vol.58
, pp. 1053-1066
-
-
Marshall, R.S.1
Li, F.2
Gemperline, D.C.3
Book, A.J.4
Vierstra, R.D.5
-
30
-
-
3142566639
-
Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system
-
Verma, R., Oania, R., Graumann, J., and Deshaies, R.J. (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell. 118, 99-110
-
(2004)
Cell
, vol.118
, pp. 99-110
-
-
Verma, R.1
Oania, R.2
Graumann, J.3
Deshaies, R.J.4
-
31
-
-
34748859663
-
Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development
-
Hamazaki, J., Sasaki, K., Kawahara, H., Hisanaga, S., Tanaka, K., and Murata, S. (2007) Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol. Cell Biol. 27, 6629-6638
-
(2007)
Mol. Cell Biol.
, vol.27
, pp. 6629-6638
-
-
Hamazaki, J.1
Sasaki, K.2
Kawahara, H.3
Hisanaga, S.4
Tanaka, K.5
Murata, S.6
-
32
-
-
0037129213
-
A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal
-
Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L., and Pickart, C.M. (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature. 416, 763-767
-
(2002)
Nature
, vol.416
, pp. 763-767
-
-
Lam, Y.A.1
Lawson, T.G.2
Velayutham, M.3
Zweier, J.L.4
Pickart, C.M.5
-
33
-
-
44349116590
-
Proteasome subunit rpn13 is a novel ubiquitin receptor
-
Husnjak, K., Elsasser, S., Zhang, N., Chen, X., Randles, L., Shi, Y., Hofmann, K., Walters, K.J., Finley, D., and Dikic, I. (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature. 453, 481-488
-
(2008)
Nature
, vol.453
, pp. 481-488
-
-
Husnjak, K.1
Elsasser, S.2
Zhang, N.3
Chen, X.4
Randles, L.5
Shi, Y.6
Hofmann, K.7
Walters, K.J.8
Finley, D.9
Dikic, I.10
-
34
-
-
84922539969
-
Dss1 is a 26S proteasome ubiquitin receptor
-
Paraskevopoulos, K., Kriegenburg, F., Tatham, M.H., Rosner, H.I., Medina, B., Larsen, I.B., Brandstrup, R., Hardwick, K.G., Hay, R.T., Kragelund, B.B., Hartmann-Petersen, R., and Gordon, C. (2014) Dss1 is a 26S proteasome ubiquitin receptor. Mol. Cell. 56, 453-461
-
(2014)
Mol. Cell
, vol.56
, pp. 453-461
-
-
Paraskevopoulos, K.1
Kriegenburg, F.2
Tatham, M.H.3
Rosner, H.I.4
Medina, B.5
Larsen, I.B.6
Brandstrup, R.7
Hardwick, K.G.8
Hay, R.T.9
Kragelund, B.B.10
Hartmann-Petersen, R.11
Gordon, C.12
-
35
-
-
84959019581
-
Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
-
Shi, Y., Chen, X., Elsasser, S., Stocks, B.B., Tian, G., Lee, B.H., Shi, Y., Zhang, N., de Poot, S.A., Tuebing, F., Sun, S., Vannoy, J., Tarasov, S.G., Engen, J.R., Finley, D., and Walters, K.J. (2016) Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science. 351, 831
-
(2016)
Science
, vol.351
, pp. 831
-
-
Shi, Y.1
Chen, X.2
Elsasser, S.3
Stocks, B.B.4
Tian, G.5
Lee, B.H.6
Shi, Y.7
Zhang, N.8
De Poot, S.A.9
Tuebing, F.10
Sun, S.11
Vannoy, J.12
Tarasov, S.G.13
Engen, J.R.14
Finley, D.15
Walters, K.J.16
-
36
-
-
78649289427
-
ATPdependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation
-
Peth, A., Uchiki, T., and Goldberg, A.L. (2010) ATPdependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol. Cell. 40, 671-681
-
(2010)
Mol. Cell
, vol.40
, pp. 671-681
-
-
Peth, A.1
Uchiki, T.2
Goldberg, A.L.3
-
37
-
-
84938782305
-
Redundant roles of rpn10 and rpn13 in recognition of ubiquitinated proteins and cellular homeostasis
-
Hamazaki, J., Hirayama, S., and Murata, S. (2015) Redundant roles of Rpn10 and Rpn13 in recognition of ubiquitinated proteins and cellular homeostasis. PLoS Genet. 11, e1005401
-
(2015)
PLoS Genet.
, vol.11
, pp. e1005401
-
-
Hamazaki, J.1
Hirayama, S.2
Murata, S.3
-
38
-
-
84923894408
-
Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G
-
Sahtoe, D.D., van Dijk, W.J., El Oualid, F., Ekkebus, R., Ovaa, H., and Sixma, T.K. (2015) Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol. Cell. 57, 887-900
-
(2015)
Mol. Cell
, vol.57
, pp. 887-900
-
-
Sahtoe, D.D.1
Van Dijk, W.J.2
El Oualid, F.3
Ekkebus, R.4
Ovaa, H.5
Sixma, T.K.6
-
39
-
-
84923894407
-
Structural basis for the activation and inhibition of the UCH37 deubiquitylase
-
Van der Linden, R.T., Hemmis, C.W., Schmitt, B., Ndoja, A., Whitby, F.G., Robinson, H., Cohen, R.E., Yao, T., and Hill, C.P. (2015) Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Mol. Cell. 57, 901-911
-
(2015)
Mol. Cell
, vol.57
, pp. 901-911
-
-
Van Der-Linden, R.T.1
Hemmis, C.W.2
Schmitt, B.3
Ndoja, A.4
Whitby, F.G.5
Robinson, H.6
Cohen, R.E.7
Yao, T.8
Hill, C.P.9
-
40
-
-
84937111175
-
Structural characterization of the interaction of ubp6 with the 26S proteasome
-
Aufderheide, A., Beck, F., Stengel, F., Hartwig, M., Schweitzer, A., Pfeifer, G., Goldberg, A.L., Sakata, E., Baumeister, W., and Forster, F. (2015) Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc. Natl Acad. Sci. U. S. A. 112, 8626-8631
-
(2015)
Proc. Natl Acad. Sci. U. S. A.
