메뉴 건너뛰기




Volumn 18, Issue 8, 2017, Pages 477-494

Vascular heterogeneity and specialization in development and disease

Author keywords

[No Author keywords available]

Indexed keywords

VASCULOTROPIN RECEPTOR;

EID: 85026911538     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm.2017.36     Document Type: Review
Times cited : (426)

References (206)
  • 3
    • 84897882037 scopus 로고    scopus 로고
    • Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone
    • Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323-328 (2014).
    • (2014) Nature , vol.507 , pp. 323-328
    • Kusumbe, A.P.1    Ramasamy, S.K.2    Adams, R.H.3
  • 4
    • 85003868954 scopus 로고    scopus 로고
    • Vascular laminins in physiology and pathology
    • Di Russo, J. et al. Vascular laminins in physiology and pathology. Matrix Biol. 57-58, 140-148 (2016).
    • (2016) Matrix Biol. , vol.57-58 , pp. 140-148
    • Di Russo, J.1
  • 5
    • 78649467527 scopus 로고    scopus 로고
    • Pericytes regulate the blood-brain barrier
    • Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557-561 (2010).
    • (2010) Nature , vol.468 , pp. 557-561
    • Armulik, A.1
  • 6
    • 79961230399 scopus 로고    scopus 로고
    • Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises
    • Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193-215 (2011).
    • (2011) Dev. Cell , vol.21 , pp. 193-215
    • Armulik, A.1    Genove, G.2    Betsholtz, C.3
  • 7
    • 84897564199 scopus 로고    scopus 로고
    • Capillary pericytes regulate cerebral blood flow in health and disease
    • Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55-60 (2014).
    • (2014) Nature , vol.508 , pp. 55-60
    • Hall, C.N.1
  • 8
    • 84937414504 scopus 로고    scopus 로고
    • Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes
    • Hill, R. A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95-110 (2015).
    • (2015) Neuron , vol.87 , pp. 95-110
    • Hill, R.A.1
  • 9
    • 84984788968 scopus 로고    scopus 로고
    • Endothelial cell responses to biomechanical forces in lymphatic vessels
    • Sabine, A., Saygili Demir, C. & Petrova, T. V. Endothelial cell responses to biomechanical forces in lymphatic vessels. Antioxid. Redox Signal. 25, 451-465 (2016).
    • (2016) Antioxid. Redox Signal. , vol.25 , pp. 451-465
    • Sabine, A.1    Saygili Demir, C.2    Petrova, T.V.3
  • 10
    • 84947901598 scopus 로고    scopus 로고
    • Establishment and dysfunction of the blood-brain barrier
    • Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood-brain barrier. Cell 163, 1064-1078 (2015).
    • (2015) Cell , vol.163 , pp. 1064-1078
    • Zhao, Z.1    Nelson, A.R.2    Betsholtz, C.3    Zlokovic, B.V.4
  • 11
    • 84901269974 scopus 로고    scopus 로고
    • Mfsd2a is critical for the formation and function of the blood-brain barrier
    • Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509, 507-511 (2014).
    • (2014) Nature , vol.509 , pp. 507-511
    • Ben-Zvi, A.1
  • 12
    • 84901260638 scopus 로고    scopus 로고
    • Mfsd2a is a transporter for the essential omega3 fatty acid docosahexaenoic acid
    • Nguyen, L. N. et al. Mfsd2a is a transporter for the essential omega3 fatty acid docosahexaenoic acid. Nature 509, 503-506 (2014).
    • (2014) Nature , vol.509 , pp. 503-506
    • Nguyen, L.N.1
  • 13
    • 84964533485 scopus 로고    scopus 로고
    • Distinct bone marrow blood vessels differentially regulate haematopoiesis
    • Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323-328 (2016).
    • (2016) Nature , vol.532 , pp. 323-328
    • Itkin, T.1
  • 14
    • 34948814992 scopus 로고    scopus 로고
    • Functionally specialized junctions between endothelial cells of lymphatic vessels
    • Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349-2362 (2007).
    • (2007) J. Exp. Med. , vol.204 , pp. 2349-2362
    • Baluk, P.1
  • 15
    • 84928766072 scopus 로고    scopus 로고
    • Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake
    • Coppiello, G. et al. Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake. Circulation 131, 815-826 (2015).
    • (2015) Circulation , vol.131 , pp. 815-826
    • Coppiello, G.1
  • 16
    • 77950865464 scopus 로고    scopus 로고
    • Vascular endothelial growth factor B controls endothelial fatty acid uptake
    • Hagberg, C. E. et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464, 917-921 (2010).
    • (2010) Nature , vol.464 , pp. 917-921
    • Hagberg, C.E.1
  • 17
    • 84895734499 scopus 로고    scopus 로고
    • VEGFBInduced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart
    • Kivela, R. et al. VEGFBinduced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol. Med. 6, 307-321 (2014).
    • (2014) EMBO Mol. Med. , vol.6 , pp. 307-321
    • Kivela, R.1
  • 18
    • 84906819235 scopus 로고    scopus 로고
    • Lack of cardiac and high-fat diet induced metabolic phenotypes in two independent strains of VegfB knockout mice
    • Dijkstra, M. H. et al. Lack of cardiac and high-fat diet induced metabolic phenotypes in two independent strains of Vegfb knockout mice. Sci. Rep. 4, 6238 (2014).
    • (2014) Sci. Rep. , vol.4 , pp. 6238
    • Dijkstra, M.H.1
  • 19
    • 84925594369 scopus 로고    scopus 로고
    • GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration
    • Winkler, E. A. et al. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521-530 (2015).
    • (2015) Nat. Neurosci. , vol.18 , pp. 521-530
    • Winkler, E.A.1
  • 20
    • 84964595404 scopus 로고    scopus 로고
    • Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity
    • Jais, A. et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165, 882-895 (2016).
    • (2016) Cell , vol.165 , pp. 882-895
    • Jais, A.1
  • 21
    • 85002488064 scopus 로고    scopus 로고
    • Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder
    • Tarlungeanu, D. C. et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167, 1481-1494. e18 (2016).
    • (2016) Cell , vol.167 , pp. 1481e18-1494e18
    • Tarlungeanu, D.C.1
  • 22
    • 84922010536 scopus 로고    scopus 로고
    • Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing
    • Lee, M. et al. Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing. Nat. Immunol. 15, 982-995 (2014).
    • (2014) Nat. Immunol. , vol.15 , pp. 982-995
    • Lee, M.1
  • 23
    • 84867900263 scopus 로고    scopus 로고
    • HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes
    • Girard, J. P., Moussion, C. & Forster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762-773 (2012).
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 762-773
    • Girard, J.P.1    Moussion, C.2    Forster, R.3
  • 24
    • 84856929905 scopus 로고    scopus 로고
    • Mechanoinduction of lymph vessel expansion
    • Planas-Paz, L. et al. Mechanoinduction of lymph vessel expansion. EMBO J. 31, 788-804 (2012).
    • (2012) EMBO J , vol.31 , pp. 788-804
    • Planas-Paz, L.1
  • 25
    • 84978656557 scopus 로고    scopus 로고
    • Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification
    • Reischauer, S. et al. Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature 535, 294-298 (2016).
    • (2016) Nature , vol.535 , pp. 294-298
    • Reischauer, S.1
  • 26
    • 84887233404 scopus 로고    scopus 로고
    • Heart field origin of great vessel precursors relies on nkx2.5Mediated vasculogenesis
    • Paffett-Lugassy, N. et al. Heart field origin of great vessel precursors relies on nkx2.5mediated vasculogenesis. Nat. Cell Biol. 15, 1362-1369 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1362-1369
    • Paffett-Lugassy, N.1
  • 27
    • 78149411850 scopus 로고    scopus 로고
    • Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis
    • Proulx, K., Lu, A. & Sumanas, S. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. Dev. Biol. 348, 34-46 (2010).
