-
1
-
-
84958568177
-
Lymphatic system in cardiovascular medicine
-
Aspelund, A., Robciuc, M. R., Karaman, S., Makinen, T. & Alitalo, K. Lymphatic system in cardiovascular medicine. Circ. Res. 118, 515-530 (2016).
-
(2016)
Circ. Res.
, vol.118
, pp. 515-530
-
-
Aspelund, A.1
Robciuc, M.R.2
Karaman, S.3
Makinen, T.4
Alitalo, K.5
-
3
-
-
84897882037
-
Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone
-
Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323-328 (2014).
-
(2014)
Nature
, vol.507
, pp. 323-328
-
-
Kusumbe, A.P.1
Ramasamy, S.K.2
Adams, R.H.3
-
4
-
-
85003868954
-
Vascular laminins in physiology and pathology
-
Di Russo, J. et al. Vascular laminins in physiology and pathology. Matrix Biol. 57-58, 140-148 (2016).
-
(2016)
Matrix Biol.
, vol.57-58
, pp. 140-148
-
-
Di Russo, J.1
-
5
-
-
78649467527
-
Pericytes regulate the blood-brain barrier
-
Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557-561 (2010).
-
(2010)
Nature
, vol.468
, pp. 557-561
-
-
Armulik, A.1
-
6
-
-
79961230399
-
Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises
-
Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193-215 (2011).
-
(2011)
Dev. Cell
, vol.21
, pp. 193-215
-
-
Armulik, A.1
Genove, G.2
Betsholtz, C.3
-
7
-
-
84897564199
-
Capillary pericytes regulate cerebral blood flow in health and disease
-
Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55-60 (2014).
-
(2014)
Nature
, vol.508
, pp. 55-60
-
-
Hall, C.N.1
-
8
-
-
84937414504
-
Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes
-
Hill, R. A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95-110 (2015).
-
(2015)
Neuron
, vol.87
, pp. 95-110
-
-
Hill, R.A.1
-
9
-
-
84984788968
-
Endothelial cell responses to biomechanical forces in lymphatic vessels
-
Sabine, A., Saygili Demir, C. & Petrova, T. V. Endothelial cell responses to biomechanical forces in lymphatic vessels. Antioxid. Redox Signal. 25, 451-465 (2016).
-
(2016)
Antioxid. Redox Signal.
, vol.25
, pp. 451-465
-
-
Sabine, A.1
Saygili Demir, C.2
Petrova, T.V.3
-
10
-
-
84947901598
-
Establishment and dysfunction of the blood-brain barrier
-
Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood-brain barrier. Cell 163, 1064-1078 (2015).
-
(2015)
Cell
, vol.163
, pp. 1064-1078
-
-
Zhao, Z.1
Nelson, A.R.2
Betsholtz, C.3
Zlokovic, B.V.4
-
11
-
-
84901269974
-
Mfsd2a is critical for the formation and function of the blood-brain barrier
-
Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509, 507-511 (2014).
-
(2014)
Nature
, vol.509
, pp. 507-511
-
-
Ben-Zvi, A.1
-
12
-
-
84901260638
-
Mfsd2a is a transporter for the essential omega3 fatty acid docosahexaenoic acid
-
Nguyen, L. N. et al. Mfsd2a is a transporter for the essential omega3 fatty acid docosahexaenoic acid. Nature 509, 503-506 (2014).
-
(2014)
Nature
, vol.509
, pp. 503-506
-
-
Nguyen, L.N.1
-
13
-
-
84964533485
-
Distinct bone marrow blood vessels differentially regulate haematopoiesis
-
Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323-328 (2016).
-
(2016)
Nature
, vol.532
, pp. 323-328
-
-
Itkin, T.1
-
14
-
-
34948814992
-
Functionally specialized junctions between endothelial cells of lymphatic vessels
-
Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349-2362 (2007).
-
(2007)
J. Exp. Med.
, vol.204
, pp. 2349-2362
-
-
Baluk, P.1
-
15
-
-
84928766072
-
Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake
-
Coppiello, G. et al. Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake. Circulation 131, 815-826 (2015).
