-
1
-
-
84922941772
-
The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes
-
Kostic AD, Gevers D, Siljander H, Vatanen T, Hyotylainen T, Hamalainen AM, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17:260-73.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 260-273
-
-
Kostic, A.D.1
Gevers, D.2
Siljander, H.3
Vatanen, T.4
Hyotylainen, T.5
Hamalainen, A.M.6
-
2
-
-
84862141704
-
Human gut microbiome viewed across age and geography
-
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222-7.
-
(2012)
Nature
, vol.486
, pp. 222-227
-
-
Yatsunenko, T.1
Rey, F.E.2
Manary, M.J.3
Trehan, I.4
Dominguez-Bello, M.G.5
Contreras, M.6
-
3
-
-
72949091232
-
Bacterial community variation in human body habitats across space and time
-
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694-7.
-
(2009)
Science
, vol.326
, pp. 1694-1697
-
-
Costello, E.K.1
Lauber, C.L.2
Hamady, M.3
Fierer, N.4
Gordon, J.I.5
Knight, R.6
-
4
-
-
84943606160
-
ConStrains identifies microbial strains in metagenomic datasets
-
Luo C, Knight R, Siljander H, Knip M, Xavier RJ, Gevers D. ConStrains identifies microbial strains in metagenomic datasets. Nat Biotechnol. 2015;33:1045-52.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1045-1052
-
-
Luo, C.1
Knight, R.2
Siljander, H.3
Knip, M.4
Xavier, R.J.5
Gevers, D.6
-
5
-
-
85017527948
-
Microbial strain-level population structure and genetic diversity from metagenomes
-
Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 2017;27:626-38.
-
(2017)
Genome Res
, vol.27
, pp. 626-638
-
-
Truong, D.T.1
Tett, A.2
Pasolli, E.3
Huttenhower, C.4
Segata, N.5
-
6
-
-
84961392884
-
Strain-level microbial epidemiology and population genomics from shotgun metagenomics
-
Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F, et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Methods. 2016;13:435-8.
-
(2016)
Nat Methods
, vol.13
, pp. 435-438
-
-
Scholz, M.1
Ward, D.V.2
Pasolli, E.3
Tolio, T.4
Zolfo, M.5
Asnicar, F.6
-
7
-
-
84862276328
-
Structure, function and diversity of the healthy human microbiome
-
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207-14.
-
(2012)
Nature
, vol.486
, pp. 207-214
-
-
-
8
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59-65.
-
(2010)
Nature
, vol.464
, pp. 59-65
-
-
Qin, J.1
Li, R.2
Raes, J.3
Arumugam, M.4
Burgdorf, K.S.5
Manichanh, C.6
-
9
-
-
84864037467
-
Metabolic reconstruction for metagenomic data and its application to the human microbiome
-
Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8:e1002358.
-
(2012)
PLoS Comput Biol
, vol.8
-
-
Abubucker, S.1
Segata, N.2
Goll, J.3
Schubert, A.M.4
Izard, J.5
Cantarel, B.L.6
-
10
-
-
58549089276
-
Shotgun metaproteomics of the human distal gut microbiota
-
Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009;3:179-89.
-
(2009)
ISME J
, vol.3
, pp. 179-189
-
-
Verberkmoes, N.C.1
Russell, A.L.2
Shah, M.3
Godzik, A.4
Rosenquist, M.5
Halfvarson, J.6
-
11
-
-
84947812071
-
Personalized nutrition by prediction of glycemic responses
-
Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163:1079-94.
-
(2015)
Cell
, vol.163
, pp. 1079-1094
-
-
Zeevi, D.1
Korem, T.2
Zmora, N.3
Israeli, D.4
Rothschild, D.5
Weinberger, A.6
-
12
-
-
84908325271
-
Artificial sweeteners induce glucose intolerance by altering the gut microbiota
-
Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181-6.
-
(2014)
Nature
, vol.514
, pp. 181-186
-
-
Suez, J.1
Korem, T.2
Zeevi, D.3
Zilberman-Schapira, G.4
Thaiss, C.A.5
Maza, O.6
-
13
-
-
84994738020
-
Linking the human gut microbiome to inflammatory cytokine production capacity
-
Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167:1125-36.
-
(2016)
Cell
, vol.167
, pp. 1125-1136
-
-
Schirmer, M.1
Smeekens, S.P.2
Vlamakis, H.3
Jaeger, M.4
Oosting, M.5
Franzosa, E.A.6
-
14
-
-
84968901892
-
Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity
-
Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565-9.
-
(2016)
Science
, vol.352
, pp. 565-569
-
-
Zhernakova, A.1
Kurilshikov, A.2
Bonder, M.J.3
Tigchelaar, E.F.4
Schirmer, M.5
Vatanen, T.6
-
15
-
-
84971201113
-
Gut microbiota, metabolites and host immunity
-
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341-52.
-
(2016)
Nat Rev Immunol
, vol.16
, pp. 341-352
-
-
Rooks, M.G.1
Garrett, W.S.2
-
16
-
-
84964682615
-
Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans
-
Vatanen T, Kostic AD, d'Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165:842-53.
-
(2016)
Cell
, vol.165
, pp. 842-853
-
-
Vatanen, T.1
Kostic, A.D.2
d'Hennezel, E.3
Siljander, H.4
Franzosa, E.A.5
Yassour, M.6
-
17
-
-
84949675208
-
The microbiome quality control project: baseline study design and future directions
-
Sinha R, Abnet CC, White O, Knight R, Huttenhower C. The microbiome quality control project: baseline study design and future directions. Genome Biol. 2015;16:276.
-
(2015)
Genome Biol
, vol.16
, pp. 276
-
-
Sinha, R.1
Abnet, C.C.2
White, O.3
Knight, R.4
Huttenhower, C.5
-
18
-
-
84968918909
-
Population-level analysis of gut microbiome variation
-
Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352:560-4.
-
(2016)
Science
, vol.352
, pp. 560-564
-
-
Falony, G.1
Joossens, M.2
Vieira-Silva, S.3
Wang, J.4
Darzi, Y.5
Faust, K.6
-
19
-
-
84942862056
-
The path to routine use of genomic biomarkers in the cancer clinic
-
Boutros PC. The path to routine use of genomic biomarkers in the cancer clinic. Genome Res. 2015;25:1508-13.