    • (2010) Dev. Biol. , vol.348 , pp. 34-46
    • Proulx, K.1    Lu, A.2    Sumanas, S.3
  • 28
    • 70349617470 scopus 로고    scopus 로고
    • Chemokine signaling guides regional patterning of the first embryonic artery
    • Siekmann, A. F., Standley, C., Fogarty, K. E., Wolfe, S. A. & Lawson, N. D. Chemokine signaling guides regional patterning of the first embryonic artery. Genes Dev. 23, 2272-2277 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2272-2277
    • Siekmann, A.F.1    Standley, C.2    Fogarty, K.E.3    Wolfe, S.A.4    Lawson, N.D.5
  • 29
    • 70349856167 scopus 로고    scopus 로고
    • Arterial-venous segregation by selective cell sprouting: An alternative mode of blood vessel formation
    • Herbert, S. P. et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326, 294-298 (2009).
    • (2009) Science , vol.326 , pp. 294-298
    • Herbert, S.P.1
  • 30
    • 84894080782 scopus 로고    scopus 로고
    • Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals
    • Lindskog, H. et al. Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals. Development 141, 1120-1128 (2014).
    • (2014) Development , vol.141 , pp. 1120-1128
    • Lindskog, H.1
  • 31
    • 84876979230 scopus 로고    scopus 로고
    • Arterial and venous progenitors of the major axial vessels originate at distinct locations
    • Kohli, V., Schumacher, J. A., Desai, S. P., Rehn, K. & Sumanas, S. Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev. Cell 25, 196-206 (2013).
    • (2013) Dev. Cell , vol.25 , pp. 196-206
    • Kohli, V.1    Schumacher, J.A.2    Desai, S.P.3    Rehn, K.4    Sumanas, S.5
  • 32
    • 84877259309 scopus 로고    scopus 로고
    • Regulation of endothelial cell differentiation and specification
    • Marcelo, K. L., Goldie, L. C. & Hirschi, K. K. Regulation of endothelial cell differentiation and specification. Circ. Res. 112, 1272-1287 (2013).
    • (2013) Circ. Res. , vol.112 , pp. 1272-1287
    • Marcelo, K.L.1    Goldie, L.C.2    Hirschi, K.K.3
  • 33
    • 84930666161 scopus 로고    scopus 로고
    • The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis
    • Helker, C. S. et al. The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis. eLife 4, e06726 (2015).
    • (2015) ELife , vol.4 , pp. e06726
    • Helker, C.S.1
  • 34
    • 80052933197 scopus 로고    scopus 로고
    • Basic and therapeutic aspects of angiogenesis
    • Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873-887 (2011).
    • (2011) Cell , vol.146 , pp. 873-887
    • Potente, M.1    Gerhardt, H.2    Carmeliet, P.3
  • 35
    • 84977080642 scopus 로고    scopus 로고
    • Cell behaviors and dynamics during angiogenesis
    • Betz, C., Lenard, A., Belting, H. G. & Affolter, M. Cell behaviors and dynamics during angiogenesis. Development 143, 2249-2260 (2016).
    • (2016) Development , vol.143 , pp. 2249-2260
    • Betz, C.1    Lenard, A.2    Belting, H.G.3    Affolter, M.4
  • 36
    • 84893740443 scopus 로고    scopus 로고
    • Cellular and molecular mechanisms underlying blood vessel lumen formation
    • Charpentier, M. S. & Conlon, F. L. Cellular and molecular mechanisms underlying blood vessel lumen formation. Bioessays 36, 251-259 (2014).
    • (2014) Bioessays , vol.36 , pp. 251-259
    • Charpentier, M.S.1    Conlon, F.L.2
  • 37
    • 84959201377 scopus 로고    scopus 로고
    • Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo
    • Gebala, V., Collins, R., Geudens, I., Phng, L. K. & Gerhardt, H. Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat. Cell Biol. 18, 443-450 (2016).
    • (2016) Nat. Cell Biol. , vol.18 , pp. 443-450
    • Gebala, V.1    Collins, R.2    Geudens, I.3    Phng, L.K.4    Gerhardt, H.5
  • 38
    • 81855180719 scopus 로고    scopus 로고
    • Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo
    • Herwig, L. et al. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr. Biol. 21, 1942-1948 (2011).
    • (2011) Curr. Biol. , vol.21 , pp. 1942-1948
    • Herwig, L.1
  • 39
    • 84942414356 scopus 로고    scopus 로고
    • Mechanisms of vessel pruning and regression
    • Korn, C. & Augustin, H. G. Mechanisms of vessel pruning and regression. Dev. Cell 34, 5-17 (2015).
    • (2015) Dev. Cell , vol.34 , pp. 5-17
    • Korn, C.1    Augustin, H.G.2
  • 41
    • 85002811958 scopus 로고    scopus 로고
    • Blood flow controls bone vascular function and osteogenesis
    • Ramasamy, S. K. et al. Blood flow controls bone vascular function and osteogenesis. Nat. Commun. 7, 13601 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 13601
    • Ramasamy, S.K.1
  • 42
    • 84923281901 scopus 로고    scopus 로고
    • Arteries are formed by vein-derived endothelial tip cells
    • Xu, C. et al. Arteries are formed by vein-derived endothelial tip cells. Nat. Commun. 5, 5758 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 5758
    • Xu, C.1
  • 43
    • 84951201173 scopus 로고    scopus 로고
    • Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development
    • Hen, G. et al. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development. Development 142, 4266-4278 (2015).
    • (2015) Development , vol.142 , pp. 4266-4278
    • Hen, G.1
  • 44
    • 84911489742 scopus 로고    scopus 로고
    • The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis
    • Chen, H. I. et al. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141, 4500-4512 (2014).
    • (2014) Development , vol.141 , pp. 4500-4512
    • Chen, H.I.1
  • 45
    • 84963705843 scopus 로고    scopus 로고
    • Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls
    • Zhang, H. et al. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118, 1880-1893 (2016).
    • (2016) Circ. Res. , vol.118 , pp. 1880-1893
    • Zhang, H.1
  • 46
    • 84903703870 scopus 로고    scopus 로고
    • Vessel formation de novo formation of a distinct coronary vascular population in neonatal heart
    • Tian, X. et al. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345, 90-94 (2014).
    • (2014) Science , vol.345 , pp. 90-94
    • Tian, X.1
  • 47
    • 84982313678 scopus 로고    scopus 로고
    • Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells
    • Chen, Q. et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat. Commun. 7, 12422 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 12422
    • Chen, Q.1
  • 48
    • 84994882482 scopus 로고    scopus 로고
    • Clonal proliferation and stochastic pruning orchestrate lymph node vasculature remodeling
    • Mondor, I. et al. Clonal proliferation and stochastic pruning orchestrate lymph node vasculature remodeling. Immunity 45, 877-888 (2016).
    • (2016) Immunity , vol.45 , pp. 877-888
    • Mondor, I.1
  • 49
    • 84887521005 scopus 로고    scopus 로고
    • Circulating and tissue resident endothelial progenitor cells
    • Basile, D. P. & Yoder, M. C. Circulating and tissue resident endothelial progenitor cells. J. Cell. Physiol. 229, 10-16 (2014).
    • (2014) J. Cell. Physiol. , vol.229 , pp. 10-16
    • Basile, D.P.1    Yoder, M.C.2
  • 50
    • 84866360562 scopus 로고    scopus 로고
    • Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos
    • Yang, Y. et al. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood 120, 2340-2348 (2012).
    • (2012) Blood , vol.120 , pp. 2340-2348
    • Yang, Y.1
  • 51
    • 9144236286 scopus 로고    scopus 로고
    • Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins
    • Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74-80 (2004).
    • (2004) Nat. Immunol. , vol.5 , pp. 74-80
    • Karkkainen, M.J.1
  • 52
    • 84875217017 scopus 로고    scopus 로고
    • A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy
    • Hagerling, R. et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 32, 629-644 (2013).
    • (2013) EMBO J , vol.32 , pp. 629-644
    • Hagerling, R.1
  • 53
    • 84930644081 scopus 로고    scopus 로고
    • Lymphatic vessels arise from specialized angioblasts within a venous niche
    • Nicenboim, J. et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 522, 56-61 (2015).