-
(2015)
Circulation
, vol.131
, pp. 815-826
-
-
Coppiello, G.1
-
16
-
-
77950865464
-
Vascular endothelial growth factor B controls endothelial fatty acid uptake
-
Hagberg, C. E. et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464, 917-921 (2010).
-
(2010)
Nature
, vol.464
, pp. 917-921
-
-
Hagberg, C.E.1
-
17
-
-
84895734499
-
VEGFBInduced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart
-
Kivela, R. et al. VEGFBinduced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol. Med. 6, 307-321 (2014).
-
(2014)
EMBO Mol. Med.
, vol.6
, pp. 307-321
-
-
Kivela, R.1
-
18
-
-
84906819235
-
Lack of cardiac and high-fat diet induced metabolic phenotypes in two independent strains of VegfB knockout mice
-
Dijkstra, M. H. et al. Lack of cardiac and high-fat diet induced metabolic phenotypes in two independent strains of Vegfb knockout mice. Sci. Rep. 4, 6238 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 6238
-
-
Dijkstra, M.H.1
-
19
-
-
84925594369
-
GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration
-
Winkler, E. A. et al. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521-530 (2015).
-
(2015)
Nat. Neurosci.
, vol.18
, pp. 521-530
-
-
Winkler, E.A.1
-
20
-
-
84964595404
-
Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity
-
Jais, A. et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165, 882-895 (2016).
-
(2016)
Cell
, vol.165
, pp. 882-895
-
-
Jais, A.1
-
21
-
-
85002488064
-
Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder
-
Tarlungeanu, D. C. et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167, 1481-1494. e18 (2016).
-
(2016)
Cell
, vol.167
, pp. 1481e18-1494e18
-
-
Tarlungeanu, D.C.1
-
22
-
-
84922010536
-
Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing
-
Lee, M. et al. Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing. Nat. Immunol. 15, 982-995 (2014).
-
(2014)
Nat. Immunol.
, vol.15
, pp. 982-995
-
-
Lee, M.1
-
23
-
-
84867900263
-
HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes
-
Girard, J. P., Moussion, C. & Forster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762-773 (2012).
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 762-773
-
-
Girard, J.P.1
Moussion, C.2
Forster, R.3
-
24
-
-
84856929905
-
Mechanoinduction of lymph vessel expansion
-
Planas-Paz, L. et al. Mechanoinduction of lymph vessel expansion. EMBO J. 31, 788-804 (2012).
-
(2012)
EMBO J
, vol.31
, pp. 788-804
-
-
Planas-Paz, L.1
-
25
-
-
84978656557
-
Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification
-
Reischauer, S. et al. Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature 535, 294-298 (2016).
-
(2016)
Nature
, vol.535
, pp. 294-298
-
-
Reischauer, S.1
-
26
-
-
84887233404
-
Heart field origin of great vessel precursors relies on nkx2.5Mediated vasculogenesis
-
Paffett-Lugassy, N. et al. Heart field origin of great vessel precursors relies on nkx2.5mediated vasculogenesis. Nat. Cell Biol. 15, 1362-1369 (2013).
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1362-1369
-
-
Paffett-Lugassy, N.1
-
27
-
-
78149411850
-
Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis
-
Proulx, K., Lu, A. & Sumanas, S. Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. Dev. Biol. 348, 34-46 (2010).
-
(2010)
Dev. Biol.
, vol.348
, pp. 34-46
-
-
Proulx, K.1
Lu, A.2
Sumanas, S.3
-
28
-
-
70349617470
-
Chemokine signaling guides regional patterning of the first embryonic artery
-
Siekmann, A. F., Standley, C., Fogarty, K. E., Wolfe, S. A. & Lawson, N. D. Chemokine signaling guides regional patterning of the first embryonic artery. Genes Dev. 23, 2272-2277 (2009).
-
(2009)
Genes Dev.
, vol.23
, pp. 2272-2277
-
-
Siekmann, A.F.1
Standley, C.2
Fogarty, K.E.3
Wolfe, S.A.4
Lawson, N.D.5
-
29
-
-
70349856167
-
Arterial-venous segregation by selective cell sprouting: An alternative mode of blood vessel formation
-
Herbert, S. P. et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326, 294-298 (2009).