-
(2015)
Genome Res
, vol.25
, pp. 1508-1513
-
-
Boutros, P.C.1
-
20
-
-
84869436774
-
Interpreting noncoding genetic variation in complex traits and human disease
-
Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol. 2012;30:1095-106.
-
(2012)
Nat Biotechnol
, vol.30
, pp. 1095-1106
-
-
Ward, L.D.1
Kellis, M.2
-
21
-
-
67650021209
-
Microbial community profiling for human microbiome projects: tools, techniques, and challenges
-
Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res. 2009;19:1141-52.
-
(2009)
Genome Res
, vol.19
, pp. 1141-1152
-
-
Hamady, M.1
Knight, R.2
-
22
-
-
84901296354
-
The mycobiota: interactions between commensal fungi and the host immune system
-
Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14:405-16.
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 405-416
-
-
Underhill, D.M.1
Iliev, I.D.2
-
23
-
-
85011974719
-
The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies
-
Brooks JP, Edwards DJ, Harwich Jr MD, Rivera MC, Fettweis JM, Serrano MG, et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 2015;15:66.
-
(2015)
BMC Microbiol
, vol.15
, pp. 66
-
-
Brooks, J.P.1
Edwards, D.J.2
Harwich, M.D.3
Rivera, M.C.4
Fettweis, J.M.5
Serrano, M.G.6
-
24
-
-
84901847186
-
Relating the metatranscriptome and metagenome of the human gut
-
Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, et al. Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci U S A. 2014;111:E2329-38.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. E2329-E2338
-
-
Franzosa, E.A.1
Morgan, X.C.2
Segata, N.3
Waldron, L.4
Reyes, J.5
Earl, A.M.6
-
25
-
-
77955963505
-
Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed
-
Booijink CC, Boekhorst J, Zoetendal EG, Smidt H, Kleerebezem M, de Vos WM. Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed. Appl Environ Microbiol. 2010;76:5533-40.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 5533-5540
-
-
Booijink, C.C.1
Boekhorst, J.2
Zoetendal, E.G.3
Smidt, H.4
Kleerebezem, M.5
Vos, W.M.6
-
26
-
-
84893686882
-
Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships
-
McHardy IH, Goudarzi M, Tong M, Ruegger PM, Schwager E, Weger JR, et al. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome. 2013;1:17.
-
(2013)
Microbiome
, vol.1
, pp. 17
-
-
McHardy, I.H.1
Goudarzi, M.2
Tong, M.3
Ruegger, P.M.4
Schwager, E.5
Weger, J.R.6
-
27
-
-
84977549975
-
Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome
-
Grassl N, Kulak NA, Pichler G, Geyer PE, Jung J, Schubert S, et al. Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Med. 2016;8:44.
-
(2016)
Genome Med
, vol.8
, pp. 44
-
-
Grassl, N.1
Kulak, N.A.2
Pichler, G.3
Geyer, P.E.4
Jung, J.5
Schubert, S.6
-
28
-
-
84907300008
-
Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease
-
Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000-10.
-
(2014)
Cell
, vol.158
, pp. 1000-1010
-
-
Palm, N.W.1
Zoete, M.R.2
Cullen, T.W.3
Barry, N.A.4
Stefanowski, J.5
Hao, L.6
-
29
-
-
85012863046
-
Mining the human gut microbiota for immunomodulatory organisms
-
Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, et al. Mining the human gut microbiota for immunomodulatory organisms. Cell. 2017;168:928-43.
-
(2017)
Cell
, vol.168
, pp. 928-943
-
-
Geva-Zatorsky, N.1
Sefik, E.2
Kua, L.3
Pasman, L.4
Tan, T.G.5
Ortiz-Lopez, A.6
-
30
-
-
84927692256
-
The first 1000 cultured species of the human gastrointestinal microbiota
-
Rajilic-Stojanovic M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38:996-1047.
-
(2014)
FEMS Microbiol Rev
, vol.38
, pp. 996-1047
-
-
Rajilic-Stojanovic, M.1
Vos, W.M.2
-
31
-
-
84978969338
-
Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: an update
-
Scaldaferri F, Gerardi V, Mangiola F, Lopetuso LR, Pizzoferrato M, Petito V, et al. Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: an update. World J Gastroenterol. 2016;22:5505-11.
-
(2016)
World J Gastroenterol
, vol.22
, pp. 5505-5511
-
-
Scaldaferri, F.1
Gerardi, V.2
Mangiola, F.3
Lopetuso, L.R.4
Pizzoferrato, M.5
Petito, V.6
-
32
-
-
84868225149
-
Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes
-
Kaas RS, Friis C, Ussery DW, Aarestrup FM. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics. 2012;13:577.
-
(2012)
BMC Genomics
, vol.13
, pp. 577
-
-
Kaas, R.S.1
Friis, C.2
Ussery, D.W.3
Aarestrup, F.M.4
-
33
-
-
84920650884
-
Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains
-
Salipante SJ, Roach DJ, Kitzman JO, Snyder MW, Stackhouse B, Butler-Wu SM, et al. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res. 2015;25:119-28.
-
(2015)
Genome Res
, vol.25
, pp. 119-128
-
-
Salipante, S.J.1
Roach, D.J.2
Kitzman, J.O.3
Snyder, M.W.4
Stackhouse, B.5
Butler-Wu, S.M.6
-
35
-
-
84976481496
-
Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity
-
Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V, Palsson BO. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc Natl Acad Sci U S A. 2016;113:E3801-9.
-
(2016)
Proc Natl Acad Sci U S A
, vol.113
, pp. E3801-E3809
-
-
Bosi, E.1
Monk, J.M.2
Aziz, R.K.3
Fondi, M.4
Nizet, V.5
Palsson, B.O.6
-
36
-
-
33644659999
-
Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus
-
Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus. Lancet. 2006;367:731-9.
-
(2006)
Lancet
, vol.367
, pp. 731-739
-
-
Diep, B.A.1
Gill, S.R.2
Chang, R.F.3
Phan, T.H.4
Chen, J.H.5
Davidson, M.G.6
-
37
-
-
84995644697
-
An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography
-
Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 2016;26:1612-25.
-
(2016)
Genome Res
, vol.26
, pp. 1612-1625
-
-
Nayfach, S.1
Rodriguez-Mueller, B.2
Garud, N.3
Pollard, K.S.4
-
38
-
-
84887323708
-
Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis
-
Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202.