    • (2015) Nature , vol.522 , pp. 56-61
    • Nicenboim, J.1
  • 54
    • 84947460320 scopus 로고    scopus 로고
    • Vegfc regulates bipotential precursor division and Prox1 expression to promote lymphatic identity in zebrafish
    • Koltowska, K. et al. Vegfc regulates bipotential precursor division and Prox1 expression to promote lymphatic identity in zebrafish. Cell Rep. 13, 1828-1841 (2015).
    • (2015) Cell Rep. , vol.13 , pp. 1828-1841
    • Koltowska, K.1
  • 55
    • 33646458214 scopus 로고    scopus 로고
    • Dual origin of avian lymphatics
    • Wilting, J. et al. Dual origin of avian lymphatics. Dev. Biol. 292, 165-173 (2006).
    • (2006) Dev. Biol. , vol.292 , pp. 165-173
    • Wilting, J.1
  • 56
    • 84930639373 scopus 로고    scopus 로고
    • Cardiac lymphatics are heterogeneous in origin and respond to injury
    • Klotz, L. et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522, 62-67 (2015).
    • (2015) Nature , vol.522 , pp. 62-67
    • Klotz, L.1
  • 57
    • 84919479053 scopus 로고    scopus 로고
    • The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine
    • Mahadevan, A. et al. The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev. Cell 31, 690-706 (2014).
    • (2014) Dev. Cell , vol.31 , pp. 690-706
    • Mahadevan, A.1
  • 58
    • 84937473353 scopus 로고    scopus 로고
    • Nonvenous origin of dermal lymphatic vasculature
    • Martinez-Corral, I. et al. Nonvenous origin of dermal lymphatic vasculature. Circ. Res. 116, 1649-1654 (2015).
    • (2015) Circ. Res. , vol.116 , pp. 1649-1654
    • Martinez-Corral, I.1
  • 59
    • 84925138637 scopus 로고    scopus 로고
    • CKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels
    • Stanczuk, L. et al. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 10, 1708-1721 (2015).
    • (2015) Cell Rep. , vol.10 , pp. 1708-1721
    • Stanczuk, L.1
  • 60
    • 78149246290 scopus 로고    scopus 로고
    • Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation
    • Gordon, E. J. et al. Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development 137, 3899-3910 (2010).
    • (2010) Development , vol.137 , pp. 3899-3910
    • Gordon, E.J.1
  • 61
    • 84979698228 scopus 로고    scopus 로고
    • Mechanisms and regulation of endothelial VEGF receptor signalling
    • Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17, 611-625 (2016).
    • (2016) Nat. Rev. Mol. Cell Biol. , vol.17 , pp. 611-625
    • Simons, M.1    Gordon, E.2    Claesson-Welsh, L.3
  • 64
    • 77957607057 scopus 로고    scopus 로고
    • Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting
    • Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943-953 (2010).
    • (2010) Nat. Cell Biol. , vol.12 , pp. 943-953
    • Jakobsson, L.1
  • 65
    • 84874622432 scopus 로고    scopus 로고
    • Spatial regulation of VEGF receptor endocytosis in angiogenesis
    • Nakayama, M. et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat. Cell Biol. 15, 249-260 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 249-260
    • Nakayama, M.1
  • 66
    • 84996761503 scopus 로고    scopus 로고
    • Asymmetric division coordinates collective cell migration in angiogenesis
    • Costa, G. et al. Asymmetric division coordinates collective cell migration in angiogenesis. Nat. Cell Biol. 18, 1292-1301 (2016).
    • (2016) Nat. Cell Biol. , vol.18 , pp. 1292-1301
    • Costa, G.1
  • 67
    • 84934981272 scopus 로고    scopus 로고
    • Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch
    • Aspalter, I. M. et al. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat. Commun. 6, 7264 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7264
    • Aspalter, I.M.1
  • 68
    • 84858176226 scopus 로고    scopus 로고
    • ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway
    • Larrivee, B. et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev. Cell 22, 489-500 (2012).
    • (2012) Dev. Cell , vol.22 , pp. 489-500
    • Larrivee, B.1
  • 69
    • 84862727268 scopus 로고    scopus 로고
    • BMP9 and BMP10 are critical for postnatal retinal vascular remodeling
    • Ricard, N. et al. BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. Blood 119, 6162-6171 (2012).
    • (2012) Blood , vol.119 , pp. 6162-6171
    • Ricard, N.1
  • 70
    • 84858286273 scopus 로고    scopus 로고
    • Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades
    • Moya, I. M. et al. Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev. Cell 22, 501-514 (2012).
    • (2012) Dev. Cell , vol.22 , pp. 501-514
    • Moya, I.M.1
  • 71
    • 84901482262 scopus 로고    scopus 로고
    • CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs3Mediated vascular endothelial growth factorC activation
    • Jeltsch, M. et al. CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs3mediated vascular endothelial growth factorC activation. Circulation 129, 1962-1971 (2014).
    • (2014) Circulation , vol.129 , pp. 1962-1971
    • Jeltsch, M.1
  • 72
    • 84974588045 scopus 로고    scopus 로고
    • Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD
    • Bui, H. M. et al. Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD. J. Clin. Invest. 126, 2167-2180 (2016).
    • (2016) J. Clin. Invest. , vol.126 , pp. 2167-2180
    • Bui, H.M.1
  • 73
    • 84896892567 scopus 로고    scopus 로고
    • Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis
    • Le Guen, L. et al. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141, 1239-1249 (2014).
    • (2014) Development , vol.141 , pp. 1239-1249
    • Le Guen, L.1
  • 74
    • 75749124699 scopus 로고    scopus 로고
    • Neuropilin2 mediates VEGFCInduced lymphatic sprouting together with VEGFR3
    • Xu, Y. et al. Neuropilin2 mediates VEGFCinduced lymphatic sprouting together with VEGFR3. J. Cell Biol. 188, 115-130 (2010).
    • (2010) J. Cell Biol. , vol.188 , pp. 115-130
    • Xu, Y.1
  • 75
    • 84883246046 scopus 로고    scopus 로고
    • TGFbeta signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin
    • James, J. M., Nalbandian, A. & Mukouyama, Y. S. TGFbeta signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. Development 140, 3903-3914 (2013).
    • (2013) Development , vol.140 , pp. 3903-3914
    • James, J.M.1    Nalbandian, A.2    Mukouyama, Y.S.3
  • 76
    • 79960988887 scopus 로고    scopus 로고
    • Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor
    • Zheng, W. et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood 118, 1154-1162 (2011).
    • (2011) Blood , vol.118 , pp. 1154-1162
    • Zheng, W.1
  • 78
    • 34547773697 scopus 로고    scopus 로고
    • Common cues regulate neural and vascular patterning
    • Jones, C. A. & Li, D. Y. Common cues regulate neural and vascular patterning. Curr. Opin. Genet. Dev. 17, 332-336 (2007).
    • (2007) Curr. Opin. Genet. Dev. , vol.17 , pp. 332-336
    • Jones, C.A.1    Li, D.Y.2
  • 79
    • 84859809053 scopus 로고    scopus 로고
    • Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature
    • Cha, Y. R. et al. Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev. Cell 22, 824-836 (2012).
    • (2012) Dev. Cell , vol.22 , pp. 824-836
    • Cha, Y.R.1
  • 80
    • 84963699473 scopus 로고    scopus 로고
    • VEGFB/VEGFR1Induced expansion of adipose vasculature counteracts obesity and related metabolic complications
    • Robciuc, M. R. et al. VEGFB/VEGFR1induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab. 23, 712-724 (2016).
    • (2016) Cell Metab. , vol.23 , pp. 712-724
    • Robciuc, M.R.1
  • 81
    • 79957910125 scopus 로고    scopus 로고
    • Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein
    • Wiley, D. M. et al. Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat. Cell Biol. 13, 686-692 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 686-692
    • Wiley, D.M.1
  • 82
    • 84897830319 scopus 로고    scopus 로고
    • Endothelial Notch activity promotes angiogenesis and osteogenesis in bone
    • Ramasamy, S. K., Kusumbe, A. P., Wang, L. & Adams, R. H. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507, 376-380 (2014).
