메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

A survey of best practices for RNA-seq data analysis

(11)  Conesa, Ana a,b   Madrigal, Pedro c,d   Tarazona, Sonia b,e   Gomez Cabrero, David f,g,h   Cervera, Alejandra i   McPherson, Andrew j   Szcześniak, Michal Wojciech k   Gaffney, Daniel J c   Elo, Laura L l   Zhang, Xuegong m   Mortazavi, Ali n  


Author keywords

[No Author keywords available]

Indexed keywords

DATA ANALYSIS; FUNCTIONAL GENOMICS; RNA SEQUENCE; TRANSCRIPTOMICS; ALTERNATIVE RNA SPLICING; GENE EXPRESSION PROFILING; GENE FUSION; GENETICS; GENOMICS; HIGH THROUGHPUT SEQUENCING; NUCLEOTIDE SEQUENCE; PROCEDURES; SEQUENCE ANALYSIS; SOFTWARE;

EID: 84955439663     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-016-0881-8     Document Type: Review
Times cited : (1889)

References (214)
  • 4
    • 78649714014 scopus 로고    scopus 로고
    • Analysis and design of RNA sequencing experiments for identifying isoform regulation
    • Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods. 2010;7:1009-15.
    • (2010) Nat Methods , vol.7 , pp. 1009-1015
    • Katz, Y.1    Wang, E.T.2    Airoldi, E.M.3    Burge, C.B.4
  • 5
    • 79957842166 scopus 로고    scopus 로고
    • Computational methods for transcriptome annotation and quantification using RNA-seq
    • Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods. 2011;8:469-77.
    • (2011) Nat Methods , vol.8 , pp. 469-477
    • Garber, M.1    Grabherr, M.G.2    Guttman, M.3    Trapnell, C.4
  • 6
    • 79959473093 scopus 로고    scopus 로고
    • Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling
    • Labaj PP, Leparc GG, Linggi BE, Markillie LM, Wiley HS, Kreil DP. Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling. Bioinformatics. 2011;27:i383-91.
    • (2011) Bioinformatics , vol.27 , pp. i383-i391
    • Labaj, P.P.1    Leparc, G.G.2    Linggi, B.E.3    Markillie, L.M.4    Wiley, H.S.5    Kreil, D.P.6
  • 7
    • 84892728434 scopus 로고    scopus 로고
    • Sequencing depth and coverage: key considerations in genomic analyses
    • Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15:121-32.
    • (2014) Nat Rev Genet , vol.15 , pp. 121-132
    • Sims, D.1    Sudbery, I.2    Ilott, N.E.3    Heger, A.4    Ponting, C.P.5
  • 8
    • 84922321862 scopus 로고    scopus 로고
    • Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    • Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32:1053-8.
    • (2014) Nat Biotechnol , vol.32 , pp. 1053-1058
    • Pollen, A.A.1    Nowakowski, T.J.2    Shuga, J.3    Wang, X.4    Leyrat, A.A.5    Lui, J.H.6
  • 9
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776-9.
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1    Kenigsberg, E.2    Keren-Shaul, H.3    Elefant, N.4    Paul, F.5    Zaretsky, I.6
  • 11
    • 84856282851 scopus 로고    scopus 로고
    • FASTQC. A quality control tool for high throughput sequence data
    • Accessed 29 September
    • Andrews S. FASTQC. A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 29 September 2014.
    • (2014)
    • Andrews, S.1
  • 13
    • 84969399021 scopus 로고    scopus 로고
    • Accessed 12 January
    • FASTX-Toolkit. http://hannonlab.cshl.edu/fastx_toolkit/. Accessed 12 January 2016.
    • (2016)
  • 14
    • 84905049901 scopus 로고    scopus 로고
    • Trimmomatic: a flexible trimmer for Illumina sequence data
    • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114-20.
    • (2014) Bioinformatics , vol.30 , pp. 2114-2120
    • Bolger, A.M.1    Lohse, M.2    Usadel, B.3
  • 16
    • 84969397155 scopus 로고    scopus 로고
    • Picard, Accessed 12 January
    • Picard. http://picard.sourceforge.net/. Accessed 12 January 2016.
    • (2016)
  • 17
    • 84865074382 scopus 로고    scopus 로고
    • RSeQC: quality control of RNA-seq experiments
    • Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28:2184-5.
    • (2012) Bioinformatics , vol.28 , pp. 2184-2185
    • Wang, L.1    Wang, S.2    Li, W.3
  • 23
    • 80051941094 scopus 로고    scopus 로고
    • Identification of novel transcripts in annotated genomes using RNA-Seq
    • Roberts A, Pimentel H, Trapnell C, Pachter L. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics. 2011;27:2325-9.
    • (2011) Bioinformatics , vol.27 , pp. 2325-2329
    • Roberts, A.1    Pimentel, H.2    Trapnell, C.3    Pachter, L.4
  • 24
    • 84874597027 scopus 로고    scopus 로고
    • iReckon: simultaneous isoform discovery and abundance estimation from RNA-seq data
    • Mezlini AM, Smith EJ, Fiume M, Buske O, Savich GL, Shah S, et al. iReckon: simultaneous isoform discovery and abundance estimation from RNA-seq data. Genome Res. 2013;23:519-29.
    • (2013) Genome Res , vol.23 , pp. 519-529
    • Mezlini, A.M.1    Smith, E.J.2    Fiume, M.3    Buske, O.4    Savich, G.L.5    Shah, S.6
  • 25
    • 84055216924 scopus 로고    scopus 로고
    • Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation
    • Li JJ, Jiang CR, Brown JB, Huang H, Bickel PJ. Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation. Proc Natl Acad Sci U S A. 2011;108:19867-72.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 19867-19872
    • Li, J.J.1    Jiang, C.R.2    Brown, J.B.3    Huang, H.4    Bickel, P.J.5
  • 27
    • 84877035992 scopus 로고    scopus 로고
    • Simultaneous isoform discovery and quantification from RNA-Seq
    • Hiller D, Wong WH. Simultaneous isoform discovery and quantification from RNA-Seq. Stat Biosci. 2013;5:100-18.
    • (2013) Stat Biosci , vol.5 , pp. 100-118
    • Hiller, D.1    Wong, W.H.2
  • 30
    • 84902474663 scopus 로고    scopus 로고
    • SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads
    • Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30:1660-6.
    • (2014) Bioinformatics , vol.30 , pp. 1660-1666
    • Xie, Y.1    Wu, G.2    Tang, J.3    Luo, R.4    Patterson, J.5    Liu, S.6
  • 31
    • 84859768479 scopus 로고    scopus 로고
    • Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels
    • Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28:1086-92.
    • (2012) Bioinformatics , vol.28 , pp. 1086-1092
    • Schulz, M.H.1    Zerbino, D.R.2    Vingron, M.3    Birney, E.4
  • 33
    • 84880266648 scopus 로고    scopus 로고
    • De novotranscript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis
    • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novotranscript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494-512.