-
(2009)
Science
, vol.326
, pp. 294-298
-
-
Herbert, S.P.1
-
30
-
-
84894080782
-
Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals
-
Lindskog, H. et al. Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals. Development 141, 1120-1128 (2014).
-
(2014)
Development
, vol.141
, pp. 1120-1128
-
-
Lindskog, H.1
-
31
-
-
84876979230
-
Arterial and venous progenitors of the major axial vessels originate at distinct locations
-
Kohli, V., Schumacher, J. A., Desai, S. P., Rehn, K. & Sumanas, S. Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev. Cell 25, 196-206 (2013).
-
(2013)
Dev. Cell
, vol.25
, pp. 196-206
-
-
Kohli, V.1
Schumacher, J.A.2
Desai, S.P.3
Rehn, K.4
Sumanas, S.5
-
32
-
-
84877259309
-
Regulation of endothelial cell differentiation and specification
-
Marcelo, K. L., Goldie, L. C. & Hirschi, K. K. Regulation of endothelial cell differentiation and specification. Circ. Res. 112, 1272-1287 (2013).
-
(2013)
Circ. Res.
, vol.112
, pp. 1272-1287
-
-
Marcelo, K.L.1
Goldie, L.C.2
Hirschi, K.K.3
-
33
-
-
84930666161
-
The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis
-
Helker, C. S. et al. The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis. eLife 4, e06726 (2015).
-
(2015)
ELife
, vol.4
, pp. e06726
-
-
Helker, C.S.1
-
34
-
-
80052933197
-
Basic and therapeutic aspects of angiogenesis
-
Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873-887 (2011).
-
(2011)
Cell
, vol.146
, pp. 873-887
-
-
Potente, M.1
Gerhardt, H.2
Carmeliet, P.3
-
35
-
-
84977080642
-
Cell behaviors and dynamics during angiogenesis
-
Betz, C., Lenard, A., Belting, H. G. & Affolter, M. Cell behaviors and dynamics during angiogenesis. Development 143, 2249-2260 (2016).
-
(2016)
Development
, vol.143
, pp. 2249-2260
-
-
Betz, C.1
Lenard, A.2
Belting, H.G.3
Affolter, M.4
-
36
-
-
84893740443
-
Cellular and molecular mechanisms underlying blood vessel lumen formation
-
Charpentier, M. S. & Conlon, F. L. Cellular and molecular mechanisms underlying blood vessel lumen formation. Bioessays 36, 251-259 (2014).
-
(2014)
Bioessays
, vol.36
, pp. 251-259
-
-
Charpentier, M.S.1
Conlon, F.L.2
-
37
-
-
84959201377
-
Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo
-
Gebala, V., Collins, R., Geudens, I., Phng, L. K. & Gerhardt, H. Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat. Cell Biol. 18, 443-450 (2016).
-
(2016)
Nat. Cell Biol.
, vol.18
, pp. 443-450
-
-
Gebala, V.1
Collins, R.2
Geudens, I.3
Phng, L.K.4
Gerhardt, H.5
-
38
-
-
81855180719
-
Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo
-
Herwig, L. et al. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr. Biol. 21, 1942-1948 (2011).
-
(2011)
Curr. Biol.
, vol.21
, pp. 1942-1948
-
-
Herwig, L.1
-
39
-
-
84942414356
-
Mechanisms of vessel pruning and regression
-
Korn, C. & Augustin, H. G. Mechanisms of vessel pruning and regression. Dev. Cell 34, 5-17 (2015).
-
(2015)
Dev. Cell
, vol.34
, pp. 5-17
-
-
Korn, C.1
Augustin, H.G.2
-
40
-
-
81855212518
-
To sprout or to split VEGF, Notch and vascular morphogenesis
-
Gianni-Barrera, R., Trani, M., Reginato, S. & Banfi, A. To sprout or to split VEGF, Notch and vascular morphogenesis. Biochem. Soc. Trans. 39, 1644-1648 (2011).
-
(2011)
Biochem. Soc. Trans.