-
(2013)
Elife
, vol.2
-
-
Scher, J.U.1
Sczesnak, A.2
Longman, R.S.3
Segata, N.4
Ubeda, C.5
Bielski, C.6
-
39
-
-
84925044505
-
Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences
-
Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 2015;9:968-79.
-
(2015)
ISME J
, vol.9
, pp. 968-979
-
-
Eren, A.M.1
Morrison, H.G.2
Lescault, P.J.3
Reveillaud, J.4
Vineis, J.H.5
Sogin, M.L.6
-
40
-
-
84923545661
-
Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution
-
Tikhonov M, Leach RW, Wingreen NS. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J. 2015;9:68-80.
-
(2015)
ISME J
, vol.9
, pp. 68-80
-
-
Tikhonov, M.1
Leach, R.W.2
Wingreen, N.S.3
-
41
-
-
84879744885
-
The long-term stability of the human gut microbiota
-
Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439.
-
(2013)
Science
, vol.341
, pp. 1237439
-
-
Faith, J.J.1
Guruge, J.L.2
Charbonneau, M.3
Subramanian, S.4
Seedorf, H.5
Goodman, A.L.6
-
43
-
-
84969871954
-
DADA2: high-resolution sample inference from Illumina amplicon data
-
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581-3.
-
(2016)
Nat Methods
, vol.13
, pp. 581-583
-
-
Callahan, B.J.1
McMurdie, P.J.2
Rosen, M.J.3
Han, A.W.4
Johnson, A.J.5
Holmes, S.P.6
-
44
-
-
85031129219
-
UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing
-
Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. 2016; doi: https://doi.org/10.1101/081257.
-
(2016)
bioRxiv.
-
-
Edgar, R.C.1
-
45
-
-
85020080492
-
Deblur rapidly resolves single-nucleotide community sequence patterns
-
Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2.
-
(2017)
mSystems.
, pp. 2
-
-
Amir, A.1
McDonald, D.2
Navas-Molina, J.A.3
Kopylova, E.4
Morton, J.T.5
Zech Xu, Z.6
-
47
-
-
84947487970
-
Twenty years of bacterial genome sequencing
-
Loman NJ, Pallen MJ. Twenty years of bacterial genome sequencing. Nat Rev Microbiol. 2015;13:787-94.
-
(2015)
Nat Rev Microbiol
, vol.13
, pp. 787-794
-
-
Loman, N.J.1
Pallen, M.J.2
-
49
-
-
84858990515
-
Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes
-
Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard J, Levin JZ, et al. Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol. 2012;13:R23.
-
(2012)
Genome Biol
, vol.13
, pp. R23
-
-
Giannoukos, G.1
Ciulla, D.M.2
Huang, K.3
Haas, B.J.4
Izard, J.5
Levin, J.Z.6
-
50
-
-
84886725824
-
Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses
-
Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061-8.
-
(2013)
ISME J
, vol.7
, pp. 2061-2068
-
-
Blazewicz, S.J.1
Barnard, R.L.2
Daly, R.A.3
Firestone, M.K.4
-
51
-
-
84929512453
-
Sequencing and beyond: integrating molecular 'omics' for microbial community profiling
-
Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, Huttenhower C. Sequencing and beyond: integrating molecular 'omics' for microbial community profiling. Nat Rev Microbiol. 2015;13:360-72.
-
(2015)
Nat Rev Microbiol
, vol.13
, pp. 360-372
-
-
Franzosa, E.A.1
Hsu, T.2
Sirota-Madi, A.3
Shafquat, A.4
Abu-Ali, G.5
Morgan, X.C.6
Huttenhower, C.7
-
52
-
-
84955439663
-
A survey of best practices for RNA-seq data analysis
-
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.
-
(2016)
Genome Biol
, vol.17
, pp. 13
-
-
Conesa, A.1
Madrigal, P.2
Tarazona, S.3
Gomez-Cabrero, D.4
Cervera, A.5
McPherson, A.6
-
53
-
-
84901363655
-
Waste not, want not: why rarefying microbiome data is inadmissible
-
McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.
-
(2014)
PLoS Comput Biol
, vol.10
-
-
McMurdie, P.J.1
Holmes, S.2
-
54
-
-
84988864262
-
Revised estimates for the number of human and bacteria cells in the body
-
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533.
-
(2016)
PLoS Biol
, vol.14
-
-
Sender, R.1
Fuchs, S.2
Milo, R.3
-
55
-
-
0018842022
-
The microbial contribution to human faecal mass
-
Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol. 1980;13:45-56.
-
(1980)
J Med Microbiol
, vol.13
, pp. 45-56
-
-
Stephen, A.M.1
Cummings, J.H.2
-
56
-
-
84862286169
-
A framework for human microbiome research
-
Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486:215-21.
-
(2012)
Nature
, vol.486
, pp. 215-221
-
-
-
57
-
-
84938484290
-
16S rRNA gene pyrosequencing of reference and clinical samples and investigation of the temperature stability of microbiome profiles
-
Hang J, Desai V, Zavaljevski N, Yang Y, Lin X, Satya RV, et al. 16S rRNA gene pyrosequencing of reference and clinical samples and investigation of the temperature stability of microbiome profiles. Microbiome. 2014;2:31.
-
(2014)
Microbiome
, vol.2
, pp. 31
-
-
Hang, J.1
Desai, V.2
Zavaljevski, N.3
Yang, Y.4
Lin, X.5
Satya, R.V.6
-
58
-
-
84982224114
-
Preservation methods differ in fecal microbiome stability, affecting suitability for field studies
-
Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, Knight R. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 2016;1.
-
(2016)
mSystems
, pp. 1
-
-
Song, S.J.1
Amir, A.2
Metcalf, J.L.3
Amato, K.R.4
Xu, Z.Z.5
Humphrey, G.6
Knight, R.7
-
59
-
-
84863920287
-
Microbial interactions: from networks to models
-
Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538-50.
-
(2012)
Nat Rev Microbiol
, vol.10
, pp. 538-550
-
-
Faust, K.1
Raes, J.2
-
60
-
-
84888586768
-
The genotypic view of social interactions in microbial communities
-
Mitri S, Foster KR. The genotypic view of social interactions in microbial communities. Annu Rev Genet. 2013;47:247-73.