, vol.112
, pp. 8626-8631
-
-
Aufderheide, A.1
Beck, F.2
Stengel, F.3
Hartwig, M.4
Schweitzer, A.5
Pfeifer, G.6
Goldberg, A.L.7
Sakata, E.8
Baumeister, W.9
Forster, F.10
-
41
-
-
84940984237
-
Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome
-
Bashore, C., Dambacher, C.M., Goodall, E.A., Matyskiela, M.E., Lander, G.C., and Martin, A. (2015) Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat. Struct. Mol. Biol. 22, 712-719
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 712-719
-
-
Bashore, C.1
Dambacher, C.M.2
Goodall, E.A.3
Matyskiela, M.E.4
Lander, G.C.5
Martin, A.6
-
42
-
-
84964453431
-
USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites
-
Lee, B.H., Lu, Y., Prado, M.A., Shi, Y., Tian, G., Sun, S., Elsasser, S., Gygi, S.P., King, R.W., and Finley, D. (2016) USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature. 532, 398-401
-
(2016)
Nature
, vol.532
, pp. 398-401
-
-
Lee, B.H.1
Lu, Y.2
Prado, M.A.3
Shi, Y.4
Tian, G.5
Sun, S.6
Elsasser, S.7
Gygi, S.P.8
King, R.W.9
Finley, D.10
-
43
-
-
63049125531
-
Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
-
Xu, P., Duong, D.M., Seyfried, N.T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M., Finley, D., and Peng, J. (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. 137, 133-145
-
(2009)
Cell
, vol.137
, pp. 133-145
-
-
Xu, P.1
Duong, D.M.2
Seyfried, N.T.3
Cheng, D.4
Xie, Y.5
Robert, J.6
Rush, J.7
Hochstrasser, M.8
Finley, D.9
Peng, J.10
-
44
-
-
79955780837
-
A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis
-
M111 009753
-
Ziv, I., Matiuhin, Y., Kirkpatrick, D.S., Erpapazoglou, Z., Leon, S., Pantazopoulou, M., Kim, W., Gygi, S.P., Haguenauer-Tsapis, R., Reis, N., Glickman, M.H., and Kleifeld, O. (2011) A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol. Cell. Proteomics: MCP. 10, M111 009753
-
(2011)
Mol. Cell. Proteomics: MCP
, vol.10
-
-
Ziv, I.1
Matiuhin, Y.2
Kirkpatrick, D.S.3
Erpapazoglou, Z.4
Leon, S.5
Pantazopoulou, M.6
Kim, W.7
Gygi, S.P.8
Haguenauer-Tsapis, R.9
Reis, N.10
Glickman, M.H.11
Kleifeld, O.12
-
45
-
-
84879478354
-
Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in arabidopsis
-
Kim, D.Y., Scalf, M., Smith, L.M., and Vierstra, R.D. (2013) Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell. 25, 1523-1540
-
(2013)
Plant Cell
, vol.25
, pp. 1523-1540
-
-
Kim, D.Y.1
Scalf, M.2
Smith, L.M.3
Vierstra, R.D.4
-
46
-
-
82455179484
-
Systematic and quantitative assessment of the ubiquitin-modified proteome
-
Kim, W., Bennett, E.J., Huttlin, E.L., Guo, A., Li, J., Possemato, A., Sowa, M.E., Rad, R., Rush, J., Comb, M.J., Harper, J.W., and Gygi, S.P. (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell. 44, 325-340
-
(2011)
Mol. Cell
, vol.44
, pp. 325-340
-
-
Kim, W.1
Bennett, E.J.2
Huttlin, E.L.3
Guo, A.4
Li, J.5
Possemato, A.6
Sowa, M.E.7
Rad, R.8
Rush, J.9
Comb, M.J.10
Harper, J.W.11
Gygi, S.P.12
-
47
-
-
79961000536
-
Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools
-
Kaiser, S.E., Riley, B.E., Shaler, T.A., Trevino, R.S., Becker, C.H., Schulman, H., and Kopito, R.R. (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat. Methods. 8, 691-696
-
(2011)
Nat. Methods.
, vol.8
, pp. 691-696
-
-
Kaiser, S.E.1
Riley, B.E.2
Shaler, T.A.3
Trevino, R.S.4
Becker, C.H.5
Schulman, H.6
Kopito, R.R.7
-
48
-
-
0024514688
-
A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein
-
Chau, V., Tobias, J.W., Bachmair, A., Marriott, D., Ecker, D.J., Gonda, D.K., and Varshavsky, A. (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science. 243, 1576-1583
-
(1989)
Science
, vol.243
, pp. 1576-1583
-
-
Chau, V.1
Tobias, J.W.2
Bachmair, A.3
Marriott, D.4
Ecker, D.J.5
Gonda, D.K.6
Varshavsky, A.7
-
49
-
-
0028146192
-
Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant
-
Finley, D., Sadis, S., Monia, B.P., Boucher, P., Ecker, D.J., Crooke, S.T., and Chau, V. (1994) Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol. Cell Biol. 14, 5501-5509
-
(1994)
Mol. Cell Biol.
, vol.14
, pp. 5501-5509
-
-
Finley, D.1
Sadis, S.2
Monia, B.P.3
Boucher, P.4
Ecker, D.J.5
Crooke, S.T.6
Chau, V.7
-
50
-
-
0035839519
-
Distinct functional surface regions on ubiquitin
-
Sloper-Mould, K.E., Jemc, J.C., Pickart, C.M., and Hicke, L. (2001) Distinct functional surface regions on ubiquitin. J. Biol. Chem. 276, 30483-30489
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30483-30489
-
-
Sloper-Mould, K.E.1
Jemc, J.C.2
Pickart, C.M.3
Hicke, L.4
-
51
-
-
0034602845
-
Recognition of the polyubiquitin proteolytic signal
-
Thrower, J.S., Hoffman, L., Rechsteiner, M., and Pickart, C.M. (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94-102
-
(2000)
EMBO J.