    • (2014) Nature , vol.507 , pp. 376-380
    • Ramasamy, S.K.1    Kusumbe, A.P.2    Wang, L.3    Adams, R.H.4
  • 83
    • 84948808413 scopus 로고    scopus 로고
    • DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport
    • Bernier-Latmani, J. et al. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J. Clin. Invest. 125, 4572-4586 (2015).
    • (2015) J. Clin. Invest. , vol.125 , pp. 4572-4586
    • Bernier-Latmani, J.1
  • 84
    • 84901854355 scopus 로고    scopus 로고
    • Fluid shear stress threshold regulates angiogenic sprouting
    • Galie, P. A. et al. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl Acad. Sci. USA 111, 7968-7973 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 7968-7973
    • Galie, P.A.1
  • 85
    • 84961980110 scopus 로고    scopus 로고
    • Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis
    • Ghaffari, S., Leask, R. L. & Jones, E. A. Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis. Development 142, 4151-4157 (2015).
    • (2015) Development , vol.142 , pp. 4151-4157
    • Ghaffari, S.1    Leask, R.L.2    Jones, E.A.3
  • 86
    • 80053086676 scopus 로고    scopus 로고
    • Fluid forces control endothelial sprouting
    • Song, J. W. & Munn, L. L. Fluid forces control endothelial sprouting. Proc. Natl Acad. Sci. USA 108, 15342-15347 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 15342-15347
    • Song, J.W.1    Munn, L.L.2
  • 87
    • 85013124230 scopus 로고    scopus 로고
    • The link between angiogenesis and endothelial metabolism
    • Potente, M. & Carmeliet, P. M. The link between angiogenesis and endothelial metabolism. Annu. Rev. Physiol. 79, 43-66 (2017).
    • (2017) Annu. Rev. Physiol. , vol.79 , pp. 43-66
    • Potente, M.1    Carmeliet, P.M.2
  • 88
    • 84881119066 scopus 로고    scopus 로고
    • Role of PFKFB3Driven glycolysis in vessel sprouting
    • De Bock, K. et al. Role of PFKFB3driven glycolysis in vessel sprouting. Cell 154, 651-663 (2013).
    • (2013) Cell , vol.154 , pp. 651-663
    • De Bock, K.1
  • 89
    • 84927563455 scopus 로고    scopus 로고
    • Fatty acid carbon is essential for dNTP synthesis in endothelial cells
    • Schoors, S. et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192-197 (2015).
    • (2015) Nature , vol.520 , pp. 192-197
    • Schoors, S.1
  • 90
    • 85016143129 scopus 로고    scopus 로고
    • The role of fatty acid beta-oxidation in lymphangiogenesis
    • Wong, B. W. et al. The role of fatty acid beta-oxidation in lymphangiogenesis. Nature 542, 49-54 (2017).
    • (2017) Nature , vol.542 , pp. 49-54
    • Wong, B.W.1
  • 91
    • 25144451336 scopus 로고    scopus 로고
    • WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature
    • Lobov, I. B. et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437, 417-421 (2005).
    • (2005) Nature , vol.437 , pp. 417-421
    • Lobov, I.B.1
  • 92
    • 84983048252 scopus 로고    scopus 로고
    • Apoptosis regulates endothelial cell number and capillary vessel diameter but not vessel regression during retinal angiogenesis
    • Watson, E. C. et al. Apoptosis regulates endothelial cell number and capillary vessel diameter but not vessel regression during retinal angiogenesis. Development 143, 2973-2982 (2016).
    • (2016) Development , vol.143 , pp. 2973-2982
    • Watson, E.C.1
  • 93
    • 84865706553 scopus 로고    scopus 로고
    • Haemodynamics-driven developmental pruning of brain vasculature in zebrafish
    • Chen, Q. et al. Haemodynamics-driven developmental pruning of brain vasculature in zebrafish. PLoS Biol. 10, e1001374 (2012).
    • (2012) PLoS Biol. , vol.10 , pp. e1001374
    • Chen, Q.1
  • 94
    • 84929485516 scopus 로고    scopus 로고
    • Dynamic endothelial cell rearrangements drive developmental vessel regression
    • Franco, C. A. et al. Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol. 13, e1002125 (2015).
    • (2015) PLoS Biol. , vol.13 , pp. e1002125
    • Franco, C.A.1
  • 95
    • 84885413188 scopus 로고    scopus 로고
    • Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos
    • Kochhan, E. et al. Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos. PLoS ONE 8, e75060 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e75060
    • Kochhan, E.1
  • 96
    • 84929483932 scopus 로고    scopus 로고
    • Endothelial cell self-fusion during vascular pruning
    • Lenard, A. et al. Endothelial cell self-fusion during vascular pruning. PLoS Biol. 13, e1002126 (2015).
    • (2015) PLoS Biol. , vol.13 , pp. e1002126
    • Lenard, A.1
  • 97
    • 68349105030 scopus 로고    scopus 로고
    • IntegrinAlpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis
    • Bazigou, E. et al. Integrinalpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev. Cell 17, 175-186 (2009).
    • (2009) Dev. Cell , vol.17 , pp. 175-186
    • Bazigou, E.1
  • 98
    • 65649096621 scopus 로고    scopus 로고
    • FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1
    • Norrmen, C. et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J. Cell Biol. 185, 439-457 (2009).
    • (2009) J. Cell Biol. , vol.185 , pp. 439-457
    • Norrmen, C.1
  • 99
    • 20144369085 scopus 로고    scopus 로고
    • Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation
    • Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest. 115, 247-257 (2005).
    • (2005) J. Clin. Invest. , vol.115 , pp. 247-257
    • Baluk, P.1
  • 100
    • 77749285699 scopus 로고    scopus 로고
    • Steroid-resistant lymphatic remodeling in chronically inflamed mouse airways
    • Yao, L. C., Baluk, P., Feng, J. & McDonald, D. M. Steroid-resistant lymphatic remodeling in chronically inflamed mouse airways. Am. J. Pathol. 176, 1525-1541 (2010).
    • (2010) Am. J. Pathol. , vol.176 , pp. 1525-1541
    • Yao, L.C.1    Baluk, P.2    Feng, J.3    McDonald, D.M.4
  • 101
    • 84939235474 scopus 로고    scopus 로고
    • Lymph flow regulates collecting lymphatic vessel maturation in vivo
    • Sweet, D. T. et al. Lymph flow regulates collecting lymphatic vessel maturation in vivo. J. Clin. Invest. 125, 2995-3007 (2015).
    • (2015) J. Clin. Invest. , vol.125 , pp. 2995-3007
    • Sweet, D.T.1
  • 102
    • 84857026228 scopus 로고    scopus 로고
    • Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation
    • Sabine, A. et al. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev. Cell 22, 430-445 (2012).
    • (2012) Dev. Cell , vol.22 , pp. 430-445
    • Sabine, A.1
  • 103
    • 0842322958 scopus 로고    scopus 로고
    • Flow regulates arterial-venous differentiation in the chick embryo yolk sac
    • Noble, F. et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131, 361-375 (2004).
    • (2004) Development , vol.131 , pp. 361-375
    • Noble, F.1
  • 104
    • 84951850124 scopus 로고    scopus 로고
    • Somatic activating PIK3CA mutations cause venous malformation
    • Limaye, N. et al. Somatic activating PIK3CA mutations cause venous malformation. Am. J. Hum. Genet. 97, 914-921 (2015).
    • (2015) Am. J. Hum. Genet. , vol.97 , pp. 914-921
    • Limaye, N.1
  • 105
    • 84933279834 scopus 로고    scopus 로고
    • Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA
    • Luks, V. L. et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J. Pediatr. 166, 1048-1054.e5 (2015).
    • (2015) J. Pediatr. , vol.166 , pp. 1048e5-1048e5
    • Luks, V.L.1
  • 106
    • 84922469410 scopus 로고    scopus 로고
    • Activating PIK3CA alleles and lymphangiogenic phenotype of lymphatic endothelial cells isolated from lymphatic malformations
    • Osborn, A. J. et al. Activating PIK3CA alleles and lymphangiogenic phenotype of lymphatic endothelial cells isolated from lymphatic malformations. Hum. Mol. Genet. 24, 926-938 (2015).