, vol.39
, pp. 1644-1648
-
-
Gianni-Barrera, R.1
Trani, M.2
Reginato, S.3
Banfi, A.4
-
41
-
-
85002811958
-
Blood flow controls bone vascular function and osteogenesis
-
Ramasamy, S. K. et al. Blood flow controls bone vascular function and osteogenesis. Nat. Commun. 7, 13601 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 13601
-
-
Ramasamy, S.K.1
-
42
-
-
84923281901
-
Arteries are formed by vein-derived endothelial tip cells
-
Xu, C. et al. Arteries are formed by vein-derived endothelial tip cells. Nat. Commun. 5, 5758 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 5758
-
-
Xu, C.1
-
43
-
-
84951201173
-
Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development
-
Hen, G. et al. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development. Development 142, 4266-4278 (2015).
-
(2015)
Development
, vol.142
, pp. 4266-4278
-
-
Hen, G.1
-
44
-
-
84911489742
-
The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis
-
Chen, H. I. et al. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141, 4500-4512 (2014).
-
(2014)
Development
, vol.141
, pp. 4500-4512
-
-
Chen, H.I.1
-
45
-
-
84963705843
-
Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls
-
Zhang, H. et al. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118, 1880-1893 (2016).
-
(2016)
Circ. Res.
, vol.118
, pp. 1880-1893
-
-
Zhang, H.1
-
46
-
-
84903703870
-
Vessel formation de novo formation of a distinct coronary vascular population in neonatal heart
-
Tian, X. et al. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345, 90-94 (2014).
-
(2014)
Science
, vol.345
, pp. 90-94
-
-
Tian, X.1
-
47
-
-
84982313678
-
Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells
-
Chen, Q. et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat. Commun. 7, 12422 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 12422
-
-
Chen, Q.1
-
48
-
-
84994882482
-
Clonal proliferation and stochastic pruning orchestrate lymph node vasculature remodeling
-
Mondor, I. et al. Clonal proliferation and stochastic pruning orchestrate lymph node vasculature remodeling. Immunity 45, 877-888 (2016).
-
(2016)
Immunity
, vol.45
, pp. 877-888
-
-
Mondor, I.1
-
49
-
-
84887521005
-
Circulating and tissue resident endothelial progenitor cells
-
Basile, D. P. & Yoder, M. C. Circulating and tissue resident endothelial progenitor cells. J. Cell. Physiol. 229, 10-16 (2014).
-
(2014)
J. Cell. Physiol.
, vol.229
, pp. 10-16
-
-
Basile, D.P.1
Yoder, M.C.2
-
50
-
-
84866360562
-
Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos
-
Yang, Y. et al. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood 120, 2340-2348 (2012).
-
(2012)
Blood
, vol.120
, pp. 2340-2348
-
-
Yang, Y.1
-
51
-
-
9144236286
-
Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins
-
Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74-80 (2004).
-
(2004)
Nat. Immunol.
, vol.5
, pp. 74-80
-
-
Karkkainen, M.J.1
-
52
-
-
84875217017
-
A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy
-
Hagerling, R. et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 32, 629-644 (2013).
-
(2013)
EMBO J
, vol.32
, pp. 629-644
-
-
Hagerling, R.1
-
53
-
-
84930644081
-
Lymphatic vessels arise from specialized angioblasts within a venous niche
-
Nicenboim, J. et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 522, 56-61 (2015).
-
(2015)
Nature
, vol.522
, pp. 56-61
-
-
Nicenboim, J.1
-
54
-
-
84947460320
-
Vegfc regulates bipotential precursor division and Prox1 expression to promote lymphatic identity in zebrafish
-
Koltowska, K. et al. Vegfc regulates bipotential precursor division and Prox1 expression to promote lymphatic identity in zebrafish. Cell Rep. 13, 1828-1841 (2015).
-
(2015)
Cell Rep.
, vol.13
, pp. 1828-1841
-
-
Koltowska, K.1
-
55
-
-
33646458214
-
Dual origin of avian lymphatics
-
Wilting, J. et al. Dual origin of avian lymphatics. Dev. Biol. 292, 165-173 (2006).
-
(2006)
Dev. Biol.
, vol.292
, pp. 165-173
-
-
Wilting, J.1
-
56
-
-
84930639373
-
Cardiac lymphatics are heterogeneous in origin and respond to injury
-
Klotz, L. et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522, 62-67 (2015).