, vol.19
, pp. 94-102
-
-
Thrower, J.S.1
Hoffman, L.2
Rechsteiner, M.3
Pickart, C.M.4
-
52
-
-
0033791447
-
Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
-
Verma, R., Chen, S., Feldman, R., Schieltz, D., Yates, J., Dohmen, J., and Deshaies, R.J. (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell. 11, 3425-3439
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 3425-3439
-
-
Verma, R.1
Chen, S.2
Feldman, R.3
Schieltz, D.4
Yates, J.5
Dohmen, J.6
Deshaies, R.J.7
-
53
-
-
0034845197
-
Selective degradation of ubiquitinated sic1 by purified 26S proteasome yields active S phase cyclin-cdk
-
Verma, R., McDonald, H., Yates, J.R. 3rd., and Deshaies, R.J. (2001) Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk. Mol. Cell 8, 439-448
-
(2001)
Mol. Cell
, vol.8
, pp. 439-448
-
-
Verma, R.1
McDonald, H.2
Yates, J.R.3
Deshaies, R.J.4
-
54
-
-
4344559454
-
An unstructured initiation site is required for efficient proteasome-mediated degradation
-
Prakash, S., Tian, L., Ratliff, K.S., Lehotzky, R.E., and Matouschek, A. (2004) An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11, 830-837
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 830-837
-
-
Prakash, S.1
Tian, L.2
Ratliff, K.S.3
Lehotzky, R.E.4
Matouschek, A.5
-
55
-
-
84962467507
-
A rapid and versatile method for generating proteins with defined ubiquitin chains
-
Martinez-Fonts, K. and Matouschek, A. (2016) A rapid and versatile method for generating proteins with defined ubiquitin chains. Biochemistry. 55, 1898-1908
-
(2016)
Biochemistry
, vol.55
, pp. 1898-1908
-
-
Martinez-Fonts, K.1
Matouschek, A.2
-
56
-
-
84924125611
-
Sequence composition of disordered regions fine-tunes protein half-life
-
Fishbain, S., Inobe, T., Israeli, E., Chavali, S., Yu, H., Kago, G., Babu, M.M., and Matouschek, A. (2015) Sequence composition of disordered regions fine-tunes protein half-life. Nat. Struct. Mol. Biol. 22, 214-221
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 214-221
-
-
Fishbain, S.1
Inobe, T.2
Israeli, E.3
Chavali, S.4
Yu, H.5
Kago, G.6
Babu, M.M.7
Matouschek, A.8
-
57
-
-
84927555890
-
Specificity of the anaphase-promoting complex: A single-molecule study
-
Lu, Y., Wang, W., and Kirschner, M.W. (2015) Specificity of the anaphase-promoting complex: a single-molecule study. Science. 348, 1248737
-
(2015)
Science
, vol.348
, pp. 1248737
-
-
Lu, Y.1
Wang, W.2
Kirschner, M.W.3
-
58
-
-
84927535922
-
Substrate degradation by the proteasome: A single-molecule kinetic analysis
-
Lu, Y., Lee, B.H., King, R.W., Finley, D., and Kirschner, M.W. (2015) Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science. 348, 1250834
-
(2015)
Science
, vol.348
, pp. 1250834
-
-
Lu, Y.1
Lee, B.H.2
King, R.W.3
Finley, D.4
Kirschner, M.W.5
-
59
-
-
33745742269
-
Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology
-
Kirkpatrick, D.S., Hathaway, N.A., Hanna, J., Elsasser, S., Rush, J., Finley, D., King, R.W., and Gygi, S.P. (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8, 700-710
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 700-710
-
-
Kirkpatrick, D.S.1
Hathaway, N.A.2
Hanna, J.3
Elsasser, S.4
Rush, J.5
Finley, D.6
King, R.W.7
Gygi, S.P.8
-
60
-
-
84900337781
-
Enhanced protein degradation by branched ubiquitin chains
-
Meyer, H.J. and Rape, M. (2014) Enhanced protein degradation by branched ubiquitin chains. Cell. 157, 910-921
-
(2014)
Cell
, vol.157
, pp. 910-921
-
-
Meyer, H.J.1
Rape, M.2
-
61
-
-
84947045877
-
The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains
-
Grice, G.L., Lobb, I.T., Weekes, M.P., Gygi, S.P., Antrobus, R., and Nathan, J.A. (2015) The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains. Cell Rep. 12, 545-553
-
(2015)
Cell Rep.
, vol.12
, pp. 545-553
-
-
Grice, G.L.1
Lobb, I.T.2
Weekes, M.P.3
Gygi, S.P.4
Antrobus, R.5
Nathan, J.A.6
-
62
-
-
84994895357
-
The K48-K63 branched ubiquitin chain regulates NF-kappaB signaling
-
Ohtake, F., Saeki, Y., Ishido, S., Kanno, J., and Tanaka, K. (2016) The K48-K63 branched ubiquitin chain regulates NF-kappaB signaling. Mol. Cell. 64, 251-266
-
(2016)
Mol. Cell
, vol.64
, pp. 251-266
-
-
Ohtake, F.1
Saeki, Y.2
Ishido, S.3
Kanno, J.4
Tanaka, K.5
-
63
-
-
60549107173
-
Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
-
Saeki, Y., Kudo, T., Sone, T., Kikuchi, Y., Yokosawa, H., Toh-e, A., and Tanaka, K. (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 28, 359-371
-
(2009)
EMBO J.
, vol.28
, pp. 359-371
-
-
Saeki, Y.1
Kudo, T.2
Sone, T.3
Kikuchi, Y.4
Yokosawa, H.5
Toh-E, A.6
Tanaka, K.7
-
64
-
-
84875231510
-
Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?
-
Nathan, J.A., Kim, H.T., Ting, L., Gygi, S.P., and Goldberg, A.L. (2013) Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J. 32, 552-565
-
(2013)
EMBO J.
, vol.32
, pp. 552-565
-
-
Nathan, J.A.1
Kim, H.T.2
Ting, L.3
Gygi, S.P.4
Goldberg, A.L.5
-
65
-
-
28844484999
-
Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity
-
Saeki, Y., Isono, E., and Toh-e, A. (2005) Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity. Methods Enzymol. 399, 215-227
-
(2005)
Methods Enzymol.