-
(2013)
Annu Rev Genet
, vol.47
, pp. 247-273
-
-
Mitri, S.1
Foster, K.R.2
-
61
-
-
84928807017
-
Unraveling interactions in microbial communities-from co-cultures to microbiomes
-
Tan J, Zuniga C, Zengler K. Unraveling interactions in microbial communities-from co-cultures to microbiomes. J Microbiol. 2015;53:295-305.
-
(2015)
J Microbiol
, vol.53
, pp. 295-305
-
-
Tan, J.1
Zuniga, C.2
Zengler, K.3
-
62
-
-
84979986238
-
A synthetic ecology perspective: how well does behavior of model organisms in the laboratory predict microbial activities in natural habitats?
-
Yu Z, Krause SM, Beck DA, Chistoserdova L. A synthetic ecology perspective: how well does behavior of model organisms in the laboratory predict microbial activities in natural habitats? Front Microbiol. 2016;7:946.
-
(2016)
Front Microbiol
, vol.7
, pp. 946
-
-
Yu, Z.1
Krause, S.M.2
Beck, D.A.3
Chistoserdova, L.4
-
63
-
-
84996599775
-
Compositional data analysis of the microbiome: fundamentals, tools, and challenges
-
Tsilimigras MC, Fodor AA. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol. 2016;26:330-5.
-
(2016)
Ann Epidemiol
, vol.26
, pp. 330-335
-
-
Tsilimigras, M.C.1
Fodor, A.A.2
-
64
-
-
84864579031
-
Microbial co-occurrence relationships in the human microbiome
-
Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606.
-
(2012)
PLoS Comput Biol
, vol.8
-
-
Faust, K.1
Sathirapongsasuti, J.F.2
Izard, J.3
Segata, N.4
Gevers, D.5
Raes, J.6
Huttenhower, C.7
-
65
-
-
84865733148
-
Inferring correlation networks from genomic survey data
-
Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8:e1002687.
-
(2012)
PLoS Comput Biol
, vol.8
-
-
Friedman, J.1
Alm, E.J.2
-
66
-
-
84943379443
-
CCLasso: correlation inference for compositional data through Lasso
-
Fang H, Huang C, Zhao H, Deng M. CCLasso: correlation inference for compositional data through Lasso. Bioinformatics. 2015;31:3172-80.
-
(2015)
Bioinformatics
, vol.31
, pp. 3172-3180
-
-
Fang, H.1
Huang, C.2
Zhao, H.3
Deng, M.4
-
67
-
-
84930608352
-
Sparse and compositionally robust inference of microbial ecological networks
-
Kurtz ZD, Muller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.
-
(2015)
PLoS Comput Biol
, vol.11
-
-
Kurtz, Z.D.1
Muller, C.L.2
Miraldi, E.R.3
Littman, D.R.4
Blaser, M.J.5
Bonneau, R.A.6
-
68
-
-
84955613013
-
Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production
-
Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65:63-72.
-
(2016)
Gut
, vol.65
, pp. 63-72
-
-
Wu, G.D.1
Compher, C.2
Chen, E.Z.3
Smith, S.A.4
Shah, R.D.5
Bittinger, K.6
-
69
-
-
84927662026
-
Molecular cartography of the human skin surface in 3D
-
Bouslimani A, Porto C, Rath CM, Wang M, Guo Y, Gonzalez A, et al. Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci U S A. 2015;112:E2120-9.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E2120-E2129
-
-
Bouslimani, A.1
Porto, C.2
Rath, C.M.3
Wang, M.4
Guo, Y.5
Gonzalez, A.6
-
70
-
-
85018464842
-
Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort
-
Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, Kangas AJ, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017;18:70.
-
(2017)
Genome Biol
, vol.18
, pp. 70
-
-
Org, E.1
Blum, Y.2
Kasela, S.3
Mehrabian, M.4
Kuusisto, J.5
Kangas, A.J.6
-
71
-
-
84893867402
-
Bariatric surgery modulates circulating and cardiac metabolites
-
Ashrafian H, Li JV, Spagou K, Harling L, Masson P, Darzi A, et al. Bariatric surgery modulates circulating and cardiac metabolites. J Proteome Res. 2014;13:570-80.
-
(2014)
J Proteome Res
, vol.13
, pp. 570-580
-
-
Ashrafian, H.1
Li, J.V.2
Spagou, K.3
Harling, L.4
Masson, P.5
Darzi, A.6
-
72
-
-
62649151803
-
Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites
-
Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106:3698-703.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 3698-3703
-
-
Wikoff, W.R.1
Anfora, A.T.2
Liu, J.3
Schultz, P.G.4
Lesley, S.A.5
Peters, E.C.6
Siuzdak, G.7
-
73
-
-
85020054792
-
Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies
-
Thorsen J, Brejnrod A, Mortensen M, Rasmussen MA, Stokholm J, Al-Soud WA, et al. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies. Microbiome. 2016;4:62.
-
(2016)
Microbiome
, vol.4
, pp. 62
-
-
Thorsen, J.1
Brejnrod, A.2
Mortensen, M.3
Rasmussen, M.A.4
Stokholm, J.5
Al-Soud, W.A.6
-
74
-
-
84888865593
-
Differential abundance analysis for microbial marker-gene surveys
-
Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200-2.
-
(2013)
Nat Methods
, vol.10
, pp. 1200-1202
-
-
Paulson, J.N.1
Stine, O.C.2
Bravo, H.C.3
Pop, M.4
-
75
-
-
84866549438
-
Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment
-
Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79.
-
(2012)
Genome Biol
, vol.13
, pp. R79
-
-
Morgan, X.C.1
Tickle, T.L.2
Sokol, H.3
Gevers, D.4
Devaney, K.L.5
Ward, D.V.6
-
76
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
77
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
-
(2014)
Genome Biol
, vol.15
, pp. 550
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
78
-
-
84896735766
-
voom: precision weights unlock linear model analysis tools for RNA-seq read counts
-
Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.
-
(2014)
Genome Biol
, vol.15
, pp. R29
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
Smyth, G.K.4
-
79
-
-
84955314492
-
Statistical evaluation of methods for identification of differentially abundant genes in comparative metagenomics
-
Jonsson V, Osterlund T, Nerman O, Kristiansson E. Statistical evaluation of methods for identification of differentially abundant genes in comparative metagenomics. BMC Genomics. 2016;17:78.