    • (2015) Hum. Mol. Genet. , vol.24 , pp. 926-938
    • Osborn, A.J.1
  • 107
    • 84962778934 scopus 로고    scopus 로고
    • Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans
    • Castillo, S. D. et al. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci. Transl Med. 8, 332ra43 (2016).
    • (2016) Sci. Transl Med. , vol.8 , pp. 332ra43
    • Castillo, S.D.1
  • 108
    • 84962634604 scopus 로고    scopus 로고
    • Somatic PIK3CA mutations as a driver of sporadic venous malformations
    • Castel, P. et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci. Transl Med. 8, 332ra42 (2016).
    • (2016) Sci. Transl Med. , vol.8 , pp. 332ra42
    • Castel, P.1
  • 109
    • 84879598902 scopus 로고    scopus 로고
    • Vascular anomalies: From genetics toward models for therapeutic trials
    • Uebelhoer, M., Boon, L. M. & Vikkula, M. Vascular anomalies: from genetics toward models for therapeutic trials. Cold Spring Harb. Perspect. Med. 2, a009688 (2012).
    • (2012) Cold Spring Harb. Perspect. Med. , vol.2 , pp. a009688
    • Uebelhoer, M.1    Boon, L.M.2    Vikkula, M.3
  • 110
    • 0347362524 scopus 로고    scopus 로고
    • Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations
    • Eerola, I. et al. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am. J. Hum. Genet. 73, 1240-1249 (2003).
    • (2003) Am. J. Hum. Genet. , vol.73 , pp. 1240-1249
    • Eerola, I.1
  • 111
    • 84856540111 scopus 로고    scopus 로고
    • RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice
    • Lapinski, P. E. et al. RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. J. Clin. Invest. 122, 733-747 (2012).
    • (2012) J. Clin. Invest. , vol.122 , pp. 733-747
    • Lapinski, P.E.1
  • 112
    • 77950346287 scopus 로고    scopus 로고
    • H, N and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice
    • Ichise, T., Yoshida, N. & Ichise, H. H, N and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice. Development 137, 1003-1013 (2010).
    • (2010) Development , vol.137 , pp. 1003-1013
    • Ichise, T.1    Yoshida, N.2    Ichise, H.3
  • 113
    • 84971472477 scopus 로고    scopus 로고
    • Endothelial mitogen-activated protein kinase kinase kinase kinase 4 is critical for lymphatic vascular development and function
    • Roth Flach, R. J. et al. Endothelial mitogen-activated protein kinase kinase kinase kinase 4 is critical for lymphatic vascular development and function. Mol. Cell. Biol. 36, 1740-1749 (2016).
    • (2016) Mol. Cell. Biol. , vol.36 , pp. 1740-1749
    • Roth Flach, R.J.1
  • 114
    • 34249026448 scopus 로고    scopus 로고
    • Binding of ras to phosphoinositide 3kinase p110alpha is required for ras-driven tumorigenesis in mice
    • Gupta, S. et al. Binding of ras to phosphoinositide 3kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129, 957-968 (2007).
    • (2007) Cell , vol.129 , pp. 957-968
    • Gupta, S.1
  • 115
    • 84938510798 scopus 로고    scopus 로고
    • PTEN mediates Notch-dependent stalk cell arrest in angiogenesis
    • Serra, H. et al. PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nat. Commun. 6, 7935 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7935
    • Serra, H.1
  • 116
    • 84955112522 scopus 로고    scopus 로고
    • FOXO1 couples metabolic activity and growth state in the vascular endothelium
    • Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529, 216-220 (2016).
    • (2016) Nature , vol.529 , pp. 216-220
    • Wilhelm, K.1
  • 117
    • 84920149932 scopus 로고    scopus 로고
    • Laminar shear stress inhibits endothelial cell metabolism via KLF2mediated repression of PFKFB3
    • Doddaballapur, A. et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2mediated repression of PFKFB3. Arterioscler. Thromb. Vasc. Biol. 35, 137-145 (2015).
    • (2015) Arterioscler. Thromb. Vasc. Biol. , vol.35 , pp. 137-145
    • Doddaballapur, A.1
  • 118
    • 84991238142 scopus 로고    scopus 로고
    • Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia
    • Baeyens, N. et al. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J. Cell Biol. 214, 807-816 (2016).
    • (2016) J. Cell Biol. , vol.214 , pp. 807-816
    • Baeyens, N.1
  • 120
    • 84943279890 scopus 로고    scopus 로고
    • FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature
    • Sabine, A. et al. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J. Clin. Invest. 125, 3861-3877 (2015).
    • (2015) J. Clin. Invest. , vol.125 , pp. 3861-3877
    • Sabine, A.1
  • 121
    • 84959088866 scopus 로고    scopus 로고
    • Constitutive activation of mTORC1 in endothelial cells leads to the development and progression of lymphangiosarcoma through VEGF autocrine signaling
    • Sun, S. et al. Constitutive activation of mTORC1 in endothelial cells leads to the development and progression of lymphangiosarcoma through VEGF autocrine signaling. Cancer Cell 28, 758-772 (2015).
    • (2015) Cancer Cell , vol.28 , pp. 758-772
    • Sun, S.1
  • 122
    • 76749157186 scopus 로고    scopus 로고
    • Chronic DLL4 blockade induces vascular neoplasms
    • Yan, M. et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 463, E6-E7 (2010).
    • (2010) Nature , vol.463 , pp. E6-E7
    • Yan, M.1
  • 123
    • 79551510137 scopus 로고    scopus 로고
    • Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice
    • Liu, Z. et al. Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J. Clin. Invest. 121, 800-808 (2011).
    • (2011) J. Clin. Invest. , vol.121 , pp. 800-808
    • Liu, Z.1
  • 124
    • 84955286381 scopus 로고    scopus 로고
    • Angiocrine functions of organ-specific endothelial cells
    • Rafii, S., Butler, J. M. & Ding, B. S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316-325 (2016).
    • (2016) Nature , vol.529 , pp. 316-325
    • Rafii, S.1    Butler, J.M.2    Ding, B.S.3
  • 125
    • 84923282085 scopus 로고    scopus 로고
    • Regulation of tissue morphogenesis by endothelial cell-derived signals
    • Ramasamy, S. K., Kusumbe, A. P. & Adams, R. H. Regulation of tissue morphogenesis by endothelial cell-derived signals. Trends Cell Biol. 25, 148-157 (2015).
    • (2015) Trends Cell Biol. , vol.25 , pp. 148-157
    • Ramasamy, S.K.1    Kusumbe, A.P.2    Adams, R.H.3
  • 126
    • 84942900570 scopus 로고    scopus 로고
    • Molecular controls of arterial morphogenesis
    • Simons, M. & Eichmann, A. Molecular controls of arterial morphogenesis. Circ. Res. 116, 1712-1724 (2015).
    • (2015) Circ. Res. , vol.116 , pp. 1712-1724
    • Simons, M.1    Eichmann, A.2
  • 127
    • 84978127707 scopus 로고    scopus 로고
    • Sympathetic innervation promotes arterial fate by enhancing endothelial ERK activity
    • Pardanaud, L. et al. Sympathetic innervation promotes arterial fate by enhancing endothelial ERK activity. Circ. Res. 119, 607-620 (2016).
    • (2016) Circ. Res. , vol.119 , pp. 607-620
    • Pardanaud, L.1
  • 128
    • 84991800719 scopus 로고    scopus 로고
    • Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors
    • Shin, M. et al. Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors. Development 143, 3785-3795 (2016).
    • (2016) Development , vol.143 , pp. 3785-3795
    • Shin, M.1
  • 129
    • 84874631217 scopus 로고    scopus 로고
    • Endothelial ERK signaling controls lymphatic fate specification
    • Deng, Y., Atri, D., Eichmann, A. & Simons, M. Endothelial ERK signaling controls lymphatic fate specification. J. Clin. Invest. 123, 1202-1215 (2013).
    • (2013) J. Clin. Invest. , vol.123 , pp. 1202-1215
    • Deng, Y.1    Atri, D.2    Eichmann, A.3    Simons, M.4
  • 130
    • 85014267813 scopus 로고    scopus 로고
    • Cell-matrix signals specify bone endothelial cells during developmental osteogenesis
    • Langen, U. H. et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat. Cell Biol. 19, 189-201 (2017).