    • (2013) Nat Protoc , vol.8 , pp. 1494-1512
    • Haas, B.J.1    Papanicolaou, A.2    Yassour, M.3    Grabherr, M.4    Blood, P.D.5    Bowden, J.6
  • 34
    • 84900328038 scopus 로고    scopus 로고
    • Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms
    • Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol. 2014;32:462-4.
    • (2014) Nat Biotechnol , vol.32 , pp. 462-464
    • Patro, R.1    Mount, S.M.2    Kingsford, C.3
  • 35
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq - a Python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, Huber W. HTSeq - a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166-9.
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 36
    • 84897397058 scopus 로고    scopus 로고
    • featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
    • Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923-30.
    • (2014) Bioinformatics , vol.30 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 37
    • 84969373036 scopus 로고    scopus 로고
    • UCSC Genome Bioinformatics: Frequently Asked Questions: Data File Formats
    • Accessed on 12 January
    • UCSC Genome Bioinformatics: Frequently Asked Questions: Data File Formats. https://genome.ucsc.edu/FAQ/FAQformat.html#format4. Accessed on 12 January 2016.
    • (2016)
  • 38
    • 84856097140 scopus 로고    scopus 로고
    • Models for transcript quantification from RNA-seq
    • arXiv.org. 2011, Accessed 6 January
    • Pachter L. Models for transcript quantification from RNA-seq. arXiv.org. 2011. http://arxiv.org/abs/1104.3889. Accessed 6 January 2016.
    • (2016)
    • Pachter, L.1
  • 39
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511-5.
    • (2010) Nat Biotechnol , vol.28 , pp. 511-515
    • Trapnell, C.1    Williams, B.A.2    Pertea, G.3    Mortazavi, A.4    Kwan, G.5    Baren, M.J.6
  • 40
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 41
    • 84871946825 scopus 로고    scopus 로고
    • Streaming fragment assignment for real-time analysis of sequencing experiments
    • Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods. 2013;10:71-3.
    • (2013) Nat Methods , vol.10 , pp. 71-73
    • Roberts, A.1    Pachter, L.2
  • 42
    • 84950267207 scopus 로고    scopus 로고
    • Near-optimal RNA-Seq quantification with kallisto
    • Accessed 6 January
    • Bray N, Pimentel H, Melsted P, Pachter L. Near-optimal RNA-Seq quantification with kallisto. https://liorpachter.wordpress.com/2015/05/10/near-optimal-rna-seq-quantification-with-kallisto/. Accessed 6 January 2016.
    • (2016)
    • Bray, N.1    Pimentel, H.2    Melsted, P.3    Pachter, L.4
  • 43
  • 44
    • 84879998009 scopus 로고    scopus 로고
    • NURD: an implementation of a new method to estimate isoform expression from non-uniform RNA-seq data
    • Ma X, Zhang X. NURD: an implementation of a new method to estimate isoform expression from non-uniform RNA-seq data. BMC Bioinformatics. 2013;14:220.
    • (2013) BMC Bioinformatics , vol.14 , pp. 220
    • Ma, X.1    Zhang, X.2
  • 45
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010;11:94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 46
    • 77955883388 scopus 로고    scopus 로고
    • Biases in Illumina transcriptome sequencing caused by random hexamer priming
    • Hansen K, Brenner S, Dudoit S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 2010;38:e131.
    • (2010) Nucleic Acids Res , vol.38
    • Hansen, K.1    Brenner, S.2    Dudoit, S.3
  • 47
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 48
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 49
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    • Li J, Witten DM, Johnstone IM, Tibshirani R. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics. 2012;13:523-38.
    • (2012) Biostatistics , vol.13 , pp. 523-538
    • Li, J.1    Witten, D.M.2    Johnstone, I.M.3    Tibshirani, R.4
  • 51
    • 77955504378 scopus 로고    scopus 로고
    • Statistical design and analysis of RNA sequencing data
    • Auer PL, Doerge RW. Statistical design and analysis of RNA sequencing data. Genetics. 2010;185:405-16.
    • (2010) Genetics , vol.185 , pp. 405-416
    • Auer, P.L.1    Doerge, R.W.2
  • 52
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using Empirical Bayes methods
    • Johnson WE, Rabinovic A, Li C. Adjusting batch effects in microarray expression data using Empirical Bayes methods. Biostatistics. 2007;8:118-27.
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Rabinovic, A.2    Li, C.3
  • 53
    • 84863569198 scopus 로고    scopus 로고
    • ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments
    • Nueda MJ, Ferrer A, Conesa A. ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments. Biostatistics. 2012;13:553-66.
    • (2012) Biostatistics , vol.13 , pp. 553-566
    • Nueda, M.J.1    Ferrer, A.2    Conesa, A.3
  • 54
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics. 2007;23:2881-7.
    • (2007) Bioinformatics , vol.23 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 55
    • 84896735766 scopus 로고    scopus 로고
    • Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 56
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics. 2013;14:91.
    • (2013) BMC Bioinformatics , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 57
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 58
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 59
    • 77955298482 scopus 로고    scopus 로고
    • baySeq: empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics. 2010;11:422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 61
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data
    • Li J, Tibshirani R. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Stat Methods Med Res. 2013;22:519-36.
    • (2013) Stat Methods Med Res , vol.22 , pp. 519-536
    • Li, J.1    Tibshirani, R.2
  • 62
    • 75249095274 scopus 로고    scopus 로고
    • DEGseq: an R package for identifying differentially expressed genes from RNA-seq data
    • Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010;26:136-8.
    • (2010) Bioinformatics , vol.26 , pp. 136-138
    • Wang, L.1    Feng, Z.2    Wang, X.3    Wang, X.4    Zhang, X.5
  • 63
    • 84883644707 scopus 로고    scopus 로고
    • Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    • Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 2013;14:R95.
    • (2013) Genome Biol , vol.14 , pp. R95
    • Rapaport, F.1    Khanin, R.2    Liang, Y.3    Pirun, M.4    Krek, A.5    Zumbo, P.6
  • 64
    • 84928199480 scopus 로고    scopus 로고
    • Comparison of software packages for detecting differential expression in RNA-seq studies
    • Seyednasrollah F, Laiho A, Elo LL. Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform. 2015;16:59-70.
    • (2015) Brief Bioinform , vol.16 , pp. 59-70
    • Seyednasrollah, F.1    Laiho, A.2    Elo, L.L.3
  • 65
    • 67249136028 scopus 로고    scopus 로고
    • A hierarchical Bayesian model for comparing transcriptomes at the individual transcript isoform level
    • Zheng S, Chen L. A hierarchical Bayesian model for comparing transcriptomes at the individual transcript isoform level. Nucleic Acids Res. 2009;37:e75.
    • (2009) Nucleic Acids Res , vol.37
    • Zheng, S.1    Chen, L.2
  • 66
    • 84859885816 scopus 로고    scopus 로고
    • Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
    • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562-78.