-
(2016)
BMC Genomics
, vol.17
, pp. 78
-
-
Jonsson, V.1
Osterlund, T.2
Nerman, O.3
Kristiansson, E.4
-
80
-
-
79959383523
-
Metagenomic biomarker discovery and explanation
-
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
-
(2011)
Genome Biol
, vol.12
, pp. R60
-
-
Segata, N.1
Izard, J.2
Waldron, L.3
Gevers, D.4
Miropolsky, L.5
Garrett, W.S.6
Huttenhower, C.7
-
81
-
-
66249145772
-
Statistical methods for detecting differentially abundant features in clinical metagenomic samples
-
White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5:e1000352.
-
(2009)
PLoS Comput Biol
, vol.5
-
-
White, J.R.1
Nagarajan, N.2
Pop, M.3
-
82
-
-
84946878517
-
Analysis of composition of microbiomes: a novel method for studying microbial composition
-
Mandal S, Van Treuren W, White RA, Eggesbo M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:27663.
-
(2015)
Microb Ecol Health Dis
, vol.26
, pp. 27663
-
-
Mandal, S.1
Treuren, W.2
White, R.A.3
Eggesbo, M.4
Knight, R.5
Peddada, S.D.6
-
83
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
-
(2010)
Genome Biol
, vol.11
, pp. R25
-
-
Robinson, M.D.1
Oshlack, A.2
-
84
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
-
(2010)
Genome Biol
, vol.11
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
85
-
-
84991010752
-
A two-part mixed-effects model for analyzing longitudinal microbiome compositional data
-
Chen EZ, Li H. A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Bioinformatics. 2016;32:2611-7.
-
(2016)
Bioinformatics
, vol.32
, pp. 2611-2617
-
-
Chen, E.Z.1
Li, H.2
-
86
-
-
85008149994
-
Negative binomial mixed models for analyzing microbiome count data
-
Zhang X, Mallick H, Tang Z, Zhang L, Cui X, Benson AK, Yi N. Negative binomial mixed models for analyzing microbiome count data. BMC Bioinformatics. 2017;18:4.
-
(2017)
BMC Bioinformatics
, vol.18
, pp. 4
-
-
Zhang, X.1
Mallick, H.2
Tang, Z.3
Zhang, L.4
Cui, X.5
Benson, A.K.6
Yi, N.7
-
87
-
-
84975223360
-
MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses
-
Bucci V, Tzen B, Li N, Simmons M, Tanoue T, Bogart E, et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 2016;17:121.
-
(2016)
Genome Biol
, vol.17
, pp. 121
-
-
Bucci, V.1
Tzen, B.2
Li, N.3
Simmons, M.4
Tanoue, T.5
Bogart, E.6
-
88
-
-
85027927719
-
Enterotypes of the human gut microbiome
-
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174-80.
-
(2011)
Nature
, vol.473
, pp. 174-180
-
-
Arumugam, M.1
Raes, J.2
Pelletier, E.3
Paslier, D.4
Yamada, T.5
Mende, D.R.6
-
89
-
-
84873510063
-
A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets
-
Koren O, Knights D, Gonzalez A, Waldron L, Segata N, Knight R, et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol. 2013;9:e1002863.
-
(2013)
PLoS Comput Biol
, vol.9
-
-
Koren, O.1
Knights, D.2
Gonzalez, A.3
Waldron, L.4
Segata, N.5
Knight, R.6
-
90
-
-
84860720391
-
Temporal dynamics of the human vaginal microbiota
-
Gajer P, Brotman RM, Bai G, Sakamoto J, Schutte UM, Zhong X, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4:132ra152.
-
(2012)
Sci Transl Med
, vol.4
, pp. 132ra152
-
-
Gajer, P.1
Brotman, R.M.2
Bai, G.3
Sakamoto, J.4
Schutte, U.M.5
Zhong, X.6
-
91
-
-
84979971115
-
Machine learning meta-analysis of large metagenomic datasets: tools and biological insights
-
Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol. 2016;12:e1004977.
-
(2016)
PLoS Comput Biol
, vol.12
-
-
Pasolli, E.1
Truong, D.T.2
Malik, F.3
Waldron, L.4
Segata, N.5
-
92
-
-
0002154022
-
A new method for non parametric multivariate analysis of variance
-
Anderson MJ. A new method for non parametric multivariate analysis of variance. Austral Ecol. 2001;26:32-46.
-
(2001)
Austral Ecol
, vol.26
, pp. 32-46
-
-
Anderson, M.J.1
-
93
-
-
84929159912
-
Testing in microbiome-profiling studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test
-
Zhao N, Chen J, Carroll IM, Ringel-Kulka T, Epstein MP, Zhou H, et al. Testing in microbiome-profiling studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test. Am J Hum Genet. 2015;96:797-807.
-
(2015)
Am J Hum Genet
, vol.96
, pp. 797-807
-
-
Zhao, N.1
Chen, J.2
Carroll, I.M.3
Ringel-Kulka, T.4
Epstein, M.P.5
Zhou, H.6
-
94
-
-
0027804103
-
Non parametric multivariate analyses of changes in community structure
-
Clarke KR. Non parametric multivariate analyses of changes in community structure. Aust J Ecol. 1993;18:117-43.
-
(1993)
Aust J Ecol
, vol.18
, pp. 117-143
-
-
Clarke, K.R.1
-
95
-
-
84990989968
-
PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances
-
Tang ZZ, Chen G, Alekseyenko AV. PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances. Bioinformatics. 2016;32:2618-25.
-
(2016)
Bioinformatics
, vol.32
, pp. 2618-2625
-
-
Tang, Z.Z.1
Chen, G.2
Alekseyenko, A.V.3
-
96
-
-
84996424394
-
Kernel-Penalized regression for analysis of microbiome data
-
arXiv
-
Randolph TW, Zhao S, Copeland W, Hullar M, Shojaie A. Kernel-Penalized regression for analysis of microbiome data. arXiv 2015;arXiv:151100297.
-
(2015)
arXiv
, pp. 151100297
-
-
Randolph, T.W.1
Zhao, S.2
Copeland, W.3
Hullar, M.4
Shojaie, A.5
-
97
-
-
85016418735
-
Variability in metagenomic count data and its influence on the identification of differentially abundant genes
-
Jonsson V, Osterlund T, Nerman O, Kristiansson E. Variability in metagenomic count data and its influence on the identification of differentially abundant genes. J Comput Biol. 2017;24:311-26.
