메뉴 건너뛰기




Volumn 15, Issue 2, 2014, Pages

Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; BAYES THEOREM; DATA ANALYSIS; DEVELOPMENTAL STAGE; DROSOPHILA MELANOGASTER; GENE MAPPING; GENETIC TRANSCRIPTION; LINEAR SYSTEM; MATHEMATICAL ANALYSIS; MATHEMATICAL MODEL; MICROARRAY ANALYSIS; MOLECULAR LIBRARY; RNA ANALYSIS; RNA SEQUENCE; SEX DIFFERENCE; SIMULATION; UPREGULATION; COMPUTER SIMULATION; GENE EXPRESSION PROFILING; GENETICS; HIGH THROUGHPUT SEQUENCING; NUCLEOTIDE SEQUENCE; PROCEDURES; SEQUENCE ANALYSIS; STATISTICAL MODEL; CONTROLLED STUDY; EMBRYO; EMPIRICAL BAYES; FEMALE; GENE EXPRESSION; HUMAN; INTERMETHOD COMPARISON; LIMMA TREND; MALE; MEAN VARIANCE; MEASUREMENT PRECISION; MOUSE; NONHUMAN; OVERLAPPING GENE; STATISTICAL ANALYSIS; VARIANCE MODELING AT THE OBSERVATION LEVEL METHOD;

EID: 84896735766     PISSN: None     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/gb-2014-15-2-r29     Document Type: Article
Times cited : (3986)

References (71)
  • 1
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • 10.1073/pnas.091062498, 33173, 11309499
    • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 2001, 98:5116-5121. 10.1073/pnas.091062498, 33173, 11309499.
    • (2001) Proc Natl Acad Sci , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 2
    • 0348143180 scopus 로고    scopus 로고
    • A random variance model for detection of differential gene expression in small microarray experiments
    • 10.1093/bioinformatics/btg345, 14668230
    • Wright GW, Simon RM. A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 2003, 19:2448-2455. 10.1093/bioinformatics/btg345, 14668230.
    • (2003) Bioinformatics , vol.19 , pp. 2448-2455
    • Wright, G.W.1    Simon, R.M.2
  • 3
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Article 3
    • Smyth G. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article 3.
    • (2004) Stat Appl Genet Mol Biol , vol.3
    • Smyth, G.1
  • 4
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for differential gene expression by shrinking variance components estimates
    • 10.1093/biostatistics/kxh018, 15618528
    • Cui X, Hwang JG, Qiu J, Blades NJ, Churchill GA. Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 2005, 6:59-75. 10.1093/biostatistics/kxh018, 15618528.
    • (2005) Biostatistics , vol.6 , pp. 59-75
    • Cui, X.1    Hwang, J.G.2    Qiu, J.3    Blades, N.J.4    Churchill, G.A.5
  • 5
    • 18744369640 scopus 로고    scopus 로고
    • Use of within-array replicate spots for assessing differential expression in microarray experiments
    • 10.1093/bioinformatics/bti270, 15657102
    • Smyth G, Michaud J, Scott H. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 2005, 21:2067-2075. 10.1093/bioinformatics/bti270, 15657102.
    • (2005) Bioinformatics , vol.21 , pp. 2067-2075
    • Smyth, G.1    Michaud, J.2    Scott, H.3
  • 7
    • 77955889132 scopus 로고    scopus 로고
    • ROAST rotation gene set tests for complex microarray experiments
    • 10.1093/bioinformatics/btq401, 2922896, 20610611
    • Wu D, Lim E, Vaillant F, Asselin-Labat M, Visvader J, Smyth G. ROAST rotation gene set tests for complex microarray experiments. Bioinformatics 2010, 26:2176-2182. 10.1093/bioinformatics/btq401, 2922896, 20610611.
    • (2010) Bioinformatics , vol.26 , pp. 2176-2182
    • Wu, D.1    Lim, E.2    Vaillant, F.3    Asselin-Labat, M.4    Visvader, J.5    Smyth, G.6
  • 8
    • 84866911829 scopus 로고    scopus 로고
    • Camera: a competitive gene set test accounting for inter-gene correlation
    • 10.1093/nar/gks461, 3458527, 22638577
    • Wu D, Smyth G. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res 2012, 40:e133-e133. 10.1093/nar/gks461, 3458527, 22638577.