    • (2012) Nat Protoc , vol.7 , pp. 562-578
    • Trapnell, C.1    Roberts, A.2    Goff, L.3    Pertea, G.4    Kim, D.5    Kelley, D.R.6
  • 67
    • 80053435328 scopus 로고    scopus 로고
    • FDM: a graph-based statistical method to detect differential transcription using RNA-seq data
    • Singh D, Orellana CF, Hu Y, Jones CD, Liu Y, Chiang DY, et al. FDM: a graph-based statistical method to detect differential transcription using RNA-seq data. Bioinformatics. 2011;27:2633-40.
    • (2011) Bioinformatics , vol.27 , pp. 2633-2640
    • Singh, D.1    Orellana, C.F.2    Hu, Y.3    Jones, C.D.4    Liu, Y.5    Chiang, D.Y.6
  • 68
    • 84894213042 scopus 로고    scopus 로고
    • rSeqDiff: detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test
    • Shi Y, Jiang H. rSeqDiff: detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test. PLoS One. 2013;8:e79448.
    • (2013) PLoS One , vol.8
    • Shi, Y.1    Jiang, H.2
  • 69
    • 84865527768 scopus 로고    scopus 로고
    • Detecting differential usage of exons from RNA-seq data
    • Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012;22:2008-17.
    • (2012) Genome Res , vol.22 , pp. 2008-2017
    • Anders, S.1    Reyes, A.2    Huber, W.3
  • 70
    • 84875374758 scopus 로고    scopus 로고
    • Identifying differentially spliced genes from two groups of RNA-seq samples
    • Wang W, Qin Z, Feng Z, Wang X, Zhang X. Identifying differentially spliced genes from two groups of RNA-seq samples. Gene. 2013;518:164-70.
    • (2013) Gene , vol.518 , pp. 164-170
    • Wang, W.1    Qin, Z.2    Feng, Z.3    Wang, X.4    Zhang, X.5
  • 71
    • 84919936245 scopus 로고    scopus 로고
    • rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data
    • Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A. 2014;111:E5593-601.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. E5593-E5601
    • Shen, S.1    Park, J.W.2    Lu, Z.X.3    Lin, L.4    Henry, M.D.5    Wu, Y.N.6
  • 73
  • 76
    • 84875634162 scopus 로고    scopus 로고
    • Integrative Genomics Viewer (IGV): high- performance genomics data visualization and exploration
    • Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high- performance genomics data visualization and exploration. Brief Bioinformatics. 2012;14:178-92.
    • (2012) Brief Bioinformatics , vol.14 , pp. 178-192
    • Thorvaldsdóttir, H.1    Robinson, J.T.2    Mesirov, J.P.3
  • 78
    • 77955433415 scopus 로고    scopus 로고
    • Savant: genome browser for high-throughput sequencing data
    • Fiume M, Williams V, Brook A, Brudno M. Savant: genome browser for high-throughput sequencing data. Bioinformatics. 2010;26:1938-44.
    • (2010) Bioinformatics , vol.26 , pp. 1938-1944
    • Fiume, M.1    Williams, V.2    Brook, A.3    Brudno, M.4
  • 79
    • 84897854035 scopus 로고    scopus 로고
    • RNAseqViewer: visualization tool for RNA-Seq data
    • Rogé X, Zhang X. RNAseqViewer: visualization tool for RNA-Seq data. Bioinformatics. 2013;30:891-2.
    • (2013) Bioinformatics , vol.30 , pp. 891-892
    • Rogé, X.1    Zhang, X.2
  • 81
    • 84897406841 scopus 로고    scopus 로고
    • SplicePlot: a utility for visualizing splicing quantitative trait loci
    • Wu E, Nance T, Montgomery SB. SplicePlot: a utility for visualizing splicing quantitative trait loci. Bioinformatics. 2014;30:1025-6.
    • (2014) Bioinformatics , vol.30 , pp. 1025-1026
    • Wu, E.1    Nance, T.2    Montgomery, S.B.3
  • 82
    • 84866464012 scopus 로고    scopus 로고
    • SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts
    • Ryan MC, Cleland J, Kim R, Wong WC, Weinstein JN. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinformatics. 2012;28:2385-7.
    • (2012) Bioinformatics , vol.28 , pp. 2385-2387
    • Ryan, M.C.1    Cleland, J.2    Kim, R.3    Wong, W.C.4    Weinstein, J.N.5
  • 83
    • 84862830547 scopus 로고    scopus 로고
    • Detection, annotation and visualization of alternative splicing from RNA-Seq data with SplicingViewer
    • Liu Q, Chen C, Shen E, Zhao F, Sun Z, Wu J. Detection, annotation and visualization of alternative splicing from RNA-Seq data with SplicingViewer. Genomics. 2012;99:178-82.
    • (2012) Genomics , vol.99 , pp. 178-182
    • Liu, Q.1    Chen, C.2    Shen, E.3    Zhao, F.4    Sun, Z.5    Wu, J.6
  • 84
    • 84899421862 scopus 로고    scopus 로고
    • TraV: a genome context sensitive transcriptome browser
    • Dietrich S, Wiegand S, Liesegang H. TraV: a genome context sensitive transcriptome browser. PLoS One. 2014;9:e93677.
    • (2014) PLoS One , vol.9
    • Dietrich, S.1    Wiegand, S.2    Liesegang, H.3
  • 87
    • 84929852263 scopus 로고    scopus 로고
    • The landscape and therapeutic relevance of cancer-associated transcript fusions
    • Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, et al. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene. 2015;34:4845-54.
    • (2015) Oncogene , vol.34 , pp. 4845-4854
    • Yoshihara, K.1    Wang, Q.2    Torres-Garcia, W.3    Zheng, S.4    Vegesna, R.5    Kim, H.6
  • 90
    • 84964313410 scopus 로고    scopus 로고
    • Heterogeneity in the inter-tumor transcriptome of high risk prostate cancer
    • Wyatt AW, Mo F, Wang K, McConeghy B, Brahmbhatt S, Jong L, et al. Heterogeneity in the inter-tumor transcriptome of high risk prostate cancer. Genome Biol. 2014;15:426.
    • (2014) Genome Biol , vol.15 , pp. 426
    • Wyatt, A.W.1    Mo, F.2    Wang, K.3    McConeghy, B.4    Brahmbhatt, S.5    Jong, L.6
  • 92
    • 65249144557 scopus 로고    scopus 로고
    • Commonality but diversity in cancer gene fusions
    • Rabbitts TH. Commonality but diversity in cancer gene fusions. Cell. 2009;137:391-5.
    • (2009) Cell , vol.137 , pp. 391-395
    • Rabbitts, T.H.1
  • 93
    • 79957875348 scopus 로고    scopus 로고
    • Comrad: detection of expressed rearrangements by integrated analysis of RNA-Seq and low coverage genome sequence data
    • McPherson A, Wu C, Hajirasouliha I, Hormozdiari F, Hach F, Lapuk A, et al. Comrad: detection of expressed rearrangements by integrated analysis of RNA-Seq and low coverage genome sequence data. Bioinformatics. 2011;27:1481-8.