, vol.399
, pp. 215-227
-
-
Saeki, Y.1
Isono, E.2
Toh-E, A.3
-
66
-
-
84900862275
-
Autoubiquitination of the 26S proteasome on rpn13 regulates breakdown of ubiquitin conjugates
-
Besche, H.C., Sha, Z., Kukushkin, N.V., Peth, A., Hock, E.M., Kim, W., Gygi, S., Gutierrez, J.A., Liao, H., Dick, L., and Goldberg, A.L. (2014) Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J. 33, 1159-1176
-
(2014)
EMBO J.
, vol.33
, pp. 1159-1176
-
-
Besche, H.C.1
Sha, Z.2
Kukushkin, N.V.3
Peth, A.4
Hock, E.M.5
Kim, W.6
Gygi, S.7
Gutierrez, J.A.8
Liao, H.9
Dick, L.10
Goldberg, A.L.11
-
67
-
-
60849126138
-
Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor
-
Kravtsova-Ivantsiv, Y., Cohen, S., and Ciechanover, A. (2009) Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor. Mol. Cell. 33, 496-504
-
(2009)
Mol. Cell
, vol.33
, pp. 496-504
-
-
Kravtsova-Ivantsiv, Y.1
Cohen, S.2
Ciechanover, A.3
-
68
-
-
84867398821
-
The size of the proteasomal substrate determines whether its degradation will be mediated by mono-or polyubiquitylation
-
Shabek, N., Herman-Bachinsky, Y., Buchsbaum, S., Lewinson, O., Haj-Yahya, M., Hejjaoui, M., Lashuel, H.A., Sommer, T., Brik, A., and Ciechanover, A. (2012) The size of the proteasomal substrate determines whether its degradation will be mediated by mono-or polyubiquitylation. Mol. Cell. 48, 87-97
-
(2012)
Mol. Cell
, vol.48
, pp. 87-97
-
-
Shabek, N.1
Herman-Bachinsky, Y.2
Buchsbaum, S.3
Lewinson, O.4
Haj-Yahya, M.5
Hejjaoui, M.6
Lashuel, H.A.7
Sommer, T.8
Brik, A.9
Ciechanover, A.10
-
69
-
-
84982921570
-
Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination
-
Braten, O., Livneh, I., Ziv, T., Admon, A., Kehat, I., Caspi, L.H., Gonen, H., Bercovich, B., Godzik, A., Jahandideh, S., Jaroszewski, L., Sommer, T., Kwon, Y.T., Guharoy, M., Tompa, P., and Ciechanover, A. (2016) Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc. Natl Acad. Sci. U.S.A. 113, E4639-4647
-
(2016)
Proc. Natl Acad. Sci. U.S.A.
, vol.113
, pp. E4639-E4647
-
-
Braten, O.1
Livneh, I.2
Ziv, T.3
Admon, A.4
Kehat, I.5
Caspi, L.H.6
Gonen, H.7
Bercovich, B.8
Godzik, A.9
Jahandideh, S.10
Jaroszewski, L.11
Sommer, T.12
Kwon, Y.T.13
Guharoy, M.14
Tompa, P.15
Ciechanover, A.16
-
70
-
-
26944465404
-
Diverse polyubiquitin interaction properties of ubiquitin-associated domains
-
Raasi, S., Varadan, R., Fushman, D., and Pickart, C.M. (2005) Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat. Struct. Mol. Biol. 12, 708-714
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 708-714
-
-
Raasi, S.1
Varadan, R.2
Fushman, D.3
Pickart, C.M.4
-
71
-
-
11844263929
-
A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting
-
Richly, H., Rape, M., Braun, S., Rumpf, S., Hoege, C., and Jentsch, S. (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell. 120, 73-84
-
(2005)
Cell
, vol.120
, pp. 73-84
-
-
Richly, H.1
Rape, M.2
Braun, S.3
Rumpf, S.4
Hoege, C.5
Jentsch, S.6
-
72
-
-
80051998695
-
The cdc48 ATPase modulates the interaction between two proteolytic factors ufd2 and rad23
-
Baek, G.H., Kim, I., and Rao, H. (2011) The Cdc48 ATPase modulates the interaction between two proteolytic factors Ufd2 and Rad23. Proc. Natl Acad. Sci. U. S. A. 108, 13558-13563
-
(2011)
Proc. Natl Acad. Sci. U. S. A.
, vol.108
, pp. 13558-13563
-
-
Baek, G.H.1
Kim, I.2
Rao, H.3
-
73
-
-
0029119522
-
A proteolytic pathway that recognizes ubiquitin as a degradation signal
-
Johnson, E.S., Ma, P.C., Ota, I.M., and Varshavsky, A. (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442-17456
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 17442-17456
-
-
Johnson, E.S.1
Ma, P.C.2
Ota, I.M.3
Varshavsky, A.4
-
74
-
-
84907313542
-
Ubiquitin-binding site 2 of ataxin-3 prevents its proteasomal degradation by interacting with rad23
-
Blount, J.R., Tsou, W.L., Ristic, G., Burr, A.A., Ouyang, M., Galante, H., Scaglione, K.M., and Todi, S.V. (2014) Ubiquitin-binding site 2 of ataxin-3 prevents its proteasomal degradation by interacting with Rad23. Nat. Commun. 5, 4638
-
(2014)
Nat. Commun.
, vol.5
, pp. 4638
-
-
Blount, J.R.1
Tsou, W.L.2
Ristic, G.3
Burr, A.A.4
Ouyang, M.5
Galante, H.6
Scaglione, K.M.7
Todi, S.V.8
-
75
-
-
84898631587
-
The ubiquilin gene family: Evolutionary patterns and functional insights
-
Marin, I. (2014) The ubiquilin gene family: evolutionary patterns and functional insights. BMC Evol. Biol. 14, 63
-
(2014)
BMC Evol. Biol.