    • (2017) Nat. Cell Biol. , vol.19 , pp. 189-201
    • Langen, U.H.1
  • 131
    • 32944474182 scopus 로고    scopus 로고
    • VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature
    • Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H560-H576 (2006).
    • (2006) Am. J. Physiol. Heart Circ. Physiol. , vol.290 , pp. H560-H576
    • Kamba, T.1
  • 132
    • 77950585147 scopus 로고    scopus 로고
    • Angiopoietin/Tie2 signaling transforms capillaries into venules primed for leukocyte trafficking in airway inflammation
    • Fuxe, J. et al. Angiopoietin/Tie2 signaling transforms capillaries into venules primed for leukocyte trafficking in airway inflammation. Am. J. Pathol. 176, 2009-2018 (2010).
    • (2010) Am. J. Pathol. , vol.176 , pp. 2009-2018
    • Fuxe, J.1
  • 133
    • 84875981816 scopus 로고    scopus 로고
    • Getting out and about: The emergence and morphogenesis of the vertebrate lymphatic vasculature
    • Koltowska, K., Betterman, K. L., Harvey, N. L. & Hogan, B. M. Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development 140, 1857-1870 (2013).
    • (2013) Development , vol.140 , pp. 1857-1870
    • Koltowska, K.1    Betterman, K.L.2    Harvey, N.L.3    Hogan, B.M.4
  • 134
    • 84904356702 scopus 로고    scopus 로고
    • Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions
    • Zheng, W. et al. Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes Dev. 28, 1592-1603 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 1592-1603
    • Zheng, W.1
  • 135
    • 84911870696 scopus 로고    scopus 로고
    • Signaling pathways in the specification of arteries and veins
    • Corada, M., Morini, M. F. & Dejana, E. Signaling pathways in the specification of arteries and veins. Arterioscler. Thromb. Vasc. Biol. 34, 2372-2377 (2014).
    • (2014) Arterioscler. Thromb. Vasc. Biol. , vol.34 , pp. 2372-2377
    • Corada, M.1    Morini, M.F.2    Dejana, E.3
  • 136
    • 84928610424 scopus 로고    scopus 로고
    • Sox7 controls arterial specification in conjunction with hey2 and efnb2 function
    • Hermkens, D. M. et al. Sox7 controls arterial specification in conjunction with hey2 and efnb2 function. Development 142, 1695-1704 (2015).
    • (2015) Development , vol.142 , pp. 1695-1704
    • Hermkens, D.M.1
  • 137
    • 84886678124 scopus 로고    scopus 로고
    • Sox17 is indispensable for acquisition and maintenance of arterial identity
    • Corada, M. et al. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat. Commun. 4, 2609 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 2609
    • Corada, M.1
  • 138
    • 77950469880 scopus 로고    scopus 로고
    • The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells
    • Srinivasan, R. S. et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696-707 (2010).
    • (2010) Genes Dev. , vol.24 , pp. 696-707
    • Srinivasan, R.S.1
  • 139
    • 57349142376 scopus 로고    scopus 로고
    • Sox18 induces development of the lymphatic vasculature in mice
    • Francois, M. et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 456, 643-647 (2008).
    • (2008) Nature , vol.456 , pp. 643-647
    • Francois, M.1
  • 140
    • 84877901574 scopus 로고    scopus 로고
    • COUP-TFII orchestrates venous and lymphatic endothelial identity by homo-or hetero-dimerisation with PROX1
    • Aranguren, X. L. et al. COUP-TFII orchestrates venous and lymphatic endothelial identity by homo-or hetero-dimerisation with PROX1. J. Cell Sci. 126, 1164-1175 (2013).
    • (2013) J. Cell Sci. , vol.126 , pp. 1164-1175
    • Aranguren, X.L.1
  • 141
    • 61849097153 scopus 로고    scopus 로고
    • Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate
    • Lee, S. et al. Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 113, 1856-1859 (2009).
    • (2009) Blood , vol.113 , pp. 1856-1859
    • Lee, S.1
  • 142
    • 33846295218 scopus 로고    scopus 로고
    • FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
    • Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309-323 (2007).
    • (2007) Cell , vol.128 , pp. 309-323
    • Paik, J.H.1
  • 143
    • 84880948836 scopus 로고    scopus 로고
    • Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration
    • Nolan, D. J. et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26, 204-219 (2013).
    • (2013) Dev. Cell , vol.26 , pp. 204-219
    • Nolan, D.J.1
  • 144
  • 146
    • 84895919128 scopus 로고    scopus 로고
    • Endothelial cilia mediate low flow sensing during zebrafish vascular development
    • Goetz, J. G. et al. Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep. 6, 799-808 (2014).
    • (2014) Cell Rep. , vol.6 , pp. 799-808
    • Goetz, J.G.1
  • 147
    • 84971276121 scopus 로고    scopus 로고
    • Forces and mechanotransduction in 3D vascular biology
    • Kutys, M. L. & Chen, C. S. Forces and mechanotransduction in 3D vascular biology. Curr. Opin. Cell Biol. 42, 73-79 (2016).
    • (2016) Curr. Opin. Cell Biol. , vol.42 , pp. 73-79
    • Kutys, M.L.1    Chen, C.S.2
  • 148
    • 77953316401 scopus 로고    scopus 로고
    • Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis
    • Buschmann, I. et al. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development 137, 2187-2196 (2010).
    • (2010) Development , vol.137 , pp. 2187-2196
    • Buschmann, I.1
  • 149
    • 84861794046 scopus 로고    scopus 로고
    • Blood flow reprograms lymphatic vessels to blood vessels
    • Chen, C. Y. et al. Blood flow reprograms lymphatic vessels to blood vessels. J. Clin. Invest. 122, 2006-2017 (2012).
    • (2012) J. Clin. Invest. , vol.122 , pp. 2006-2017
    • Chen, C.Y.1
  • 150
    • 84964698438 scopus 로고    scopus 로고
    • Vascular remodeling is governed by a VEGFR3 dependent fluid shear stress set point
    • Baeyens, N. et al. Vascular remodeling is governed by a VEGFR3 dependent fluid shear stress set point. eLife 4, e04645 (2015).
    • (2015) ELife , vol.4 , pp. e04645
    • Baeyens, N.1
  • 151
    • 84939243994 scopus 로고    scopus 로고
    • GATA2 is required for lymphatic vessel valve development and maintenance
    • Kazenwadel, J. et al. GATA2 is required for lymphatic vessel valve development and maintenance. J. Clin. Invest. 125, 2979-2994 (2015).
    • (2015) J. Clin. Invest. , vol.125 , pp. 2979-2994
    • Kazenwadel, J.1
  • 152
    • 84960837036 scopus 로고    scopus 로고
    • Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice
    • Munger, S. J. et al. Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice. Dev. Biol. 412, 173-190 (2016).
    • (2016) Dev. Biol. , vol.412 , pp. 173-190
    • Munger, S.J.1
  • 153
    • 79960983746 scopus 로고    scopus 로고
    • Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice
    • Bazigou, E. et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J. Clin. Invest. 121, 2984-2992 (2011).
    • (2011) J. Clin. Invest. , vol.121 , pp. 2984-2992
    • Bazigou, E.1
  • 154
    • 77950899035 scopus 로고    scopus 로고
    • Transmural flow modulates cell and fluid transport functions of lymphatic endothelium
    • Miteva, D. O. et al. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ. Res. 106, 920-931 (2010).
    • (2010) Circ. Res. , vol.106 , pp. 920-931
    • Miteva, D.O.1
  • 155
    • 84959480245 scopus 로고    scopus 로고
    • Atherosclerosis at arterial bifurcations: Evidence for the role of haemodynamics and geometry
    • Morbiducci, U. et al. Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. Thromb. Haemost. 115, 484-492 (2016).
    • (2016) Thromb. Haemost. , vol.115 , pp. 484-492
    • Morbiducci, U.1
  • 156
    • 6944233515 scopus 로고    scopus 로고
    • Hypoxia affects mesoderm and enhances hemangioblast specification during early development
    • Ramirez-Bergeron, D. L. et al. Hypoxia affects mesoderm and enhances hemangioblast specification during early development. Development 131, 4623-4634 (2004).