    • (2011) Bioinformatics , vol.27 , pp. 1481-1488
    • McPherson, A.1    Wu, C.2    Hajirasouliha, I.3    Hormozdiari, F.4    Hach, F.5    Lapuk, A.6
  • 94
    • 80054003528 scopus 로고    scopus 로고
    • ChimeraScan: a tool for identifying chimeric transcription in sequencing data
    • Iyer MK, Chinnaiyan AM, Maher CA. ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics. 2011;27:2903-4.
    • (2011) Bioinformatics , vol.27 , pp. 2903-2904
    • Iyer, M.K.1    Chinnaiyan, A.M.2    Maher, C.A.3
  • 95
    • 78651476339 scopus 로고    scopus 로고
    • Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing
    • Pflueger D, Terry S, Sboner A, Habegger L, Esgueva R, Lin PC, et al. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res. 2011;21:56-67.
    • (2011) Genome Res , vol.21 , pp. 56-67
    • Pflueger, D.1    Terry, S.2    Sboner, A.3    Habegger, L.4    Esgueva, R.5    Lin, P.C.6
  • 96
    • 84880902774 scopus 로고    scopus 로고
    • mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing
    • Wu J, Liu Q, Wang X, Zheng J, Wang T, You M, et al. mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol. 2013;10:1087-92.
    • (2013) RNA Biol , vol.10 , pp. 1087-1092
    • Wu, J.1    Liu, Q.2    Wang, X.3    Zheng, J.4    Wang, T.5    You, M.6
  • 97
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357-9.
    • (2012) Nat Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 98
    • 67649884743 scopus 로고    scopus 로고
    • Fast and accurate short read alignment with Burrows-Wheeler transform
    • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754-60.
    • (2009) Bioinformatics , vol.25 , pp. 1754-1760
    • Li, H.1    Durbin, R.2
  • 101
    • 84875476368 scopus 로고    scopus 로고
    • miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data
    • An J, Lai J, Lehman ML, Nelson CC. miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data. Nucleic Acids Res. 2013;41:727-37.
    • (2013) Nucleic Acids Res , vol.41 , pp. 727-737
    • An, J.1    Lai, J.2    Lehman, M.L.3    Nelson, C.C.4
  • 102
    • 80052701585 scopus 로고    scopus 로고
    • miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants
    • Yang X, Li L. miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics. 2011;27:2614-5.
    • (2011) Bioinformatics , vol.27 , pp. 2614-2615
    • Yang, X.1    Li, L.2
  • 103
    • 84865121074 scopus 로고    scopus 로고
    • The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets
    • Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, et al. The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics. 2012;28:2059-61.
    • (2012) Bioinformatics , vol.28 , pp. 2059-2061
    • Stocks, M.B.1    Moxon, S.2    Mapleson, D.3    Woolfenden, H.C.4    Mohorianu, I.5    Folkes, L.6
  • 104
    • 84878022987 scopus 로고    scopus 로고
    • ShortStack: comprehensive annotation and quantification of small RNA genes
    • Axtell MJ. ShortStack: comprehensive annotation and quantification of small RNA genes. RNA. 2013;19:740-51.
    • (2013) RNA , vol.19 , pp. 740-751
    • Axtell, M.J.1
  • 105
    • 84889954757 scopus 로고    scopus 로고
    • iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq
    • Giurato G, De Filippo MR, Rinaldi A, Hashim A, Nassa G, Ravo M, et al. iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq. BMC Bioinformatics. 2013;14:362.
    • (2013) BMC Bioinformatics , vol.14 , pp. 362
    • Giurato, G.1    Filippo, M.R.2    Rinaldi, A.3    Hashim, A.4    Nassa, G.5    Ravo, M.6
  • 106
    • 77953212372 scopus 로고    scopus 로고
    • Gene ontology analysis for RNA-seq: accounting for selection bias
    • Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:1-12.
    • (2010) Genome Biol , vol.11 , pp. 1-12
    • Young, M.D.1    Wakefield, M.J.2    Smyth, G.K.3    Oshlack, A.4
  • 107
    • 84872202078 scopus 로고    scopus 로고
    • GSVA: gene set variation analysis for microarray and RNA-Seq data
    • Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics. 2013;14:7.
    • (2013) BMC Bioinformatics , vol.14 , pp. 7
    • Hänzelmann, S.1    Castelo, R.2    Guinney, J.3
  • 108
    • 84876153678 scopus 로고    scopus 로고
    • Gene set enrichment analysis of RNA-Seq data: integrating differential expression and splicing
    • Wang X, Cairns MJ. Gene set enrichment analysis of RNA-Seq data: integrating differential expression and splicing. BMC Bioinformatics. 2013;14 Suppl 5:S16.
    • (2013) BMC Bioinformatics , vol.14 , pp. S16
    • Wang, X.1    Cairns, M.J.2
  • 111
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources
    • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protocols. 2009;4:44-57.
    • (2009) Nat Protocols , vol.4 , pp. 44-57
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 112
    • 58549112996 scopus 로고    scopus 로고
    • Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
    • Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1-13.
    • (2009) Nucleic Acids Res , vol.37 , pp. 1-13
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 113
    • 77954339096 scopus 로고    scopus 로고
    • Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling
    • Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, et al. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res. 2010;38 suppl 2:W210-3.
    • (2010) Nucleic Acids Res , vol.38 , pp. W210-W213
    • Medina, I.1    Carbonell, J.2    Pulido, L.3    Madeira, S.C.4    Goetz, S.5    Conesa, A.6
  • 116
    • 84858602406 scopus 로고    scopus 로고
    • InterPro in 2011: new developments in the family and domain prediction database
    • Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, et al. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 2011;40(Database issue):D306-12.
    • (2011) Nucleic Acids Res , vol.40 , Issue.DATABASE ISSUE , pp. D306-D312
    • Hunter, S.1    Jones, P.2    Mitchell, A.3    Apweiler, R.4    Attwood, T.K.5    Bateman, A.6
  • 117
    • 24644503098 scopus 로고    scopus 로고
    • Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research
    • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674-6.
    • (2005) Bioinformatics , vol.21 , pp. 3674-3676
    • Conesa, A.1    Götz, S.2    García-Gómez, J.M.3    Terol, J.4    Talón, M.5    Robles, M.6
  • 119
    • 84891818318 scopus 로고    scopus 로고
    • miRBase: annotating high confidence microRNAs using deep sequencing data
    • Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68-73.
    • (2014) Nucleic Acids Res , vol.42 , Issue.DATABASE ISSUE , pp. D68-73
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 121
    • 84901631426 scopus 로고    scopus 로고
    • Bayesian test for colocalisation between pairs of genetic association studies using summary statistics
    • Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10:e1004383.
    • (2014) PLoS Genet , vol.10
    • Giambartolomei, C.1    Vukcevic, D.2    Schadt, E.E.3    Franke, L.4    Hingorani, A.D.5    Wallace, C.6
  • 122
    • 34547216747 scopus 로고    scopus 로고
    • Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma
    • Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448:470-3.