-
(2015)
Nature
, vol.522
, pp. 62-67
-
-
Klotz, L.1
-
57
-
-
84919479053
-
The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine
-
Mahadevan, A. et al. The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev. Cell 31, 690-706 (2014).
-
(2014)
Dev. Cell
, vol.31
, pp. 690-706
-
-
Mahadevan, A.1
-
58
-
-
84937473353
-
Nonvenous origin of dermal lymphatic vasculature
-
Martinez-Corral, I. et al. Nonvenous origin of dermal lymphatic vasculature. Circ. Res. 116, 1649-1654 (2015).
-
(2015)
Circ. Res.
, vol.116
, pp. 1649-1654
-
-
Martinez-Corral, I.1
-
59
-
-
84925138637
-
CKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels
-
Stanczuk, L. et al. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 10, 1708-1721 (2015).
-
(2015)
Cell Rep.
, vol.10
, pp. 1708-1721
-
-
Stanczuk, L.1
-
60
-
-
78149246290
-
Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation
-
Gordon, E. J. et al. Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development 137, 3899-3910 (2010).
-
(2010)
Development
, vol.137
, pp. 3899-3910
-
-
Gordon, E.J.1
-
61
-
-
84979698228
-
Mechanisms and regulation of endothelial VEGF receptor signalling
-
Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17, 611-625 (2016).
-
(2016)
Nat. Rev. Mol. Cell Biol.
, vol.17
, pp. 611-625
-
-
Simons, M.1
Gordon, E.2
Claesson-Welsh, L.3
-
63
-
-
84921417379
-
VEGFR3 does not sustain retinal angiogenesis without VEGFR2
-
Zarkada, G., Heinolainen, K., Makinen, T., Kubota, Y. & Alitalo, K. VEGFR3 does not sustain retinal angiogenesis without VEGFR2. Proc. Natl Acad. Sci. USA 112, 761-766 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 761-766
-
-
Zarkada, G.1
Heinolainen, K.2
Makinen, T.3
Kubota, Y.4
Alitalo, K.5
-
64
-
-
77957607057
-
Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting
-
Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943-953 (2010).
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 943-953
-
-
Jakobsson, L.1
-
65
-
-
84874622432
-
Spatial regulation of VEGF receptor endocytosis in angiogenesis
-
Nakayama, M. et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat. Cell Biol. 15, 249-260 (2013).
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 249-260
-
-
Nakayama, M.1
-
66
-
-
84996761503
-
Asymmetric division coordinates collective cell migration in angiogenesis
-
Costa, G. et al. Asymmetric division coordinates collective cell migration in angiogenesis. Nat. Cell Biol. 18, 1292-1301 (2016).
-
(2016)
Nat. Cell Biol.
, vol.18
, pp. 1292-1301
-
-
Costa, G.1
-
67
-
-
84934981272
-
Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch
-
Aspalter, I. M. et al. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat. Commun. 6, 7264 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 7264
-
-
Aspalter, I.M.1
-
68
-
-
84858176226
-
ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway
-
Larrivee, B. et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev. Cell 22, 489-500 (2012).
-
(2012)
Dev. Cell
, vol.22
, pp. 489-500
-
-
Larrivee, B.1
-
69
-
-
84862727268
-
BMP9 and BMP10 are critical for postnatal retinal vascular remodeling
-
Ricard, N. et al. BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. Blood 119, 6162-6171 (2012).
-
(2012)
Blood
, vol.119
, pp. 6162-6171
-
-
Ricard, N.1
-
70
-
-
84858286273
-
Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades
-
Moya, I. M. et al. Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev. Cell 22, 501-514 (2012).
-
(2012)
Dev. Cell
, vol.22
, pp. 501-514
-
-
Moya, I.M.1
-
71
-
-
84901482262
-
CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs3Mediated vascular endothelial growth factorC activation
-
Jeltsch, M. et al. CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs3mediated vascular endothelial growth factorC activation. Circulation 129, 1962-1971 (2014).
-
(2014)
Circulation
, vol.129
, pp. 1962-1971
-
-
Jeltsch, M.1
-
72
-
-
84974588045
-
Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD
-
Bui, H. M. et al. Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD. J. Clin. Invest. 126, 2167-2180 (2016).