-
(2017)
J Comput Biol
, vol.24
, pp. 311-326
-
-
Jonsson, V.1
Osterlund, T.2
Nerman, O.3
Kristiansson, E.4
-
98
-
-
85015975393
-
Normalization and microbial differential abundance strategies depend upon data characteristics
-
Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27.
-
(2017)
Microbiome
, vol.5
, pp. 27
-
-
Weiss, S.1
Xu, Z.Z.2
Peddada, S.3
Amir, A.4
Bittinger, K.5
Gonzalez, A.6
-
100
-
-
85021708596
-
Multivariate linear regression
-
Olive DJ, editor, Cham: Springer
-
Olive DJ. Multivariate linear regression. In: Olive DJ, editor. Linear regression. Cham: Springer; 2017. p. 343-87.
-
(2017)
Linear regression
, pp. 343-387
-
-
Olive, D.J.1
-
101
-
-
84872527720
-
Multivariate or multivariable regression?
-
Hidalgo B, Goodman M. Multivariate or multivariable regression? Am J Public Health. 2013;103:39-40.
-
(2013)
Am J Public Health
, vol.103
, pp. 39-40
-
-
Hidalgo, B.1
Goodman, M.2
-
102
-
-
84878103123
-
Achieving consensus on terminology describing multivariable analyses
-
Tsai AC. Achieving consensus on terminology describing multivariable analyses. Am J Public Health. 2013;103:e1.
-
(2013)
Am J Public Health
, vol.103
-
-
Tsai, A.C.1
-
103
-
-
84964048491
-
Zero-inflated negative binomial mixed model: an application to two microbial organisms important in oesophagitis
-
Fang R, Wagner BD, Harris JK, Fillon SA. Zero-inflated negative binomial mixed model: an application to two microbial organisms important in oesophagitis. Epidemiol Infect. 2016;144:2447-55.
-
(2016)
Epidemiol Infect
, vol.144
, pp. 2447-2455
-
-
Fang, R.1
Wagner, B.D.2
Harris, J.K.3
Fillon, S.A.4
-
104
-
-
84996587632
-
Challenges for case-control studies with microbiome data
-
Brooks JP. Challenges for case-control studies with microbiome data. Ann Epidemiol. 2016;26:336-41.
-
(2016)
Ann Epidemiol
, vol.26
, pp. 336-341
-
-
Brooks, J.P.1
-
105
-
-
84883864245
-
Meta-analyses of studies of the human microbiota
-
Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D, Vazquez-Baeza Y, et al. Meta-analyses of studies of the human microbiota. Genome Res. 2013;23:1704-14.
-
(2013)
Genome Res
, vol.23
, pp. 1704-1714
-
-
Lozupone, C.A.1
Stombaugh, J.2
Gonzalez, A.3
Ackermann, G.4
Wendel, D.5
Vazquez-Baeza, Y.6
-
106
-
-
85020007717
-
mockrobiota: a public resource for microbiome bioinformatics benchmarking
-
Bokulich NA, Rideout JR, Mercurio WG, Shiffer A, Wolfe B, Maurice CF, et al. mockrobiota: a public resource for microbiome bioinformatics benchmarking. mSystems 2016;1.
-
(2016)
mSystems
, pp. 1
-
-
Bokulich, N.A.1
Rideout, J.R.2
Mercurio, W.G.3
Shiffer, A.4
Wolfe, B.5
Maurice, C.F.6
-
107
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical Bayes methods
-
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118-27.
-
(2007)
Biostatistics
, vol.8
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.2
Rabinovic, A.3
-
108
-
-
84926507971
-
limma powers differential expression analyses for RNA-sequencing and microarray studies
-
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
-
(2015)
Nucleic Acids Res
, vol.43
-
-
Ritchie, M.E.1
Phipson, B.2
Wu, D.3
Hu, Y.4
Law, C.W.5
Shi, W.6
Smyth, G.K.7
-
109
-
-
84938484417
-
The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women
-
Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2:4.
-
(2014)
Microbiome
, vol.2
, pp. 4
-
-
Romero, R.1
Hassan, S.S.2
Gajer, P.3
Tarca, A.L.4
Fadrosh, D.W.5
Nikita, L.6
-
110
-
-
85019108860
-
Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases
-
Ananthakrishnan AN, Luo C, Yajnik V, Khalili H, Garber JJ, Stevens BW, et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe. 2017;21:603-10.
-
(2017)
Cell Host Microbe
, vol.21
, pp. 603-610
-
-
Ananthakrishnan, A.N.1
Luo, C.2
Yajnik, V.3
Khalili, H.4
Garber, J.J.5
Stevens, B.W.6
-
111
-
-
84880439384
-
Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta
-
Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013;341:295-8.
-
(2013)
Science
, vol.341
, pp. 295-298
-
-
Haiser, H.J.1
Gootenberg, D.B.2
Chatman, K.3
Sirasani, G.4
Balskus, E.P.5
Turnbaugh, P.J.6
-
112
-
-
0020527551
-
Digoxin-inactivating bacteria: identification in human gut flora
-
Saha JR, Butler Jr VP, Neu HC, Lindenbaum J. Digoxin-inactivating bacteria: identification in human gut flora. Science. 1983;220:325-7.
-
(1983)
Science
, vol.220
, pp. 325-327
-
-
Saha, J.R.1
Butler, V.P.2
Neu, H.C.3
Lindenbaum, J.4
-
113
-
-
84925500413
-
Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile
-
Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205-8.
-
(2015)
Nature
, vol.517
, pp. 205-208
-
-
Buffie, C.G.1
Bucci, V.2
Stein, R.R.3
McKenney, P.T.4
Ling, L.5
Gobourne, A.6
-
114
-
-
84948461699
-
Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota
-
Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079-84.
-
(2015)
Science
, vol.350
, pp. 1079-1084
-
-
Vetizou, M.1
Pitt, J.M.2
Daillere, R.3
Lepage, P.4
Waldschmitt, N.5
Flament, C.6
-
115
-
-
84990988075
-
Writ large: genomic dissection of the effect of cellular environment on immune response
-
Yosef N, Regev A. Writ large: genomic dissection of the effect of cellular environment on immune response. Science. 2016;354:64-8.