, vol.14
, pp. 63
-
-
Marin, I.1
-
76
-
-
84988013632
-
Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation
-
Itakura, E., Zavodszky, E., Shao, S., Wohlever, M.L., Keenan, R.J., and Hegde, R.S. (2016) Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol Cell. 63, 21-33
-
(2016)
Mol Cell
, vol.63
, pp. 21-33
-
-
Itakura, E.1
Zavodszky, E.2
Shao, S.3
Wohlever, M.L.4
Keenan, R.J.5
Hegde, R.S.6
-
77
-
-
80052580969
-
Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia
-
Deng, H.X., Chen, W., Hong, S.T., Boycott, K.M., Gorrie, G.H., Siddique, N., Yang, Y., Fecto, F., Shi, Y., Zhai, H., Jiang, H., Hirano, M., Rampersaud, E., Jansen, G.H., Donkervoort, S., Bigio, E.H., Brooks, B.R., Ajroud, K., Sufit, R.L., Haines, J.L., Mugnaini, E., Pericak-Vance, M.A., and Siddique, T. (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 477, 211-215
-
(2011)
Nature
, vol.477
, pp. 211-215
-
-
Deng, H.X.1
Chen, W.2
Hong, S.T.3
Boycott, K.M.4
Gorrie, G.H.5
Siddique, N.6
Yang, Y.7
Fecto, F.8
Shi, Y.9
Zhai, H.10
Jiang, H.11
Hirano, M.12
Rampersaud, E.13
Jansen, G.H.14
Donkervoort, S.15
Bigio, E.H.16
Brooks, B.R.17
Ajroud, K.18
Sufit, R.L.19
Haines, J.L.20
Mugnaini, E.21
Pericak-Vance, M.A.22
Siddique, T.23
more..
-
78
-
-
70449084692
-
Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities
-
Hjerpe, R., Aillet, F., Lopitz-Otsoa, F., Lang, V., England, P., and Rodriguez, M.S. (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 10, 1250-1258
-
(2009)
EMBO Rep.
, vol.10
, pp. 1250-1258
-
-
Hjerpe, R.1
Aillet, F.2
Lopitz-Otsoa, F.3
Lang, V.4
England, P.5
Rodriguez, M.S.6
-
79
-
-
84971516837
-
UBQLN4 recognizes mislocalized transmembrane domain proteins and targets these to proteasomal degradation
-
Suzuki, R. and Kawahara, H. (2016) UBQLN4 recognizes mislocalized transmembrane domain proteins and targets these to proteasomal degradation. EMBO Rep. 17, 842-857
-
(2016)
EMBO Rep.
, vol.17
, pp. 842-857
-
-
Suzuki, R.1
Kawahara, H.2
-
80
-
-
84979730108
-
UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome
-
Hjerpe, R., Bett, J.S., Keuss, M.J., Solovyova, A., McWilliams, T.G., Johnson, C., Sahu, I., Varghese, J., Wood, N., Wightman, M., Osborne, G., Bates, G.P., Glickman, M.H., Trost, M., Knebel, A., Marchesi, F., and Kurz, T. (2016) UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell. 166, 935-949
-
(2016)
Cell
, vol.166
, pp. 935-949
-
-
Hjerpe, R.1
Bett, J.S.2
Keuss, M.J.3
Solovyova, A.4
McWilliams, T.G.5
Johnson, C.6
Sahu, I.7
Varghese, J.8
Wood, N.9
Wightman, M.10
Osborne, G.11
Bates, G.P.12
Glickman, M.H.13
Trost, M.14
Knebel, A.15
Marchesi, F.16
Kurz, T.17
-
81
-
-
84923923110
-
DNAdamage-inducible 1 protein (Ddi1) contains an uncharacteristic ubiquitin-like domain that binds ubiquitin
-
Nowicka, U., Zhang, D., Walker, O., Krutauz, D., Castaneda, C.A., Chaturvedi, A., Chen, T.Y., Reis, N., Glickman, M.H., and Fushman, D. (2015) DNAdamage-inducible 1 protein (Ddi1) contains an uncharacteristic ubiquitin-like domain that binds ubiquitin. Structure. 23, 542-557
-
(2015)
Structure
, vol.23
, pp. 542-557
-
-
Nowicka, U.1
Zhang, D.2
Walker, O.3
Krutauz, D.4
Castaneda, C.A.5
Chaturvedi, A.6
Chen, T.Y.7
Reis, N.8
Glickman, M.H.9
Fushman, D.10
-
82
-
-
33644513063
-
Unique role for the UbL-UbA protein ddi1 in turnover of SCFUfo1 complexes
-
Ivantsiv, Y., Kaplun, L., Tzirkin-Goldin, R., Shabek, N., and Raveh, D. (2006) Unique role for the UbL-UbA protein Ddi1 in turnover of SCFUfo1 complexes. Mol. Cell Biol. 26, 1579-1588
-
(2006)
Mol. Cell Biol.
, vol.26
, pp. 1579-1588
-
-
Ivantsiv, Y.1
Kaplun, L.2
Tzirkin-Goldin, R.3
Shabek, N.4
Raveh, D.5
-
83
-
-
84985910639
-
The aspartyl protease DDI2 activates nrf1 to compensate for proteasome dysfunction
-
Koizumi, S., Irie, T., Hirayama, S., Sakurai, Y., Yashiroda, H., Naguro, I., Ichijo, H., Hamazaki, J., and Murata, S. (2016) The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife. 5, e18357
-
(2016)
ELife
, vol.5
, pp. e18357
-
-
Koizumi, S.1
Irie, T.2
Hirayama, S.3
Sakurai, Y.4
Yashiroda, H.5
Naguro, I.6
Ichijo, H.7
Hamazaki, J.8
Murata, S.9
-
84
-
-
84983027579
-
Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1
-
Lehrbach, N.J. and Ruvkun, G. (2016) Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife. 5, e17721
-
(2016)
ELife
, vol.5
, pp. e17721
-
-
Lehrbach, N.J.1
Ruvkun, G.2
-
85
-
-
77950366349
-
Transcription factor nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
-
Radhakrishnan, S.K., Lee, C.S., Young, P., Beskow, A., Chan, J.Y., and Deshaies, R.J. (2010) Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell. 38, 17-28
-
(2010)
Mol. Cell
, vol.38
, pp. 17-28
-
-
Radhakrishnan, S.K.1
Lee, C.S.2
Young, P.3
Beskow, A.4
Chan, J.Y.5
Deshaies, R.J.6
-
86
-
-
0041856380
-
Regulation of the NEDD8 conjugation system by a splicing variant, NUB1L
-
Tanaka, T., Kawashima, H., Yeh, E.T., and Kamitani, T. (2003) Regulation of the NEDD8 conjugation system by a splicing variant, NUB1L. J. Biol. Chem. 278, 32905-32913
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 32905-32913
-
-
Tanaka, T.1
Kawashima, H.2
Yeh, E.T.3
Kamitani, T.4
-
87
-
-
84876917897
-
Identification of NUB1 as a suppressor of mutant huntington toxicity via enhanced protein clearance
-
Lu, B., Al-Ramahi, I., Valencia, A., Wang, Q., Berenshteyn, F., Yang, H., Gallego-Flores, T., Ichcho, S., Lacoste, A., Hild, M., Difiglia, M., Botas, J., and Palacino, J. (2013) Identification of NUB1 as a suppressor of mutant Huntington toxicity via enhanced protein clearance. Nat. Neurosci. 16, 562-570
-
(2013)
Nat. Neurosci.