    • (2007) Nature , vol.448 , pp. 470-473
    • Moffatt, M.F.1    Kabesch, M.2    Liang, L.3    Dixon, A.L.4    Strachan, D.5    Heath, S.6
  • 123
    • 47249142778 scopus 로고    scopus 로고
    • Revealing the architecture of gene regulation: the promise of eQTL studies
    • Gilad Y, Rifkin S, Pritchard J. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 2008;24:408-15.
    • (2008) Trends Genet , vol.24 , pp. 408-415
    • Gilad, Y.1    Rifkin, S.2    Pritchard, J.3
  • 124
    • 84878497307 scopus 로고    scopus 로고
    • Global properties and functional complexity of human gene regulatory variation
    • Gaffney D. Global properties and functional complexity of human gene regulatory variation. PLoS Genet. 2013;9:e1003501.
    • (2013) PLoS Genet , vol.9
    • Gaffney, D.1
  • 126
    • 77950460661 scopus 로고    scopus 로고
    • Understanding mechanisms underlying human gene expression variation with RNA sequencing
    • Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature. 2010;464:768-72.
    • (2010) Nature , vol.464 , pp. 768-772
    • Pickrell, J.K.1    Marioni, J.C.2    Pai, A.A.3    Degner, J.F.4    Engelhardt, B.E.5    Nkadori, E.6
  • 128
    • 84891685308 scopus 로고    scopus 로고
    • Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals
    • Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, Shi J, et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 2014;24:14-24.
    • (2014) Genome Res , vol.24 , pp. 14-24
    • Battle, A.1    Mostafavi, S.2    Zhu, X.3    Potash, J.B.4    Weissman, M.M.5    Shi, J.6
  • 129
    • 77954763156 scopus 로고    scopus 로고
    • Genome-wide allele-specific analysis: insights into regulatory variation
    • Pastinen T. Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet. 2010;11:533-8.
    • (2010) Nat Rev Genet , vol.11 , pp. 533-538
    • Pastinen, T.1
  • 130
    • 84856753476 scopus 로고    scopus 로고
    • A statistical framework for eQTL mapping using RNA-seq data
    • Sun W. A statistical framework for eQTL mapping using RNA-seq data. Biometrics. 2012;68:1-11.
    • (2012) Biometrics , vol.68 , pp. 1-11
    • Sun, W.1
  • 131
    • 84946481204 scopus 로고    scopus 로고
    • WASP: allele-specific for robust molecular quantitative trait locus discovery
    • van de Geijn B, McVicker G, Gilad Y, Pritchard JK. WASP: allele-specific for robust molecular quantitative trait locus discovery. Nat Methods. 2015;12:1061-3.
    • (2015) Nat Methods , vol.12 , pp. 1061-1063
    • Geijn, B.1    McVicker, G.2    Gilad, Y.3    Pritchard, J.K.4
  • 132
    • 84956678036 scopus 로고    scopus 로고
    • Fine-mapping cellular QTLs with RASQUAL and ATAC-seq
    • Kumasaka N, Knights AJ, Gaffney DJ. Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat Genet. 2015. doi: 10.1038/ng.3467.
    • (2015) Nat Genet
    • Kumasaka, N.1    Knights, A.J.2    Gaffney, D.J.3
  • 133
    • 0042424602 scopus 로고    scopus 로고
    • Statistical significance for genome-wide studies
    • Storey JD, Tibshirani R. Statistical significance for genome-wide studies. Proc Natl Acad Sci U S A. 2003;100:9440-5.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 9440-9445
    • Storey, J.D.1    Tibshirani, R.2
  • 135
    • 84900338300 scopus 로고    scopus 로고
    • Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes
    • Raj T, Rothamel K, Mostafavi S, Ye C, Lee MN, Replogle JM, et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science. 2014;344:519-23.
    • (2014) Science , vol.344 , pp. 519-523
    • Raj, T.1    Rothamel, K.2    Mostafavi, S.3    Ye, C.4    Lee, M.N.5    Replogle, J.M.6
  • 136
    • 84861153094 scopus 로고    scopus 로고
    • Matrix eQTL: ultra fast eQTL analysis via large matrix operations
    • Shabalin A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012;28:1353-8.
    • (2012) Bioinformatics , vol.28 , pp. 1353-1358
    • Shabalin, A.1
  • 137
    • 84859218110 scopus 로고    scopus 로고
    • Comparative analysis of algorithms for integration of copy number and expression data
    • Louhimo R, Lepikhova T, Monni O, Hautaniemi S. Comparative analysis of algorithms for integration of copy number and expression data. Nat Methods. 2012;9:351-5.
    • (2012) Nat Methods , vol.9 , pp. 351-355
    • Louhimo, R.1    Lepikhova, T.2    Monni, O.3    Hautaniemi, S.4
  • 139
    • 84901829325 scopus 로고    scopus 로고
    • Genome-wide methylated CpG island profiles of melanoma cells reveal a melanoma coregulation network
    • Li JL, Mazar J, Zhong C, Faulkner GJ, Govindarajan SS, Zhang Z, et al. Genome-wide methylated CpG island profiles of melanoma cells reveal a melanoma coregulation network. Sci Rep. 2013;3:2962.
    • (2013) Sci Rep , vol.3 , pp. 2962
    • Li, J.L.1    Mazar, J.2    Zhong, C.3    Faulkner, G.J.4    Govindarajan, S.S.5    Zhang, Z.6
  • 140
    • 84255194385 scopus 로고    scopus 로고
    • An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver
    • Xie L, Weichel B, Ohm JE, Zhang K. An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver. BMC Syst Biol. 2011;5 Suppl 3:S4.
    • (2011) BMC Syst Biol , vol.5 , pp. S4
    • Xie, L.1    Weichel, B.2    Ohm, J.E.3    Zhang, K.4
  • 141
    • 84869044837 scopus 로고    scopus 로고
    • Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects
    • Van Eijk KR, de Jong S, Boks MP, Langeveld T, Colas F, Veldink JH, et al. Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects. BMC Genomics. 2012;13:636.
    • (2012) BMC Genomics , vol.13 , pp. 636
    • Eijk, K.R.1    Jong, S.2    Boks, M.P.3    Langeveld, T.4    Colas, F.5    Veldink, J.H.6
  • 142
    • 84873576566 scopus 로고    scopus 로고
    • Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis
    • Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013;31:142-7.
    • (2013) Nat Biotechnol , vol.31 , pp. 142-147
    • Liu, Y.1    Aryee, M.J.2    Padyukov, L.3    Fallin, M.D.4    Hesselberg, E.5    Runarsson, A.6
  • 143
    • 77957320156 scopus 로고    scopus 로고
    • An integrated analysis of molecular aberrations in NCI-60 cell lines
    • Yeang C-H. An integrated analysis of molecular aberrations in NCI-60 cell lines. BMC Bioinformatics. 2010;11:495.