-
(2016)
Science
, vol.354
, pp. 64-68
-
-
Yosef, N.1
Regev, A.2
-
116
-
-
84871732071
-
Genomic variation landscape of the human gut microbiome
-
Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013;493:45-50.
-
(2013)
Nature
, vol.493
, pp. 45-50
-
-
Schloissnig, S.1
Arumugam, M.2
Sunagawa, S.3
Mitreva, M.4
Tap, J.5
Zhu, A.6
-
117
-
-
84930649544
-
Identifying personal microbiomes using metagenomic codes
-
Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, Huttenhower C. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A. 2015;112:E2930-8.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E2930-E2938
-
-
Franzosa, E.A.1
Huang, K.2
Meadow, J.F.3
Gevers, D.4
Lemon, K.P.5
Bohannan, B.J.6
Huttenhower, C.7
-
118
-
-
84863743669
-
Birth weight in newborn infants with different diabetes-associated HLA genotypes in three neighbouring countries: Finland, Estonia and Russian Karelia
-
Peet A, Kool P, Ilonen J, Knip M, Tillmann V, Group DS. Birth weight in newborn infants with different diabetes-associated HLA genotypes in three neighbouring countries: Finland, Estonia and Russian Karelia. Diabetes Metab Res Rev. 2012;28:455-61.
-
(2012)
Diabetes Metab Res Rev
, vol.28
, pp. 455-461
-
-
Peet, A.1
Kool, P.2
Ilonen, J.3
Knip, M.4
Tillmann, V.5
Group, D.S.6
-
119
-
-
84988565996
-
Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering
-
Franzen O, Hu J, Bao X, Itzkowitz SH, Peter I, Bashir A. Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering. Microbiome. 2015;3:43.
-
(2015)
Microbiome
, vol.3
, pp. 43
-
-
Franzen, O.1
Hu, J.2
Bao, X.3
Itzkowitz, S.H.4
Peter, I.5
Bashir, A.6
-
121
-
-
84899792426
-
Strain/species identification in metagenomes using genome-specific markers
-
Tu Q, He Z, Zhou J. Strain/species identification in metagenomes using genome-specific markers. Nucleic Acids Res. 2014;42:e67.
-
(2014)
Nucleic Acids Res
, vol.42
-
-
Tu, Q.1
He, Z.2
Zhou, J.3
-
122
-
-
84934275888
-
Phylogenetically typing bacterial strains from partial SNP genotypes observed from direct sequencing of clinical specimen metagenomic data
-
Sahl JW, Schupp JM, Rasko DA, Colman RE, Foster JT, Keim P. Phylogenetically typing bacterial strains from partial SNP genotypes observed from direct sequencing of clinical specimen metagenomic data. Genome Med. 2015;7:52.
-
(2015)
Genome Med
, vol.7
, pp. 52
-
-
Sahl, J.W.1
Schupp, J.M.2
Rasko, D.A.3
Colman, R.E.4
Foster, J.T.5
Keim, P.6
-
123
-
-
84928981302
-
Sigma: strain-level inference of genomes from metagenomic analysis for biosurveillance
-
Ahn TH, Chai J, Pan C. Sigma: strain-level inference of genomes from metagenomic analysis for biosurveillance. Bioinformatics. 2015;31:170-7.
-
(2015)
Bioinformatics
, vol.31
, pp. 170-177
-
-
Ahn, T.H.1
Chai, J.2
Pan, C.3
-
124
-
-
84885070139
-
Pathoscope: species identification and strain attribution with unassembled sequencing data
-
Francis OE, Bendall M, Manimaran S, Hong C, Clement NL, Castro-Nallar E, et al. Pathoscope: species identification and strain attribution with unassembled sequencing data. Genome Res. 2013;23:1721-9.
-
(2013)
Genome Res
, vol.23
, pp. 1721-1729
-
-
Francis, O.E.1
Bendall, M.2
Manimaran, S.3
Hong, C.4
Clement, N.L.5
Castro-Nallar, E.6
-
125
-
-
84943595976
-
Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning
-
Cleary B, Brito IL, Huang K, Gevers D, Shea T, Young S, Alm EJ. Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning. Nat Biotechnol. 2015;33:1053-60.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1053-1060
-
-
Cleary, B.1
Brito, I.L.2
Huang, K.3
Gevers, D.4
Shea, T.5
Young, S.6
Alm, E.J.7
-
126
-
-
84922735613
-
Extensive strain-level copy-number variation across human gut microbiome species
-
Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species. Cell. 2015;160:583-94.
-
(2015)
Cell
, vol.160
, pp. 583-594
-
-
Greenblum, S.1
Carr, R.2
Borenstein, E.3
-
127
-
-
84881504578
-
Computational analysis of bacterial RNA-Seq data
-
McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, et al. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 2013;41:e140.
-
(2013)
Nucleic Acids Res
, vol.41
-
-
McClure, R.1
Balasubramanian, D.2
Sun, Y.3
Bobrovskyy, M.4
Sumby, P.5
Genco, C.A.6
-
128
-
-
84946031490
-
Analysis of RNA-Seq data using TopHat and Cufflinks
-
Ghosh S, Chan CK. Analysis of RNA-Seq data using TopHat and Cufflinks. Methods Mol Biol. 2016;1374:339-61.
-
(2016)
Methods Mol Biol
, vol.1374
, pp. 339-361
-
-
Ghosh, S.1
Chan, C.K.2
-
129
-
-
85006345107
-
IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses
-
Narayanasamy S, Jarosz Y, Muller EE, Heintz-Buschart A, Herold M, Kaysen A, et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol. 2016;17:260.
-
(2016)
Genome Biol
, vol.17
, pp. 260
-
-
Narayanasamy, S.1
Jarosz, Y.2
Muller, E.E.3
Heintz-Buschart, A.4
Herold, M.5
Kaysen, A.6
-
131
-
-
84981308664
-
COMAN: a web server for comprehensive metatranscriptomics analysis
-
Ni Y, Li J, Panagiotou G. COMAN: a web server for comprehensive metatranscriptomics analysis. BMC Genomics. 2016;17:622.