, vol.16
, pp. 562-570
-
-
Lu, B.1
Al-Ramahi, I.2
Valencia, A.3
Wang, Q.4
Berenshteyn, F.5
Yang, H.6
Gallego-Flores, T.7
Ichcho, S.8
Lacoste, A.9
Hild, M.10
Difiglia, M.11
Botas, J.12
Palacino, J.13
-
88
-
-
84859175458
-
FAT10 and NUB1L bind to the VWA domain of rpn10 and rpn1 to enable proteasomemediated proteolysis
-
Rani, N., Aichem, A., Schmidtke, G., Kreft, S.G., and Groettrup, M. (2012) FAT10 and NUB1L bind to the VWA domain of Rpn10 and Rpn1 to enable proteasomemediated proteolysis. Nat. Commun. 3, 749
-
(2012)
Nat. Commun.
, vol.3
, pp. 749
-
-
Rani, N.1
Aichem, A.2
Schmidtke, G.3
Kreft, S.G.4
Groettrup, M.5
-
89
-
-
33748439489
-
An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity
-
Stanhill, A., Haynes, C.M., Zhang, Y., Min, G., Steele, M.C., Kalinina, J., Martinez, E., Pickart, C.M., Kong, X.P., and Ron, D. (2006) An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity. Mol. Cell. 23, 875-885
-
(2006)
Mol. Cell
, vol.23
, pp. 875-885
-
-
Stanhill, A.1
Haynes, C.M.2
Zhang, Y.3
Min, G.4
Steele, M.C.5
Kalinina, J.6
Martinez, E.7
Pickart, C.M.8
Kong, X.P.9
Ron, D.10
-
90
-
-
44349160257
-
Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in caenorhabditis elegans
-
Yun, C., Stanhill, A., Yang, Y., Zhang, Y., Haynes, C.M., Xu, C.F., Neubert, T.A., Mor, A., Philips, M.R., and Ron, D. (2008) Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans. Proc. Natl Acad. Sci. U. S. A. 105, 7094-7099
-
(2008)
Proc. Natl Acad. Sci. U. S. A.
, vol.105
, pp. 7094-7099
-
-
Yun, C.1
Stanhill, A.2
Yang, Y.3
Zhang, Y.4
Haynes, C.M.5
Xu, C.F.6
Neubert, T.A.7
Mor, A.8
Philips, M.R.9
Ron, D.10
-
91
-
-
84954265219
-
Loss of the proteostasis factor AIRAPL causes myeloid transformation by deregulating IGF-1 signaling
-
Osorio, F.G., Soria-Valles, C., Santiago-Fernandez, O., Bernal, T., Mittelbrunn, M., Colado, E., Rodriguez, F., Bonzon-Kulichenko, E., Vazquez, J., Porta-de-la-Riva, M., Ceron, J., Fueyo, A., Li, J., Green, A.R., Freije, J.M., and Lopez-Otin, C. (2016) Loss of the proteostasis factor AIRAPL causes myeloid transformation by deregulating IGF-1 signaling. Nat. Med. 22, 91-96
-
(2016)
Nat. Med.
, vol.22
, pp. 91-96
-
-
Osorio, F.G.1
Soria-Valles, C.2
Santiago-Fernandez, O.3
Bernal, T.4
Mittelbrunn, M.5
Colado, E.6
Rodriguez, F.7
Bonzon-Kulichenko, E.8
Vazquez, J.9
Porta-de-La-Riva, M.10
Ceron, J.11
Fueyo, A.12
Li, J.13
Green, A.R.14
Freije, J.M.15
Lopez-Otin, C.16
-
92
-
-
84959431610
-
Selective binding of AIRAPL tandem UIMs to lys48-linked tri-ubiquitin chains
-
Rahighi, S., Braunstein, I., Ternette, N., Kessler, B., Kawasaki, M., Kato, R., Matsui, T., Weiss, T.M., Stanhill, A., and Wakatsuki, S. (2016) Selective binding of AIRAPL tandem UIMs to Lys48-linked Tri-ubiquitin chains. Structure. 24, 412-422
-
(2016)
Structure
, vol.24
, pp. 412-422
-
-
Rahighi, S.1
Braunstein, I.2
Ternette, N.3
Kessler, B.4
Kawasaki, M.5
Kato, R.6
Matsui, T.7
Weiss, T.M.8
Stanhill, A.9
Wakatsuki, S.10
-
93
-
-
84856474838
-
Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system
-
Meyer, H., Bug, M., and Bremer, S. (2012) Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117-123
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 117-123
-
-
Meyer, H.1
Bug, M.2
Bremer, S.3
-
94
-
-
84963617847
-
Structure and function of the AAA+ ATPase p97/Cdc48p
-
Xia, D., Tang, W.K., and Ye, Y. (2016) Structure and function of the AAA+ ATPase p97/Cdc48p. Gene. 583, 64-77
-
(2016)
Gene
, vol.583
, pp. 64-77
-
-
Xia, D.1
Tang, W.K.2
Ye, Y.3
-
95
-
-
0038487228
-
Function of the p97-ufd1-npl4 complex in retrotranslocation from the ER to the cytosol: Dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains
-
Ye, Y., Meyer, H.H., and Rapoport, T.A. (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol. 162, 71-84
-
(2003)
J. Cell Biol.
, vol.162
, pp. 71-84
-
-
Ye, Y.1
Meyer, H.H.2
Rapoport, T.A.3
-
96
-
-
0036845476
-
Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and ufd1-npl4
-
Meyer, H.H., Wang, Y., and Warren, G. (2002) Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 21, 5645-5652
-
(2002)
EMBO J.