    • (2010) BMC Bioinformatics , vol.11 , pp. 495
    • Yeang, C.-H.1
  • 144
    • 78649330451 scopus 로고    scopus 로고
    • An empirical Bayes model for gene expression and methylation profiles in antiestrogen resistant breast cancer
    • Jeong J, Li L, Liu Y, Nephew KP, Huang YHM, Shen C. An empirical Bayes model for gene expression and methylation profiles in antiestrogen resistant breast cancer. BMC Med Genomics. 2010;3:55.
    • (2010) BMC Med Genomics , vol.3 , pp. 55
    • Jeong, J.1    Li, L.2    Liu, Y.3    Nephew, K.P.4    Huang, Y.H.M.5    Shen, C.6
  • 145
    • 84906251108 scopus 로고    scopus 로고
    • A systems-level integrative framework for genome-wide DNA methylation and gene expression data identifies differential gene expression modules under epigenetic control
    • Jiao Y, Widschwendter M, Teschendorff AE. A systems-level integrative framework for genome-wide DNA methylation and gene expression data identifies differential gene expression modules under epigenetic control. Bioinformatics. 2014;30:2360-6.
    • (2014) Bioinformatics , vol.30 , pp. 2360-2366
    • Jiao, Y.1    Widschwendter, M.2    Teschendorff, A.E.3
  • 146
    • 84888374584 scopus 로고    scopus 로고
    • Target analysis by integration of transcriptome and ChIP-seq data with BETA
    • Wang S, Sun H, Ma J, Zang C, Wang C, Wang J, et al. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat Protoc. 2013;8:2502-15.
    • (2013) Nat Protoc , vol.8 , pp. 2502-2515
    • Wang, S.1    Sun, H.2    Ma, J.3    Zang, C.4    Wang, C.5    Wang, J.6
  • 147
    • 84923362619 scopus 로고    scopus 로고
    • Integrative analysis of 111 reference human epigenomes
    • Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317-30.
    • (2015) Nature , vol.518 , pp. 317-330
    • Kundaje, A.1    Meuleman, W.2    Ernst, J.3    Bilenky, M.4    Yen, A.5
  • 148
    • 84933508186 scopus 로고    scopus 로고
    • Uncovering correlated variability in epigenomic datasets using the Karhunen-Loeve transform
    • Madrigal P, Krajewski P. Uncovering correlated variability in epigenomic datasets using the Karhunen-Loeve transform. BioData Min. 2015;8:20.
    • (2015) BioData Min , vol.8 , pp. 20
    • Madrigal, P.1    Krajewski, P.2
  • 149
    • 85031679857 scopus 로고    scopus 로고
    • Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems
    • Angelini C, Costa V. Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems. Front Cell Dev Biol. 2014;2:51.
    • (2014) Front Cell Dev Biol , vol.2 , pp. 51
    • Angelini, C.1    Costa, V.2
  • 151
    • 79959805164 scopus 로고    scopus 로고
    • miRWalk - database: prediction of possible miRNA binding sites by 'walking' the genes of 3 genomes
    • Dweep H, Sticht C, Pandey P, Gretz N. miRWalk - database: prediction of possible miRNA binding sites by 'walking' the genes of 3 genomes. J Biomed Inform. 2011;44:839-47.
    • (2011) J Biomed Inform , vol.44 , pp. 839-847
    • Dweep, H.1    Sticht, C.2    Pandey, P.3    Gretz, N.4
  • 153
    • 62549089305 scopus 로고    scopus 로고
    • CORNA: testing gene lists for regulation by microRNAs
    • Wu X, Watson M. CORNA: testing gene lists for regulation by microRNAs. Bioinformatics. 2009;25:832-3.
    • (2009) Bioinformatics , vol.25 , pp. 832-833
    • Wu, X.1    Watson, M.2
  • 154
    • 84866519569 scopus 로고    scopus 로고
    • BioVLAB-MMIA: a cloud environment for microRNA and mRNA integrated analysis (MMIA) on Amazon EC2
    • Lee H, Yang Y, Chae H, Nam S, Choi D, Tangchaisin P, et al. BioVLAB-MMIA: a cloud environment for microRNA and mRNA integrated analysis (MMIA) on Amazon EC2. IEEE Trans Nanobiosci. 2012;11:266-72.
    • (2012) IEEE Trans Nanobiosci , vol.11 , pp. 266-272
    • Lee, H.1    Yang, Y.2    Chae, H.3    Nam, S.4    Choi, D.5    Tangchaisin, P.6
  • 155
    • 67849101186 scopus 로고    scopus 로고
    • MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression
    • Nam S, Li M, Choi K, Balch C, Kim S, Nephew KP. MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res. 2009;37:W356-62.
    • (2009) Nucleic Acids Res , vol.37 , pp. W356-W362
    • Nam, S.1    Li, M.2    Choi, K.3    Balch, C.4    Kim, S.5    Nephew, K.P.6
  • 157
    • 84969409968 scopus 로고    scopus 로고
    • SePIA: RNA and smallRNA-sequence processing, integration, and analysis
    • Accessed 6 Jan 2016
    • Icay K, Chen P, Cervera C, Lehtonen R, Hautaniemi S. SePIA: RNA and smallRNA-sequence processing, integration, and analysis. 2015. http://anduril.org/sepia. Accessed 6 Jan 2016.
    • (2015)
    • Icay, K.1    Chen, P.2    Cervera, C.3    Lehtonen, R.4    Hautaniemi, S.5
  • 158
    • 72949089708 scopus 로고    scopus 로고
    • Global signatures of protein and mRNA expression levels
    • de Sousa AR, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNA expression levels. Mol Biosyst. 2009;5:1512-26.
    • (2009) Mol Biosyst , vol.5 , pp. 1512-1526
    • Sousa, A.R.1    Penalva, L.O.2    Marcotte, E.M.3    Vogel, C.4
  • 159
    • 84858439862 scopus 로고    scopus 로고
    • Insights into the regulation of protein abundance from proteomic and transcriptomic analyses
    • Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227-32.
    • (2012) Nat Rev Genet , vol.13 , pp. 227-232
    • Vogel, C.1    Marcotte, E.M.2
  • 160
    • 84890231620 scopus 로고    scopus 로고
    • Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis
    • Low TY, van Heesch S, van den Toorn H, Giansanti P, Cristobal A, Toonen P. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Rep. 2013;5:1469-78.
    • (2013) Cell Rep , vol.5 , pp. 1469-1478
    • Low, T.Y.1    Heesch, S.2    Toorn, H.3    Giansanti, P.4    Cristobal, A.5    Toonen, P.6
  • 161
    • 48449106046 scopus 로고    scopus 로고
    • MassTRIX: mass translator into pathways
    • Suhre K, Schmitt-Kopplin P. MassTRIX: mass translator into pathways. Nucleic Acids Res. 2008;36(Web Server issue):W481-4.
    • (2008) Nucleic Acids Res , vol.36 , Issue.WEB SERVER ISSUE , pp. W481-W484
    • Suhre, K.1    Schmitt-Kopplin, P.2
  • 162
    • 78650572031 scopus 로고    scopus 로고
    • Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data
    • García-Alcalde F, García-López F, Dopazo J, Conesa A. Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics. 2011;27:137-9.