-
(2016)
BMC Genomics
, vol.17
, pp. 622
-
-
Ni, Y.1
Li, J.2
Panagiotou, G.3
-
132
-
-
84880127893
-
IDBA-MT: de novo assembler for metatranscriptomic data generated from next-generation sequencing technology
-
Leung HC, Yiu SM, Parkinson J, Chin FY. IDBA-MT: de novo assembler for metatranscriptomic data generated from next-generation sequencing technology. J Comput Biol. 2013;20:540-50.
-
(2013)
J Comput Biol
, vol.20
, pp. 540-550
-
-
Leung, H.C.1
Yiu, S.M.2
Parkinson, J.3
Chin, F.Y.4
-
133
-
-
84859768479
-
Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels
-
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28:1086-92.
-
(2012)
Bioinformatics
, vol.28
, pp. 1086-1092
-
-
Schulz, M.H.1
Zerbino, D.R.2
Vingron, M.3
Birney, E.4
-
134
-
-
84955476032
-
COGNIZER: a framework for functional annotation of metagenomic datasets
-
Bose T, Haque MM, Reddy C, Mande SS. COGNIZER: a framework for functional annotation of metagenomic datasets. PLoS One. 2015;10:e0142102.
-
(2015)
PLoS One
, vol.10
-
-
Bose, T.1
Haque, M.M.2
Reddy, C.3
Mande, S.S.4
-
135
-
-
84990828229
-
FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies
-
Kim J, Kim MS, Koh AY, Xie Y, Zhan X. FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies. BMC Bioinformatics. 2016;17:420.
-
(2016)
BMC Bioinformatics
, vol.17
, pp. 420
-
-
Kim, J.1
Kim, M.S.2
Koh, A.Y.3
Xie, Y.4
Zhan, X.5
-
136
-
-
84978910824
-
MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data
-
Huson DH, Beier S, Flade I, Gorska A, El-Hadidi M, Mitra S, et al. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.
-
(2016)
PLoS Comput Biol
, vol.12
-
-
Huson, D.H.1
Beier, S.2
Flade, I.3
Gorska, A.4
El-Hadidi, M.5
Mitra, S.6
-
137
-
-
84949219026
-
Automated and accurate estimation of gene family abundance from shotgun metagenomes
-
Nayfach S, Bradley PH, Wyman SK, Laurent TJ, Williams A, Eisen JA, et al. Automated and accurate estimation of gene family abundance from shotgun metagenomes. PLoS Comput Biol. 2015;11:e1004573.
-
(2015)
PLoS Comput Biol
, vol.11
-
-
Nayfach, S.1
Bradley, P.H.2
Wyman, S.K.3
Laurent, T.J.4
Williams, A.5
Eisen, J.A.6
-
138
-
-
84938612863
-
Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease
-
Morgan XC, Kabakchiev B, Waldron L, Tyler AD, Tickle TL, Milgrom R, et al. Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. Genome Biol. 2015;16:67.
-
(2015)
Genome Biol
, vol.16
, pp. 67
-
-
Morgan, X.C.1
Kabakchiev, B.2
Waldron, L.3
Tyler, A.D.4
Tickle, T.L.5
Milgrom, R.6
-
139
-
-
84946878516
-
Investigating microbial co-occurrence patterns based on metagenomic compositional data
-
Ban Y, An L, Jiang H. Investigating microbial co-occurrence patterns based on metagenomic compositional data. Bioinformatics. 2015;31:3322-9.
-
(2015)
Bioinformatics
, vol.31
, pp. 3322-3329
-
-
Ban, Y.1
An, L.2
Jiang, H.3
-
140
-
-
84861557467
-
Molecular ecological network analyses
-
Deng Y, Jiang YH, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinformatics. 2012;13:113.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 113
-
-
Deng, Y.1
Jiang, Y.H.2
Yang, Y.3
He, Z.4
Luo, F.5
Zhou, J.6
-
141
-
-
84974622916
-
Learning microbial interaction networks from metagenomic count data
-
Biswas S, McDonald M, Lundberg DS, Dangl JL, Jojic V. Learning microbial interaction networks from metagenomic count data. J Comput Biol. 2016;23:526-35.
-
(2016)
J Comput Biol
, vol.23
, pp. 526-535
-
-
Biswas, S.1
McDonald, M.2
Lundberg, D.S.3
Dangl, J.L.4
Jojic, V.5
-
142
-
-
84997173322
-
MetaMIS: a metagenomic microbial interaction simulator based on microbial community profiles
-
Shaw GT, Pao YY, Wang D. MetaMIS: a metagenomic microbial interaction simulator based on microbial community profiles. BMC Bioinformatics. 2016;17:488.
-
(2016)
BMC Bioinformatics
, vol.17
, pp. 488
-
-
Shaw, G.T.1
Pao, Y.Y.2
Wang, D.3
-
143
-
-
84938484590
-
BioMiCo: a supervised Bayesian model for inference of microbial community structure
-
Shafiei M, Dunn KA, Boon E, MacDonald SM, Walsh DA, Gu H, Bielawski JP. BioMiCo: a supervised Bayesian model for inference of microbial community structure. Microbiome. 2015;3:8.
-
(2015)
Microbiome
, vol.3
, pp. 8
-
-
Shafiei, M.1
Dunn, K.A.2
Boon, E.3
MacDonald, S.M.4
Walsh, D.A.5
Gu, H.6
Bielawski, J.P.7
-
144
-
-
84912066103
-
BiomeNet: a Bayesian model for inference of metabolic divergence among microbial communities
-
Shafiei M, Dunn KA, Chipman H, Gu H, Bielawski JP. BiomeNet: a Bayesian model for inference of metabolic divergence among microbial communities. PLoS Comput Biol. 2014;10:e1003918.
-
(2014)
PLoS Comput Biol
, vol.10
-
-
Shafiei, M.1
Dunn, K.A.2
Chipman, H.3
Gu, H.4
Bielawski, J.P.5
-
145
-
-
84957566691
-
Longitudinal prediction of the infant gut microbiome with dynamic Bayesian networks
-
McGeachie MJ, Sordillo JE, Gibson T, Weinstock GM, Liu YY, Gold DR, et al. Longitudinal prediction of the infant gut microbiome with dynamic Bayesian networks. Sci Rep. 2016;6:20359.
-
(2016)
Sci Rep
, vol.6
, pp. 20359
-
-
McGeachie, M.J.1
Sordillo, J.E.2
Gibson, T.3
Weinstock, G.M.4
Liu, Y.Y.5
Gold, D.R.6
|