    • (2012) Nucleic Acids Res , vol.40
    • Wu, D.1    Smyth, G.2
  • 9
    • 33644872577 scopus 로고    scopus 로고
    • Limma: linear models for microarray data
    • New York: Springer, Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W
    • Smyth G. Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor 2005, 397-420. New York: Springer, Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W.
    • (2005) Bioinformatics and Computational Biology Solutions using R and Bioconductor , pp. 397-420
    • Smyth, G.1
  • 10
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • 10.1038/nrg2484, 2949280, 19015660
    • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63. 10.1038/nrg2484, 2949280, 19015660.
    • (2009) Nat Rev Genet , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 12
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • 10.1093/bioinformatics/btp616, 2796818, 19910308
    • Robinson M, McCarthy D, Smyth G. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:139-140. 10.1093/bioinformatics/btp616, 2796818, 19910308.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.1    McCarthy, D.2    Smyth, G.3
  • 13
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • 10.1186/gb-2010-11-10-r106, 3218662, 20979621
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106. 10.1186/gb-2010-11-10-r106, 3218662, 20979621.
    • (2010) Genome Biol , vol.11
    • Anders, S.1    Huber, W.2
  • 14
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • 10.1186/gb-2010-11-12-220, 3046478, 21176179
    • Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol 2010, 11:220. 10.1186/gb-2010-11-12-220, 3046478, 21176179.
    • (2010) Genome Biol , vol.11 , pp. 220
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 18
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion, with applications to SAGE data
    • Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 2008, 9:321-332.
    • (2008) Biostatistics , vol.9 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 19
    • 80053451880 scopus 로고    scopus 로고
    • A powerful and flexible approach to the analysis of RNA sequence count data
    • 10.1093/bioinformatics/btr449, 3179656, 21810900
    • Zhou YH, Xia K, Wright FA. A powerful and flexible approach to the analysis of RNA sequence count data. Bioinformatics 2011, 27:2672-2678. 10.1093/bioinformatics/btr449, 3179656, 21810900.
    • (2011) Bioinformatics , vol.27 , pp. 2672-2678
    • Zhou, Y.H.1    Xia, K.2    Wright, F.A.3
  • 20
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • 10.1093/bioinformatics/btm453, 17881408
    • Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 2007, 23:2881-2887. 10.1093/bioinformatics/btm453, 17881408.
    • (2007) Bioinformatics , vol.23 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 21
    • 77955298482 scopus 로고    scopus 로고
    • BaySeq: empirical Bayesian methods for identifying differential expression in sequence count data
    • 10.1186/1471-2105-11-422, 2928208, 20698981
    • Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 2010, 11:422. 10.1186/1471-2105-11-422, 2928208, 20698981.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 22
    • 84874912212 scopus 로고    scopus 로고
    • A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data
    • 10.1093/biostatistics/kxs033, 3590927, 23001152
    • Wu H, Wang C, Wu Z. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 2013, 14:232-243. 10.1093/biostatistics/kxs033, 3590927, 23001152.
    • (2013) Biostatistics , vol.14 , pp. 232-243
    • Wu, H.1    Wang, C.2    Wu, Z.3
  • 23
    • 84879198972 scopus 로고    scopus 로고
    • Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates
    • Article 8
    • Lund S, Nettleton D, McCarthy D, Smyth G. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat Appl Genet Mol Biol 2012, 11:Article 8.
    • (2012) Stat Appl Genet Mol Biol , vol.11
    • Lund, S.1    Nettleton, D.2    McCarthy, D.3    Smyth, G.4
  • 24
    • 85052549687 scopus 로고    scopus 로고
    • A two-parameter generalized Poisson model to improve the analysis of RNA-seq data
    • 10.1093/nar/gkq670, 2943596, 20671027
    • Srivastava S, Chen L. A two-parameter generalized Poisson model to improve the analysis of RNA-seq data. Nucleic Acids Res 2010, 38:e170. 10.1093/nar/gkq670, 2943596, 20671027.
    • (2010) Nucleic Acids Res , vol.38
    • Srivastava, S.1    Chen, L.2
  • 25
    • 79958115654 scopus 로고    scopus 로고
    • A two-stage Poisson model for testing RNA-seq data
    • Article 26
    • Auer PL, Doerge RW. A two-stage Poisson model for testing RNA-seq data. Stat Appl Genet Mol Biol 2011, 10:Article 26.