, vol.21
, pp. 5645-5652
-
-
Meyer, H.H.1
Wang, Y.2
Warren, G.3
-
97
-
-
77957200921
-
Cdc48/p97 and shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like atg8
-
Krick, R., Bremer, S., Welter, E., Schlotterhose, P., Muehe, Y., Eskelinen, E.L., and Thumm, M. (2010) Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J. Cell Biol. 190, 965-973
-
(2010)
J. Cell Biol.
, vol.190
, pp. 965-973
-
-
Krick, R.1
Bremer, S.2
Welter, E.3
Schlotterhose, P.4
Muehe, Y.5
Eskelinen, E.L.6
Thumm, M.7
-
98
-
-
52049085050
-
DOA1/UFD3 plays a role in sorting ubiquitinated membrane proteins into multivesicular bodies
-
Ren, J., Pashkova, N., Winistorfer, S., and Piper, R.C. (2008) DOA1/UFD3 plays a role in sorting ubiquitinated membrane proteins into multivesicular bodies. J. Biol. Chem. 283, 21599-21611
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 21599-21611
-
-
Ren, J.1
Pashkova, N.2
Winistorfer, S.3
Piper, R.C.4
-
99
-
-
79953771687
-
Cellular functions of ufd2 and ufd3 in proteasomal protein degradation depend on cdc48 binding
-
Bohm, S., Lamberti, G., Fernandez-Saiz, V., Stapf, C., and Buchberger, A. (2011) Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding. Mol. Cell Biol. 31, 1528-1539
-
(2011)
Mol. Cell Biol.
, vol.31
, pp. 1528-1539
-
-
Bohm, S.1
Lamberti, G.2
Fernandez-Saiz, V.3
Stapf, C.4
Buchberger, A.5
-
100
-
-
30744451400
-
Functional division of substrate processing cofactors of the ubiquitin-selective cdc48 chaperone
-
Rumpf, S. and Jentsch, S. (2006) Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Mol. Cell. 21, 261-269
-
(2006)
Mol. Cell
, vol.21
, pp. 261-269
-
-
Rumpf, S.1
Jentsch, S.2
-
101
-
-
84954286268
-
Cdc48-independent proteasomal degradation coincides with a reduced need for ubiquitylation
-
Godderz, D., Heinen, C., Marchese, F.P., Kurz, T., Acs, K., and Dantuma, N.P. (2015) Cdc48-independent proteasomal degradation coincides with a reduced need for ubiquitylation. Sci. Rep. 5, 7615
-
(2015)
Sci. Rep.
, vol.5
, pp. 7615
-
-
Godderz, D.1
Heinen, C.2
Marchese, F.P.3
Kurz, T.4
Acs, K.5
Dantuma, N.P.6
-
102
-
-
1842483843
-
Inclusion body myopathy associated with paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein
-
Watts, G.D., Wymer, J., Kovach, M.J., Mehta, S.G., Mumm, S., Darvish, D., Pestronk, A., Whyte, M.P., and Kimonis, V.E. (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 36, 377-381
-
(2004)
Nat. Genet.
, vol.36
, pp. 377-381
-
-
Watts, G.D.1
Wymer, J.2
Kovach, M.J.3
Mehta, S.G.4
Mumm, S.5
Darvish, D.6
Pestronk, A.7
Whyte, M.P.8
Kimonis, V.E.9
-
103
-
-
78649941297
-
Exome sequencing reveals VCP mutations as a cause of familial ALS
-
Johnson, J.O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V.M., Trojanowski, J.Q., Gibbs, J.R., Brunetti, M., Gronka, S., Wuu, J., Ding, J., McCluskey, L., Martinez-Lage, M., Falcone, D., Hernandez, D.G., Arepalli, S., Chong, S., Schymick, J.C., Rothstein, J., Landi, F., Wang, Y.D., Calvo, A., Mora, G., Sabatelli, M., Monsurro, M.R., Battistini, S., Salvi, F., Spataro, R., Sola, P., Borghero, G., Consortium, I., Galassi, G., Scholz, S.W., Taylor, J.P., Restagno, G., Chio, A., and Traynor, B.J. (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 68, 857-864
-
(2010)
Neuron.
, vol.68
, pp. 857-864
-
-
Johnson, J.O.1
Mandrioli, J.2
Benatar, M.3
Abramzon, Y.4
Van Deerlin, V.M.5
Trojanowski, J.Q.6
Gibbs, J.R.7
Brunetti, M.8
Gronka, S.9
Wuu, J.10
Ding, J.11
McCluskey, L.12
Martinez-Lage, M.13
Falcone, D.14
Hernandez, D.G.15
Arepalli, S.16
Chong, S.17
Schymick, J.C.18
Rothstein, J.19
Landi, F.20
Wang, Y.D.21
Calvo, A.22
Mora, G.23
Sabatelli, M.24
Monsurro, M.R.25
Battistini, S.26
Salvi, F.27
Spataro, R.28
Sola, P.29
Borghero, G.30
Consortium, I.31
Galassi, G.32
Scholz, S.W.33
Taylor, J.P.34
Restagno, G.35
Chio, A.36
Traynor, B.J.37
more..
-
104
-
-
84946545972
-
Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis
-
Anderson, D.J., Le Moigne, R., Djakovic, S., Kumar, B., Rice, J., Wong, S., Wang, J., Yao, B., Valle, E., Kiss von Soly, S., Madriaga, A., Soriano, F., Menon, M.K., Wu, Z.Y., Kampmann, M., Chen, Y., Weissman, J.S., Aftab, B.T., Yakes, F.M., Shawver, L., Zhou, H.J., Wustrow, D., and Rolfe, M. (2015) Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell. 28, 653-665
-
(2015)
Cancer Cell
, vol.28
, pp. 653-665
-
-
Anderson, D.J.1
Le Moigne, R.2
Djakovic, S.3
Kumar, B.4
Rice, J.5
Wong, S.6
Wang, J.7
Yao, B.8
Valle, E.9
Kiss Von-Soly, S.10
Madriaga, A.11
Soriano, F.12
Menon, M.K.13
Wu, Z.Y.14
Kampmann, M.15
Chen, Y.16
Weissman, J.S.17
Aftab, B.T.18
Yakes, F.M.19
Shawver, L.20
Zhou, H.J.21
Wustrow, D.22
Rolfe, M.23
more..