    • (2011) Bioinformatics , vol.27 , pp. 137-139
    • García-Alcalde, F.1    García-López, F.2    Dopazo, J.3    Conesa, A.4
  • 164
    • 84864470208 scopus 로고    scopus 로고
    • SteinerNet: a web server for integrating 'omic' data to discover hidden components of response pathways
    • Tuncbag N, McCallum S, Huang SS, Fraenkel E. SteinerNet: a web server for integrating 'omic' data to discover hidden components of response pathways. Nucleic Acids Res. 2012;40:W505-9.
    • (2012) Nucleic Acids Res , vol.40 , pp. W505-W509
    • Tuncbag, N.1    McCallum, S.2    Huang, S.S.3    Fraenkel, E.4
  • 165
    • 79959448071 scopus 로고    scopus 로고
    • A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules
    • Zhang S, Li Q, Liu J, Zhou XJ. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics. 2011;27:i401-9.
    • (2011) Bioinformatics , vol.27 , pp. i401-i409
    • Zhang, S.1    Li, Q.2    Liu, J.3    Zhou, X.J.4
  • 166
    • 84879893951 scopus 로고    scopus 로고
    • Integrating sequence, expression and interaction data to determine condition-specific miRNA regulation
    • Le H-S, Bar-Joseph Z. Integrating sequence, expression and interaction data to determine condition-specific miRNA regulation. Bioinformatics. 2013;29:i89-97.
    • (2013) Bioinformatics , vol.29 , pp. i89-97
    • Le, H.-S.1    Bar-Joseph, Z.2
  • 167
    • 84890011736 scopus 로고    scopus 로고
    • A modular framework for gene set analysis integrating multilevel omics data
    • Sass S, Buettner F, Mueller NS, Theis FJ. A modular framework for gene set analysis integrating multilevel omics data. Nucleic Acids Res. 2013;41:9622-33.
    • (2013) Nucleic Acids Res , vol.41 , pp. 9622-9633
    • Sass, S.1    Buettner, F.2    Mueller, N.S.3    Theis, F.J.4
  • 168
    • 84880335552 scopus 로고    scopus 로고
    • 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data
    • Kuo TC, Tian TF, Tseng YJ. 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC Syst Biol. 2013;7:64.
    • (2013) BMC Syst Biol , vol.7 , pp. 64
    • Kuo, T.C.1    Tian, T.F.2    Tseng, Y.J.3
  • 169
    • 78751681684 scopus 로고    scopus 로고
    • Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme
    • Ovaska K, Laakso M, Haapa-Paananen S, Louhimo R, Chen P, Aittomäki V, et al. Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Med. 2010;2:65.
    • (2010) Genome Med , vol.2 , pp. 65
    • Ovaska, K.1    Laakso, M.2    Haapa-Paananen, S.3    Louhimo, R.4    Chen, P.5    Aittomäki, V.6
  • 170
    • 77955801615 scopus 로고    scopus 로고
    • Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences
    • Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11:R86.
    • (2010) Genome Biol , vol.11 , pp. R86
    • Goecks, J.1    Nekrutenko, A.2    Taylor, J.3
  • 172
    • 84891792626 scopus 로고    scopus 로고
    • Tools to covisualize and coanalyze proteomic data with genomes and transcriptomes: validation of genes and alternative mRNA splicing
    • Pang CNI, Tay AP, Aya C. Tools to covisualize and coanalyze proteomic data with genomes and transcriptomes: validation of genes and alternative mRNA splicing. J Proteome Res. 2014;13:84-98.
    • (2014) J Proteome Res , vol.13 , pp. 84-98
    • Pang, C.N.I.1    Tay, A.P.2    Aya, C.3
  • 173
    • 84864880991 scopus 로고    scopus 로고
    • Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells
    • Ramsköld D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30:777-82.
    • (2012) Nat Biotechnol , vol.30 , pp. 777-782
    • Ramsköld, D.1    Luo, S.2    Wang, Y.C.3    Li, R.4    Deng, Q.5    Faridani, O.R.6
  • 175
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202-14.
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3    Nemesh, J.4    Shekhar, K.5    Goldman, M.6
  • 176
    • 84895562012 scopus 로고    scopus 로고
    • From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
    • Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014;24:496-510.
    • (2014) Genome Res , vol.24 , pp. 496-510
    • Marinov, G.K.1    Williams, B.A.2    McCue, K.3    Schroth, G.P.4    Gertz, J.5    Myers, R.M.6
  • 177
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;11:163-6.
    • (2014) Nat Methods , vol.11 , pp. 163-166
    • Islam, S.1    Zeisel, A.2    Joost, S.3    Manno, G.4    Zajac, P.5    Kasper, M.6
  • 180
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16:133-45.
    • (2015) Nat Rev Genet , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 181
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C, Cacchiarelli D. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-6.
    • (2014) Nat Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2
  • 182
    • 84883474570 scopus 로고    scopus 로고
    • Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos
    • Lorthongpanich C, Cheow LF, Balu S, Quake SR, Knowles BB, Burkholder WF, et al. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science. 2013;341:1110-2.
    • (2013) Science , vol.341 , pp. 1110-1112
    • Lorthongpanich, C.1    Cheow, L.F.2    Balu, S.3    Quake, S.R.4    Knowles, B.B.5    Burkholder, W.F.6
  • 184
    • 84930006926 scopus 로고    scopus 로고
    • Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing
    • Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science. 2015;348:910-4.
    • (2015) Science , vol.348 , pp. 910-914
    • Cusanovich, D.A.1    Daza, R.2    Adey, A.3    Pliner, H.A.4    Christiansen, L.5    Gunderson, K.L.6
  • 185
    • 84929697731 scopus 로고    scopus 로고
    • Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events
    • Tilgner H, Jahanbani F, Blauwkamp T, Moshrefi A, Jaeger E, Chen F, et al. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. Nat Biotechnol. 2015;33:736-42.
    • (2015) Nat Biotechnol , vol.33 , pp. 736-742
    • Tilgner, H.1    Jahanbani, F.2    Blauwkamp, T.3    Moshrefi, A.4    Jaeger, E.5    Chen, F.6
  • 187
    • 84904016056 scopus 로고    scopus 로고
    • Defining a personal, allele-specific, and single-molecule long-read transcriptome
    • Tilgner H, Grubert F, Sharon D, Snyder MP. Defining a personal, allele-specific, and single-molecule long-read transcriptome. Proc Natl Acad Sci U S A. 2014;111:9869-74.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 9869-9874
    • Tilgner, H.1    Grubert, F.2    Sharon, D.3    Snyder, M.P.4
  • 188
    • 84867121279 scopus 로고    scopus 로고
    • Improving PacBio long read accuracy by short read alignment
    • Au KF, Underwood JG, Lee L, Wong WH. Improving PacBio long read accuracy by short read alignment. PLoS One. 2012;7:e46679.