    • (2011) Stat Appl Genet Mol Biol , vol.10
    • Auer, P.L.1    Doerge, R.W.2
  • 26
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    • 10.1093/biostatistics/kxr031, 3372940, 22003245
    • Li J, Witten D, Johnstone I, Tibshirani R. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics 2012, 13:523-538. 10.1093/biostatistics/kxr031, 3372940, 22003245.
    • (2012) Biostatistics , vol.13 , pp. 523-538
    • Li, J.1    Witten, D.2    Johnstone, I.3    Tibshirani, R.4
  • 27
    • 84866158885 scopus 로고    scopus 로고
    • Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing
    • 10.1186/1471-2164-13-484, 3560154, 22985019
    • Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ, Taylor JM. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics 2012, 13:484. 10.1186/1471-2164-13-484, 3560154, 22985019.
    • (2012) BMC Genomics , vol.13 , pp. 484
    • Robles, J.A.1    Qureshi, S.E.2    Stephen, S.J.3    Wilson, S.R.4    Burden, C.J.5    Taylor, J.M.6
  • 28
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • 10.1186/1471-2105-14-91, 3608160, 23497356
    • Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 2013, 14:91. 10.1186/1471-2105-14-91, 3608160, 23497356.
    • (2013) BMC Bioinformatics , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 31
    • 0016335739 scopus 로고
    • Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method
    • Wedderburn RWM. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 1974, 61:439-447.
    • (1974) Biometrika , vol.61 , pp. 439-447
    • Wedderburn, R.W.M.1
  • 32
    • 84910399023 scopus 로고
    • A comparison between maximum likelihood and generalized least squares in a heteroscedastic linear model
    • Carroll RJ, Ruppert D. A comparison between maximum likelihood and generalized least squares in a heteroscedastic linear model. J Am Stat Assoc 1982, 77:878-882.
    • (1982) J Am Stat Assoc , vol.77 , pp. 878-882
    • Carroll, R.J.1    Ruppert, D.2
  • 33
    • 0000456152 scopus 로고
    • An extended quasi-likelihood function
    • Nelder JA, Pregibon D. An extended quasi-likelihood function. Biometrika 1987, 74:221-232.
    • (1987) Biometrika , vol.74 , pp. 221-232
    • Nelder, J.A.1    Pregibon, D.2
  • 34
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • 10.1093/nar/gks042, 3378882, 22287627
    • McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 2012, 40:4288-4297. 10.1093/nar/gks042, 3378882, 22287627.
    • (2012) Nucleic Acids Res , vol.40 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 35
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • 10.1038/nmeth.1226, 18516045
    • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 2008, 5:621-628. 10.1038/nmeth.1226, 18516045.
    • (2008) Nature Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1    Williams, B.A.2    McCue, K.3    Schaeffer, L.4    Wold, B.5
  • 36
    • 33846786836 scopus 로고    scopus 로고
    • Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments
    • 10.1186/1471-2105-7-538, 1781470, 17177995
    • Sartor MA, Tomlinson CR, Wesselkamper SC, Sivaganesan S, Leikauf GD, Medvedovic M. Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments. BMC Bioinformatics 2006, 7:538. 10.1186/1471-2105-7-538, 1781470, 17177995.
    • (2006) BMC Bioinformatics , vol.7 , pp. 538
    • Sartor, M.A.1    Tomlinson, C.R.2    Wesselkamper, S.C.3    Sivaganesan, S.4    Leikauf, G.D.5    Medvedovic, M.6
  • 37
    • 84896704253 scopus 로고    scopus 로고
    • Sequencing Quality Control (SEQC) Project
    • Sequencing Quality Control (SEQC) Project. [http://www.fda.gov/MicroArrayQC].
  • 38
    • 84896705508 scopus 로고    scopus 로고
    • Ambion FirstChoice Human Brain Reference RNA
    • Ambion FirstChoice Human Brain Reference RNA. [http://products.invitrogen.com/ivgn/product/AM6050].