    • (2004) Development , vol.131 , pp. 4623-4634
    • Ramirez-Bergeron, D.L.1
  • 157
    • 84955326448 scopus 로고    scopus 로고
    • The emerging hallmarks of cancer metabolism
    • Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47 (2016).
    • (2016) Cell Metab. , vol.23 , pp. 27-47
    • Pavlova, N.N.1    Thompson, C.B.2
  • 158
    • 84899675551 scopus 로고    scopus 로고
    • Reversible acetylation regulates vascular endothelial growth factor receptor2 activity
    • Zecchin, A. et al. Reversible acetylation regulates vascular endothelial growth factor receptor2 activity. J. Mol. Cell Biol. 6, 116-127 (2014).
    • (2014) J. Mol. Cell Biol. , vol.6 , pp. 116-127
    • Zecchin, A.1
  • 159
    • 79955926985 scopus 로고    scopus 로고
    • Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase
    • Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473, 234-238 (2011).
    • (2011) Nature , vol.473 , pp. 234-238
    • Guarani, V.1
  • 160
    • 84960172990 scopus 로고    scopus 로고
    • A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance
    • Jang, C. et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22, 421-426 (2016).
    • (2016) Nat. Med. , vol.22 , pp. 421-426
    • Jang, C.1
  • 161
    • 79953329777 scopus 로고    scopus 로고
    • Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NFkappaB/IL8 pathway that drives tumor angiogenesis
    • Vegran, F., Boidot, R., Michiels, C., Sonveaux, P. & Feron, O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NFkappaB/IL8 pathway that drives tumor angiogenesis. Cancer Res. 71, 2550-2560 (2011).
    • (2011) Cancer Res. , vol.71 , pp. 2550-2560
    • Vegran, F.1    Boidot, R.2    Michiels, C.3    Sonveaux, P.4    Feron, O.5
  • 162
    • 84880525862 scopus 로고    scopus 로고
    • Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3kinase/Akt and promote angiogenesis
    • Ruan, G. X. & Kazlauskas, A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3kinase/Akt and promote angiogenesis. J. Biol. Chem. 288, 21161-21172 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 21161-21172
    • Ruan, G.X.1    Kazlauskas, A.2
  • 163
    • 84962094334 scopus 로고    scopus 로고
    • Medulloblastoma genotype dictates blood brain barrier phenotype
    • Phoenix, T. N. et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29, 508-522 (2016).
    • (2016) Cancer Cell , vol.29 , pp. 508-522
    • Phoenix, T.N.1
  • 164
    • 84907011560 scopus 로고    scopus 로고
    • Lymphatic regulator PROX1 determines Schlemm's canal integrity and identity
    • Park, D. Y. et al. Lymphatic regulator PROX1 determines Schlemm's canal integrity and identity. J. Clin. Invest. 124, 3960-3974 (2014).
    • (2014) J. Clin. Invest. , vol.124 , pp. 3960-3974
    • Park, D.Y.1
  • 165
    • 84907010946 scopus 로고    scopus 로고
    • The Schlemm's canal is a VEGFC/VEGFR3responsive lymphatic-like vessel
    • Aspelund, A. et al. The Schlemm's canal is a VEGFC/VEGFR3responsive lymphatic-like vessel. J. Clin. Invest. 124, 3975-3986 (2014).
    • (2014) J. Clin. Invest. , vol.124 , pp. 3975-3986
    • Aspelund, A.1
  • 166
    • 84905381920 scopus 로고    scopus 로고
    • Schlemm's canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process
    • Kizhatil, K., Ryan, M., Marchant, J. K., Henrich, S. & John, S. W. Schlemm's canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol. 12, e1001912 (2014).
    • (2014) PLoS Biol. , vol.12 , pp. e1001912
    • Kizhatil, K.1    Ryan, M.2    Marchant, J.K.3    Henrich, S.4    John, S.W.5
  • 167
    • 84978431523 scopus 로고    scopus 로고
    • Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity
    • Souma, T. et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J. Clin. Invest. 126, 2575-2587 (2016).
    • (2016) J. Clin. Invest. , vol.126 , pp. 2575-2587
    • Souma, T.1
  • 168
    • 77951044950 scopus 로고    scopus 로고
    • Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity
    • Stockton, R. A., Shenkar, R., Awad, I. A. & Ginsberg, M. H. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J. Exp. Med. 207, 881-896 (2010).
    • (2010) J. Exp. Med. , vol.207 , pp. 881-896
    • Stockton, R.A.1    Shenkar, R.2    Awad, I.A.3    Ginsberg, M.H.4
  • 169
    • 84879690589 scopus 로고    scopus 로고
    • EndMT contributes to the onset and progression of cerebral cavernous malformations
    • Maddaluno, L. et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498, 492-496 (2013).
    • (2013) Nature , vol.498 , pp. 492-496
    • Maddaluno, L.1
  • 170
    • 84921495905 scopus 로고    scopus 로고
    • Lack of CCM1 induces hypersprouting and impairs response to flow
    • Mleynek, T. M. et al. Lack of CCM1 induces hypersprouting and impairs response to flow. Hum. Mol. Genet. 23, 6223-6234 (2014).
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 6223-6234
    • Mleynek, T.M.1
  • 171
    • 84921453121 scopus 로고    scopus 로고
    • Regulation of beta1 integrinKlf2mediated angiogenesis by CCM proteins
    • Renz, M. et al. Regulation of beta1 integrinKlf2mediated angiogenesis by CCM proteins. Dev. Cell 32, 181-190 (2015).
    • (2015) Dev. Cell , vol.32 , pp. 181-190
    • Renz, M.1
  • 172
    • 84956845911 scopus 로고    scopus 로고
    • KLF4 is a key determinant in the development and progression of cerebral cavernous malformations
    • Cuttano, R. et al. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol. Med. 8, 6-24 (2015).
    • (2015) EMBO Mol. Med. , vol.8 , pp. 6-24
    • Cuttano, R.1
  • 173
    • 84963532773 scopus 로고    scopus 로고
    • Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling
    • Zhou, Z. et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532, 122-126 (2016).
    • (2016) Nature , vol.532 , pp. 122-126
    • Zhou, Z.1
  • 174
    • 80054831800 scopus 로고    scopus 로고
    • Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice
    • Boulday, G. et al. Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. J. Exp. Med. 208, 1835-1847 (2011).
    • (2011) J. Exp. Med. , vol.208 , pp. 1835-1847
    • Boulday, G.1
  • 175
    • 70449392400 scopus 로고    scopus 로고
    • Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia
    • Park, S. O. et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 119, 3487-3496 (2009).
    • (2009) J. Clin. Invest. , vol.119 , pp. 3487-3496
    • Park, S.O.1
  • 176
    • 79955448391 scopus 로고    scopus 로고
    • Interaction between alk1 and blood flow in the development of arteriovenous malformations
    • Corti, P. et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138, 1573-1582 (2011).
    • (2011) Development , vol.138 , pp. 1573-1582
    • Corti, P.1
  • 177
    • 84880943217 scopus 로고    scopus 로고
    • Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence
    • Laux, D. W. et al. Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence. Development 140, 3403-3412 (2013).
    • (2013) Development , vol.140 , pp. 3403-3412
    • Laux, D.W.1
  • 178
    • 84978722293 scopus 로고    scopus 로고
    • Alk1 controls arterial endothelial cell migration in lumenized vessels
    • Rochon, E. R., Menon, P. G. & Roman, B. L. Alk1 controls arterial endothelial cell migration in lumenized vessels. Development 143, 2593-2602 (2016).
    • (2016) Development , vol.143 , pp. 2593-2602
    • Rochon, E.R.1    Menon, P.G.2    Roman, B.L.3
  • 179
    • 84883774229 scopus 로고    scopus 로고
    • The classification and diagnostic algorithm for primary lymphatic dysplasia: An update from 2010 to include molecular findings
    • Connell, F. C. et al. The classification and diagnostic algorithm for primary lymphatic dysplasia: an update from 2010 to include molecular findings. Clin. Genet. 84, 303-314 (2013).