-
(2016)
J. Clin. Invest.
, vol.126
, pp. 2167-2180
-
-
Bui, H.M.1
-
73
-
-
84896892567
-
Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis
-
Le Guen, L. et al. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141, 1239-1249 (2014).
-
(2014)
Development
, vol.141
, pp. 1239-1249
-
-
Le Guen, L.1
-
74
-
-
75749124699
-
Neuropilin2 mediates VEGFCInduced lymphatic sprouting together with VEGFR3
-
Xu, Y. et al. Neuropilin2 mediates VEGFCinduced lymphatic sprouting together with VEGFR3. J. Cell Biol. 188, 115-130 (2010).
-
(2010)
J. Cell Biol.
, vol.188
, pp. 115-130
-
-
Xu, Y.1
-
75
-
-
84883246046
-
TGFbeta signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin
-
James, J. M., Nalbandian, A. & Mukouyama, Y. S. TGFbeta signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. Development 140, 3903-3914 (2013).
-
(2013)
Development
, vol.140
, pp. 3903-3914
-
-
James, J.M.1
Nalbandian, A.2
Mukouyama, Y.S.3
-
76
-
-
79960988887
-
Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor
-
Zheng, W. et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood 118, 1154-1162 (2011).
-
(2011)
Blood
, vol.118
, pp. 1154-1162
-
-
Zheng, W.1
-
78
-
-
34547773697
-
Common cues regulate neural and vascular patterning
-
Jones, C. A. & Li, D. Y. Common cues regulate neural and vascular patterning. Curr. Opin. Genet. Dev. 17, 332-336 (2007).
-
(2007)
Curr. Opin. Genet. Dev.
, vol.17
, pp. 332-336
-
-
Jones, C.A.1
Li, D.Y.2
-
79
-
-
84859809053
-
Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature
-
Cha, Y. R. et al. Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev. Cell 22, 824-836 (2012).
-
(2012)
Dev. Cell
, vol.22
, pp. 824-836
-
-
Cha, Y.R.1
-
80
-
-
84963699473
-
VEGFB/VEGFR1Induced expansion of adipose vasculature counteracts obesity and related metabolic complications
-
Robciuc, M. R. et al. VEGFB/VEGFR1induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab. 23, 712-724 (2016).
-
(2016)
Cell Metab.
, vol.23
, pp. 712-724
-
-
Robciuc, M.R.1
-
81
-
-
79957910125
-
Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein
-
Wiley, D. M. et al. Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat. Cell Biol. 13, 686-692 (2011).
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 686-692
-
-
Wiley, D.M.1
-
82
-
-
84897830319
-
Endothelial Notch activity promotes angiogenesis and osteogenesis in bone
-
Ramasamy, S. K., Kusumbe, A. P., Wang, L. & Adams, R. H. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507, 376-380 (2014).
-
(2014)
Nature
, vol.507
, pp. 376-380
-
-
Ramasamy, S.K.1
Kusumbe, A.P.2
Wang, L.3
Adams, R.H.4
-
83
-
-
84948808413
-
DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport
-
Bernier-Latmani, J. et al. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J. Clin. Invest. 125, 4572-4586 (2015).
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 4572-4586
-
-
Bernier-Latmani, J.1
-
84
-
-
84901854355
-
Fluid shear stress threshold regulates angiogenic sprouting
-
Galie, P. A. et al. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl Acad. Sci. USA 111, 7968-7973 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 7968-7973
-
-
Galie, P.A.1
-
85
-
-
84961980110
-
Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis
-
Ghaffari, S., Leask, R. L. & Jones, E. A. Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis. Development 142, 4151-4157 (2015).
-
(2015)
Development
, vol.142
, pp. 4151-4157
-
-
Ghaffari, S.1
Leask, R.L.2
Jones, E.A.3
-
86
-
-
80053086676
-
Fluid forces control endothelial sprouting
-
Song, J. W. & Munn, L. L. Fluid forces control endothelial sprouting. Proc. Natl Acad. Sci. USA 108, 15342-15347 (2011).