  • 41
    • 84882359581 scopus 로고    scopus 로고
    • A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments
    • 10.1186/1471-2105-14-254, 3849762, 23965047
    • Esnaola M, Puig P, Gonzalez D, Castelo R, Gonzalez JR. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments. BMC Bioinformatics 2013, 14:254. 10.1186/1471-2105-14-254, 3849762, 23965047.
    • (2013) BMC Bioinformatics , vol.14 , pp. 254
    • Esnaola, M.1    Puig, P.2    Gonzalez, D.3    Castelo, R.4    Gonzalez, J.R.5
  • 43
    • 84896704188 scopus 로고    scopus 로고
    • TweeDEseqCountData: RNA-seq count data employed in the vignette of the tweeDEseq package
    • Gonzalez JR, Esnaola M. tweeDEseqCountData: RNA-seq count data employed in the vignette of the tweeDEseq package. [http://www.bioconductor.org].
    • Gonzalez, J.R.1    Esnaola, M.2
  • 44
    • 15244353967 scopus 로고    scopus 로고
    • X-inactivation profile reveals extensive variability in X-linked gene expression in females
    • 10.1038/nature03479, 15772666
    • Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 2005, 434:400-404. 10.1038/nature03479, 15772666.
    • (2005) Nature , vol.434 , pp. 400-404
    • Carrel, L.1    Willard, H.F.2
  • 47
    • 84879488128 scopus 로고    scopus 로고
    • Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene
    • 10.1186/gb-2013-14-7-r70, 23815980
    • Gonzalez-Porta M, Frankish A, Rung J, Harrow J, Brazma A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol 2013, 14:R70. 10.1186/gb-2013-14-7-r70, 23815980.
    • (2013) Genome Biol , vol.14
    • Gonzalez-Porta, M.1    Frankish, A.2    Rung, J.3    Harrow, J.4    Brazma, A.5
  • 48
    • 0009607846 scopus 로고    scopus 로고
    • Rao's score, Neyman's C α and Silvey's LM tests: an essay on historical developments and some new results
    • Bera AK, Bilias Y. Rao's score, Neyman's C α and Silvey's LM tests: an essay on historical developments and some new results. J Stat Plann Inference 2001, 97:9-44.
    • (2001) J Stat Plann Inference , vol.97 , pp. 9-44
    • Bera, A.K.1    Bilias, Y.2
  • 50
    • 84896726291 scopus 로고    scopus 로고
    • Empirical Bayes in the presence of exceptional cases, with application to microarray data
    • Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. Empirical Bayes in the presence of exceptional cases, with application to microarray data. 2013, [http://www.statsci.org/smyth/pubs/RobustEBayesPreprint.pdf].
    • (2013)
    • Phipson, B.1    Lee, S.2    Majewski, I.J.3    Alexander, W.S.4    Smyth, G.K.5
  • 51
    • 84952496879 scopus 로고
    • A note on the delta method
    • Oehlert GW. A note on the delta method. Am Statistician 1992, 46:27-29.
    • (1992) Am Statistician , vol.46 , pp. 27-29
    • Oehlert, G.W.1
  • 52
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 1979, 74:829-836.
    • (1979) J Am Stat Assoc , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 53
    • 34147174227 scopus 로고    scopus 로고
    • Normalization of boutique two-color microarrays with a high proportion of differentially expressed probes
    • 10.1186/gb-2007-8-1-r2, 1839120, 17204140
    • Oshlack A, Emslie D, Corcoran L, Smyth G. Normalization of boutique two-color microarrays with a high proportion of differentially expressed probes. Genome Biol 2007, 8:R2. 10.1186/gb-2007-8-1-r2, 1839120, 17204140.
    • (2007) Genome Biol , vol.8
    • Oshlack, A.1    Emslie, D.2    Corcoran, L.3    Smyth, G.4
  • 54
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • 10.1186/gb-2010-11-3-r25, 2864565, 20196867
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11:R25. 10.1186/gb-2010-11-3-r25, 2864565, 20196867.
    • (2010) Genome Biol , vol.11
    • Robinson, M.D.1    Oshlack, A.2
  • 55
    • 84953486351 scopus 로고
    • Good-Turing frequency estimation without tears
    • Gale WA, Sampson G. Good-Turing frequency estimation without tears. J Quant Linguist 1995, 2:217-237.