    • (2013) Clin. Genet. , vol.84 , pp. 303-314
    • Connell, F.C.1
  • 181
    • 84939490816 scopus 로고    scopus 로고
    • Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver
    • Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180-185 (2015).
    • (2015) Nature , vol.524 , pp. 180-185
    • Wang, B.1    Zhao, L.2    Fish, M.3    Logan, C.Y.4    Nusse, R.5
  • 182
    • 78149285919 scopus 로고    scopus 로고
    • Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration
    • Ding, B. S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 310-315 (2010).
    • (2010) Nature , vol.468 , pp. 310-315
    • Ding, B.S.1
  • 183
    • 84892944118 scopus 로고    scopus 로고
    • Endothelial cell-derived angiopoietin2 controls liver regeneration as a spatiotemporal rheostat
    • Hu, J. et al. Endothelial cell-derived angiopoietin2 controls liver regeneration as a spatiotemporal rheostat. Science 343, 416-419 (2014).
    • (2014) Science , vol.343 , pp. 416-419
    • Hu, J.1
  • 184
    • 84892370936 scopus 로고    scopus 로고
    • Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis
    • Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97-102 (2014).
    • (2014) Nature , vol.505 , pp. 97-102
    • Ding, B.S.1
  • 185
    • 84964466755 scopus 로고    scopus 로고
    • Age-dependent modulation of vascular niches for haematopoietic stem cells
    • Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380-384 (2016).
    • (2016) Nature , vol.532 , pp. 380-384
    • Kusumbe, A.P.1
  • 186
    • 33846849237 scopus 로고    scopus 로고
    • Phenotypic heterogeneity of the endothelium: II
    • Aird, W. C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ. Res. 100, 174-190 (2007).
    • (2007) Representative Vascular Beds. Circ. Res. , vol.100 , pp. 174-190
    • Aird, W.C.1
  • 187
    • 0037423321 scopus 로고    scopus 로고
    • Angiogenesis-independent endothelial protection of liver: Role of VEGFR1
    • LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR1. Science 299, 890-893 (2003).
    • (2003) Science , vol.299 , pp. 890-893
    • LeCouter, J.1
  • 188
    • 40949117599 scopus 로고    scopus 로고
    • Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway
    • Klein, D. et al. Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatology 47, 1018-1031 (2008).
    • (2008) Hepatology , vol.47 , pp. 1018-1031
    • Klein, D.1
  • 189
    • 84994881458 scopus 로고    scopus 로고
    • Heterogeneity in the lymphatic vascular system and its origin
    • Ulvmar, M. H. & Makinen, T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc. Res. 111, 310-321 (2016).
    • (2016) Cardiovasc. Res. , vol.111 , pp. 310-321
    • Ulvmar, M.H.1    Makinen, T.2
  • 190
    • 84946478463 scopus 로고    scopus 로고
    • VEGFC is required for intestinal lymphatic vessel maintenance and lipid absorption
    • Nurmi, H. et al. VEGFC is required for intestinal lymphatic vessel maintenance and lipid absorption. EMBO Mol. Med. 7, 1418-1425 (2015).
    • (2015) EMBO Mol. Med. , vol.7 , pp. 1418-1425
    • Nurmi, H.1
  • 191
    • 84942469639 scopus 로고    scopus 로고
    • A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules
    • Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991-999 (2015).
    • (2015) J. Exp. Med. , vol.212 , pp. 991-999
    • Aspelund, A.1
  • 192
    • 84936871460 scopus 로고    scopus 로고
    • Structural and functional features of central nervous system lymphatic vessels
    • Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337-341 (2015).
    • (2015) Nature , vol.523 , pp. 337-341
    • Louveau, A.1
  • 193
    • 58149152854 scopus 로고    scopus 로고
    • Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations
    • Limaye, N. et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat. Genet. 41, 118-124 (2009).
    • (2009) Nat. Genet. , vol.41 , pp. 118-124
    • Limaye, N.1
  • 194
    • 0030460775 scopus 로고    scopus 로고
    • Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2
    • Vikkula, M. et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87, 1181-1190 (1996).
    • (1996) Cell , vol.87 , pp. 1181-1190
    • Vikkula, M.1
  • 195
    • 85006815923 scopus 로고    scopus 로고
    • Blue rubber bleb nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations
    • Soblet, J. et al. Blue rubber bleb nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations. J. Invest. Dermatol. 137, 207-216 (2017).
    • (2017) J. Invest. Dermatol. , vol.137 , pp. 207-216
    • Soblet, J.1
  • 196
    • 0036201378 scopus 로고    scopus 로고
    • Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas")
    • Brouillard, P. et al. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas"). Am. J. Hum. Genet. 70, 866-874 (2002).
    • (2002) Am. J. Hum. Genet. , vol.70 , pp. 866-874
    • Brouillard, P.1
  • 197
    • 0034041161 scopus 로고    scopus 로고
    • Missense mutations interfere with VEGFR3 signalling in primary lymphoedema
    • Karkkainen, M. J. et al. Missense mutations interfere with VEGFR3 signalling in primary lymphoedema. Nat. Genet. 25, 153-159 (2000).
    • (2000) Nat. Genet. , vol.25 , pp. 153-159
    • Karkkainen, M.J.1
  • 198
    • 0035873625 scopus 로고    scopus 로고
    • Truncating mutations in FOXC2 cause multiple lymphedema syndromes
    • Finegold, D. N. et al. Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum. Mol. Genet. 10, 1185-1189 (2001).
    • (2001) Hum. Mol. Genet. , vol.10 , pp. 1185-1189
    • Finegold, D.N.1
  • 199
    • 0033646615 scopus 로고    scopus 로고
    • Mutations in FOXC2 (MFH1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome
    • Fang, J. et al. Mutations in FOXC2 (MFH1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am. J. Hum. Genet. 67, 1382-1388 (2000).
    • (2000) Am. J. Hum. Genet. , vol.67 , pp. 1382-1388
    • Fang, J.1
  • 200
    • 12144286738 scopus 로고    scopus 로고
    • A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4)
    • Gallione, C. J. et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363, 852-859 (2004).
    • (2004) Lancet , vol.363 , pp. 852-859
    • Gallione, C.J.1
  • 201
    • 0030050973 scopus 로고    scopus 로고
    • Mutations in the activin receptor like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2
    • Johnson, D. W. et al. Mutations in the activin receptor like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat. Genet. 13, 189-195 (1996).
    • (1996) Nat. Genet. , vol.13 , pp. 189-195
    • Johnson, D.W.1
  • 202
    • 0028171579 scopus 로고
    • Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1
    • McAllister, K. A. et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 8, 345-351 (1994).
    • (1994) Nat. Genet. , vol.8 , pp. 345-351
    • McAllister, K.A.1
  • 203
    • 0032695959 scopus 로고    scopus 로고
    • Mutations in the gene encoding KRIT1, a Krev1/rap1a binding protein, cause cerebral cavernous malformations (CCM1)
    • Sahoo, T. et al. Mutations in the gene encoding KRIT1, a Krev1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum. Mol. Genet. 8, 2325-2333 (1999).
    • (1999) Hum. Mol. Genet. , vol.8 , pp. 2325-2333
    • Sahoo, T.1
  • 204
    • 9144261692 scopus 로고    scopus 로고
    • Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations
    • Liquori, C. L. et al. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am. J. Hum. Genet. 73, 1459-1464 (2003).
    • (2003) Am. J. Hum. Genet. , vol.73 , pp. 1459-1464
    • Liquori, C.L.1
  • 205
    • 0032851217 scopus 로고    scopus 로고
    • Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas
    • Labergele Couteulx, S. et al. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat. Genet. 23, 189-193 (1999).
    • (1999) Nat. Genet. , vol.23 , pp. 189-193
    • Labergele Couteulx, S.1
  • 206
    • 19944394831 scopus 로고    scopus 로고
    • Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations
    • Bergametti, F. et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am. J. Hum. Genet. 76, 42-51 (2005).
    • (2005) Am. J. Hum. Genet. , vol.76 , pp. 42-51
    • Bergametti, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.