-
105
-
-
33845600006
-
Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities
-
Crosas, B., Hanna, J., Kirkpatrick, D.S., Zhang, D.P., Tone, Y., Hathaway, N.A., Buecker, C., Leggett, D.S., Schmidt, M., King, R.W., Gygi, S.P., and Finley, D. (2006) Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell. 127, 1401-1413
-
(2006)
Cell
, vol.127
, pp. 1401-1413
-
-
Crosas, B.1
Hanna, J.2
Kirkpatrick, D.S.3
Zhang, D.P.4
Tone, Y.5
Hathaway, N.A.6
Buecker, C.7
Leggett, D.S.8
Schmidt, M.9
King, R.W.10
Gygi, S.P.11
Finley, D.12
-
106
-
-
0034646298
-
Physical association of ubiquitin ligases and the 26S proteasome
-
Xie, Y. and Varshavsky, A. (2000) Physical association of ubiquitin ligases and the 26S proteasome. Proc. Natl Acad. Sci. U. S. A. 97, 2497-2502
-
(2000)
Proc. Natl Acad. Sci. U. S. A.
, vol.97
, pp. 2497-2502
-
-
Xie, Y.1
Varshavsky, A.2
-
107
-
-
80455122748
-
Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins
-
Fang, N.N., Ng, A.H., Measday, V., and Mayor, T. (2011) Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat. Cell Biol. 13, 1344-1352
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1344-1352
-
-
Fang, N.N.1
Ng, A.H.2
Measday, V.3
Mayor, T.4
-
108
-
-
75749101057
-
Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases ubr1 and san1
-
Heck, J.W., Cheung, S.K., and Hampton, R.Y. (2010) Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl Acad. Sci. U. S. A. 107, 1106-1111
-
(2010)
Proc. Natl Acad. Sci. U. S. A.
, vol.107
, pp. 1106-1111
-
-
Heck, J.W.1
Cheung, S.K.2
Hampton, R.Y.3
-
109
-
-
84902668478
-
Autoregulation of the 26S proteasome by in situ ubiquitination
-
Jacobson, A.D., MacFadden, A., Wu, Z., Peng, J., and Liu, C.W. (2014) Autoregulation of the 26S proteasome by in situ ubiquitination. Mol. Biol. Cell. 25, 1824-1835
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1824-1835
-
-
Jacobson, A.D.1
MacFadden, A.2
Wu, Z.3
Peng, J.4
Liu, C.W.5
-
110
-
-
84939220718
-
An autism-linked mutation disables phosphorylation control of UBE3A
-
Yi, J.J., Berrios, J., Newbern, J.M., Snider, W.D., Philpot, B.D., Hahn, K.M., and Zylka, M.J. (2015) An autism-linked mutation disables phosphorylation control of UBE3A. Cell. 162, 795-807
-
(2015)
Cell
, vol.162
, pp. 795-807
-
-
Yi, J.J.1
Berrios, J.2
Newbern, J.M.3
Snider, W.D.4
Philpot, B.D.5
Hahn, K.M.6
Zylka, M.J.7
-
111
-
-
84959481890
-
The ubiquitin signal and autophagy: An orchestrated dance leading to mitochondrial degradation
-
Yamano, K., Matsuda, N., and Tanaka, K. (2016) The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 17, 300-316
-
(2016)
EMBO Rep.
, vol.17
, pp. 300-316
-
-
Yamano, K.1
Matsuda, N.2
Tanaka, K.3
-
112
-
-
0037368598
-
Parkin binds the rpn10 subunit of 26S proteasomes through its ubiquitin-like domain
-
Sakata, E., Yamaguchi, Y., Kurimoto, E., Kikuchi, J., Yokoyama, S., Yamada, S., Kawahara, H., Yokosawa, H., Hattori, N., Mizuno, Y., Tanaka, K., and Kato, K. (2003) Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep. 4, 301-306
-
(2003)
EMBO Rep.
, vol.4
, pp. 301-306
-
-
Sakata, E.1
Yamaguchi, Y.2
Kurimoto, E.3
Kikuchi, J.4
Yokoyama, S.5
Yamada, S.6
Kawahara, H.7
Yokosawa, H.8
Hattori, N.9
Mizuno, Y.10
Tanaka, K.11
Kato, K.12
-
113
-
-
84925340816
-
The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor rpn13
-
Aguileta, M.A., Korac, J., Durcan, T.M., Trempe, J.F., Haber, M., Gehring, K., Elsasser, S., Waidmann, O., Fon, E.A., and Husnjak, K. (2015) The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13. J. Biol. Chem. 290, 7492-7505
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 7492-7505
-
-
Aguileta, M.A.1
Korac, J.2
Durcan, T.M.3
Trempe, J.F.4
Haber, M.5
Gehring, K.6
Elsasser, S.7
Waidmann, O.8
Fon, E.A.9
Husnjak, K.10
-
114
-
-
84982803497
-
Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice
-
Vingill, S., Brockelt, D., Lancelin, C., Tatenhorst, L., Dontcheva, G., Preisinger, C., Schwedhelm-Domeyer, N., Joseph, S., Mitkovski, M., Goebbels, S., Nave, K.A., Schulz, J.B., Marquardt, T., Lingor, P., and Stegmuller, J. (2016) Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J. 35, 2008-2025
-
(2016)
EMBO J.
, vol.35
, pp. 2008-2025
-
-
Vingill, S.1
Brockelt, D.2
Lancelin, C.3
Tatenhorst, L.4
Dontcheva, G.5
Preisinger, C.6
Schwedhelm-Domeyer, N.7
Joseph, S.8
Mitkovski, M.9
Goebbels, S.10
Nave, K.A.11
Schulz, J.B.12
Marquardt, T.13
Lingor, P.14
Stegmuller, J.15
|