    • (1995) J Quant Linguist , vol.2 , pp. 217-237
    • Gale, W.A.1    Sampson, G.2
  • 56
    • 84896711748 scopus 로고    scopus 로고
    • Supplementary information for 'Voom: precision weights unlock linear model analysis tools for RNA-seq read counts'
    • Law CW, Chen Y, Shi W, Smyth GK. Supplementary information for 'Voom: precision weights unlock linear model analysis tools for RNA-seq read counts'. [http://bioinf.wehi.edu.au/voom].
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 58
    • 84878580738 scopus 로고    scopus 로고
    • The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote
    • 10.1093/nar/gkt214, 3664803, 23558742
    • Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 2013, 41:e108. 10.1093/nar/gkt214, 3664803, 23558742.
    • (2013) Nucleic Acids Res , vol.41
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 59
    • 84995896157 scopus 로고    scopus 로고
    • FeatureCounts: an efficient general-purpose read summarization program
    • Liao Y, Smyth GK, Shi W. featureCounts: an efficient general-purpose read summarization program. Bioinformatics 2013, [http://bioinformatics.oxfordjournals.org/content/early/2013/11/30/bioinformatics.btt656].
    • (2013) Bioinformatics
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 60
    • 84896698002 scopus 로고    scopus 로고
    • Rsubread: a super fast, sensitive and accurate read aligner for mapping next-generation sequencing reads
    • Shi W, Liao Y. Rsubread: a super fast, sensitive and accurate read aligner for mapping next-generation sequencing reads. [http://www.bioconductor.org].
    • Shi, W.1    Liao, Y.2
  • 61
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • 10.1093/bioinformatics/19.2.185, 12538238
    • Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185-193. 10.1093/bioinformatics/19.2.185, 12538238.
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Åstrand, M.3    Speed, T.P.4
  • 62
    • 81055124271 scopus 로고    scopus 로고
    • ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets
    • 10.1186/1471-2105-12-449, 3229291, 22087737
    • Frazee AC, Langmead B, Leek JT. ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets. BMC Bioinformatics 2011, 12:449. 10.1186/1471-2105-12-449, 3229291, 22087737.
    • (2011) BMC Bioinformatics , vol.12 , pp. 449
    • Frazee, A.C.1    Langmead, B.2    Leek, J.T.3
  • 63
    • 84896739993 scopus 로고    scopus 로고
    • ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets
    • Frazee A, Langmead B, Leek J. ReCount: a multi-experiment resource of analysis-ready RNA-seq gene count datasets. [http://bowtie-bio.sourceforge.net/recount].
    • Frazee, A.1    Langmead, B.2    Leek, J.3
  • 64
    • 33846689706 scopus 로고    scopus 로고
    • Using GOstats to test gene lists for GO term association
    • 10.1093/bioinformatics/btl567, 17098774
    • Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23:257-258. 10.1093/bioinformatics/btl567, 17098774.
    • (2007) Bioinformatics , vol.23 , pp. 257-258
    • Falcon, S.1    Gentleman, R.2
  • 65
    • 84873990896 scopus 로고    scopus 로고
    • Org.Dm.eg.db: Genome wide annotation for Fly
    • Carlson M. org.Dm.eg.db: Genome wide annotation for Fly. [http://www.bioconductor.org].
    • Carlson, M.1
  • 68
    • 84871359043 scopus 로고    scopus 로고
    • Bioconductor: open source software for bioinformatics
    • Bioconductor: open source software for bioinformatics. [http://www.bioconductor.org].
  • 69
    • 84870486790 scopus 로고    scopus 로고
    • Comprehensive R Archive Network
    • Comprehensive R Archive Network. [http://www.r-project.org].
  • 70
    • 84891778882 scopus 로고    scopus 로고
    • TSPM.R: R code for a two-stage Poisson model for testing RNA-seq data
    • Auer P, Doerge RW. TSPM.R: R code for a two-stage Poisson model for testing RNA-seq data. 2011, [http://www.stat.purdue.edu/~doerge/software/TSPM.R].
    • (2011)
    • Auer, P.1    Doerge, R.W.2
  • 71
    • 33746768303 scopus 로고    scopus 로고
    • Limma: Linear Models for Microarray Data
    • Smyth GK. limma: Linear Models for Microarray Data. [http://www.bioconductor.org/packages/release/bioc/html/limma.html].
    • Smyth, G.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.