    • (2012) PLoS One , vol.7
    • Au, K.F.1    Underwood, J.G.2    Lee, L.3    Wong, W.H.4
  • 189
    • 79960208246 scopus 로고    scopus 로고
    • Sequencing technology does not eliminate biological variability
    • Hansen KD, Wu Z, Irizarry RA, Leek JT. Sequencing technology does not eliminate biological variability. Nat Biotechnol. 2011;29:572-3.
    • (2011) Nat Biotechnol , vol.29 , pp. 572-573
    • Hansen, K.D.1    Wu, Z.2    Irizarry, R.A.3    Leek, J.T.4
  • 191
    • 84874698718 scopus 로고    scopus 로고
    • Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression
    • Busby MA, Stewart C, Miller CA, Grzeda KR, Marth GT. Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics. 2013;29:656-7.
    • (2013) Bioinformatics , vol.29 , pp. 656-657
    • Busby, M.A.1    Stewart, C.2    Miller, C.A.3    Grzeda, K.R.4    Marth, G.T.5
  • 192
    • 65649126066 scopus 로고    scopus 로고
    • Transcript length bias in RNA-seq data confounds systems biology
    • Oshlack A, Wakefield MJ. Transcript length bias in RNA-seq data confounds systems biology. Biol Direct. 2009;4:14.
    • (2009) Biol Direct , vol.4 , pp. 14
    • Oshlack, A.1    Wakefield, M.J.2
  • 193
    • 71849096141 scopus 로고    scopus 로고
    • How does multiple testing correction work?
    • Noble WS. How does multiple testing correction work? Nat Biotechnol. 2009;27:1135-7.
    • (2009) Nat Biotechnol , vol.27 , pp. 1135-1137
    • Noble, W.S.1
  • 194
    • 84920570629 scopus 로고    scopus 로고
    • subSeq: determining appropriate sequencing depth through efficient read subsampling
    • Robinson DG, Storey JD. subSeq: determining appropriate sequencing depth through efficient read subsampling. Bioinformatics. 2014;30:3424-6.
    • (2014) Bioinformatics , vol.30 , pp. 3424-3426
    • Robinson, D.G.1    Storey, J.D.2
  • 195
    • 84893242996 scopus 로고    scopus 로고
    • RNA-seq differential expression studies: more sequence or more replication?
    • Liu Y, Zhou J, White KP. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics. 2013;30:301-4.
    • (2013) Bioinformatics , vol.30 , pp. 301-304
    • Liu, Y.1    Zhou, J.2    White, K.P.3
  • 196
    • 84920550975 scopus 로고    scopus 로고
    • A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
    • SEQC/MAQC-III Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol. 2014;32:903-14.
    • (2014) Nat Biotechnol , vol.32 , pp. 903-914
  • 199
    • 84893723345 scopus 로고    scopus 로고
    • Library preparation methods for next-generation sequencing: tone down the bias
    • Van Dijk EL, Jaszczyszyn Y, Thermes C. Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res. 2014;322:12-20.
    • (2014) Exp Cell Res , vol.322 , pp. 12-20
    • Dijk, E.L.1    Jaszczyszyn, Y.2    Thermes, C.3
  • 200
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: discovering splice junctions with RNA-Seq
    • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105-11.
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 201
    • 84876996918 scopus 로고    scopus 로고
    • TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
    • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
    • (2013) Genome Biol , vol.14 , pp. R36
    • Kim, D.1    Pertea, G.2    Trapnell, C.3    Pimentel, H.4    Kelley, R.5    Salzberg, S.L.6
  • 202
    • 77951820899 scopus 로고    scopus 로고
    • Fast and SNP-tolerant detection of complex variants and splicing in short reads
    • Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26:873-81.
    • (2010) Bioinformatics , vol.26 , pp. 873-881
    • Wu, T.D.1    Nacu, S.2
  • 205
    • 84870837088 scopus 로고    scopus 로고
    • The GEM mapper: fast, accurate and versatile alignment by filtration
    • Marco-Sola S, Sammeth M, Guigó R, Ribeca P. The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods. 2012;9:1185-8.
    • (2012) Nat Methods , vol.9 , pp. 1185-1188
    • Marco-Sola, S.1    Sammeth, M.2    Guigó, R.3    Ribeca, P.4
  • 206
    • 84924333321 scopus 로고    scopus 로고
    • A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification
    • Zhao S, Zhang B. A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification. BMC Genomics. 2015;16:97.
    • (2015) BMC Genomics , vol.16 , pp. 97
    • Zhao, S.1    Zhang, B.2
  • 207
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
    • (2009) Genome Biol , vol.10 , pp. R25
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 208
    • 84858606519 scopus 로고    scopus 로고
    • A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data
    • Kvam VM, Liu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot. 2012;99:248-56.
    • (2012) Am J Bot , vol.99 , pp. 248-256
    • Kvam, V.M.1    Liu, P.2    Si, Y.3
  • 209
    • 84866158885 scopus 로고    scopus 로고
    • Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing
    • Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ, Taylor JM. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics. 2012;13:484.
    • (2012) BMC Genomics , vol.13 , pp. 484
    • Robles, J.A.1    Qureshi, S.E.2    Stephen, S.J.3    Wilson, S.R.4    Burden, C.J.5    Taylor, J.M.6
  • 210
    • 84869014474 scopus 로고    scopus 로고
    • A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae
    • Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlén M, et al. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res. 2012;40:10084-97.
    • (2012) Nucleic Acids Res , vol.40 , pp. 10084-10097
    • Nookaew, I.1    Papini, M.2    Pornputtapong, N.3    Scalcinati, G.4    Fagerberg, L.5    Uhlén, M.6
  • 211
    • 84959452344 scopus 로고    scopus 로고
    • ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer
    • Seyednasrollah F, Rantanen K, Jaakkola P, Elo LL. ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer. Nucleic Acids Res. 2016;44(1):e1. doi: 10.1093/nar/gkv806.
    • (2016) Nucleic Acids Res , vol.44 , Issue.1
    • Seyednasrollah, F.1    Rantanen, K.2    Jaakkola, P.3    Elo, L.L.4
  • 212
    • 84883067293 scopus 로고    scopus 로고
    • NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data
    • Bi Y, Davuluri RV. NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data. BMC Bioinformatics. 2013;14:262.
    • (2013) BMC Bioinformatics , vol.14 , pp. 262
    • Bi, Y.1    Davuluri, R.V.2
  • 213
    • 84907546454 scopus 로고    scopus 로고
    • Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series
    • Nueda MJ, Tarazona S, Conesa A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics. 2014;30:2598-602.
    • (2014) Bioinformatics , vol.30 , pp. 2598-2602
    • Nueda, M.J.1    Tarazona, S.2    Conesa, A.3
  • 214
    • 84878682420 scopus 로고    scopus 로고
    • The Genotype-Tissue expression (GTEx) project
    • GTEx Consortium. The Genotype-Tissue expression (GTEx) project. Nat Genet. 2013;45:580-5.
    • (2013) Nat Genet , vol.45 , pp. 580-585


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.