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 15342-15347
-
-
Song, J.W.1
Munn, L.L.2
-
87
-
-
85013124230
-
The link between angiogenesis and endothelial metabolism
-
Potente, M. & Carmeliet, P. M. The link between angiogenesis and endothelial metabolism. Annu. Rev. Physiol. 79, 43-66 (2017).
-
(2017)
Annu. Rev. Physiol.
, vol.79
, pp. 43-66
-
-
Potente, M.1
Carmeliet, P.M.2
-
88
-
-
84881119066
-
Role of PFKFB3Driven glycolysis in vessel sprouting
-
De Bock, K. et al. Role of PFKFB3driven glycolysis in vessel sprouting. Cell 154, 651-663 (2013).
-
(2013)
Cell
, vol.154
, pp. 651-663
-
-
De Bock, K.1
-
89
-
-
84927563455
-
Fatty acid carbon is essential for dNTP synthesis in endothelial cells
-
Schoors, S. et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192-197 (2015).
-
(2015)
Nature
, vol.520
, pp. 192-197
-
-
Schoors, S.1
-
90
-
-
85016143129
-
The role of fatty acid beta-oxidation in lymphangiogenesis
-
Wong, B. W. et al. The role of fatty acid beta-oxidation in lymphangiogenesis. Nature 542, 49-54 (2017).
-
(2017)
Nature
, vol.542
, pp. 49-54
-
-
Wong, B.W.1
-
91
-
-
25144451336
-
WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature
-
Lobov, I. B. et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437, 417-421 (2005).
-
(2005)
Nature
, vol.437
, pp. 417-421
-
-
Lobov, I.B.1
-
92
-
-
84983048252
-
Apoptosis regulates endothelial cell number and capillary vessel diameter but not vessel regression during retinal angiogenesis
-
Watson, E. C. et al. Apoptosis regulates endothelial cell number and capillary vessel diameter but not vessel regression during retinal angiogenesis. Development 143, 2973-2982 (2016).
-
(2016)
Development
, vol.143
, pp. 2973-2982
-
-
Watson, E.C.1
-
93
-
-
84865706553
-
Haemodynamics-driven developmental pruning of brain vasculature in zebrafish
-
Chen, Q. et al. Haemodynamics-driven developmental pruning of brain vasculature in zebrafish. PLoS Biol. 10, e1001374 (2012).
-
(2012)
PLoS Biol.
, vol.10
, pp. e1001374
-
-
Chen, Q.1
-
94
-
-
84929485516
-
Dynamic endothelial cell rearrangements drive developmental vessel regression
-
Franco, C. A. et al. Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol. 13, e1002125 (2015).
-
(2015)
PLoS Biol.
, vol.13
, pp. e1002125
-
-
Franco, C.A.1
-
95
-
-
84885413188
-
Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos
-
Kochhan, E. et al. Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos. PLoS ONE 8, e75060 (2013).
-
(2013)
PLoS ONE
, vol.8
, pp. e75060
-
-
Kochhan, E.1
-
96
-
-
84929483932
-
Endothelial cell self-fusion during vascular pruning
-
Lenard, A. et al. Endothelial cell self-fusion during vascular pruning. PLoS Biol. 13, e1002126 (2015).
-
(2015)
PLoS Biol.
, vol.13
, pp. e1002126
-
-
Lenard, A.1
-
97
-
-
68349105030
-
IntegrinAlpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis
-
Bazigou, E. et al. Integrinalpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev. Cell 17, 175-186 (2009).
-
(2009)
Dev. Cell
, vol.17
, pp. 175-186
-
-
Bazigou, E.1
-
98
-
-
65649096621
-
FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1
-
Norrmen, C. et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J. Cell Biol. 185, 439-457 (2009).
-
(2009)
J. Cell Biol.
, vol.185
, pp. 439-457
-
-
Norrmen, C.1
-
99
-
-
20144369085
-
Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation
-
Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest. 115, 247-257 (2005).
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 247-257
-
-
Baluk, P.1
-
100
-
-
77749285699
-
Steroid-resistant lymphatic remodeling in chronically inflamed mouse airways
-
Yao, L. C., Baluk, P., Feng, J. & McDonald, D. M. Steroid-resistant lymphatic remodeling in chronically inflamed mouse airways. Am. J. Pathol. 176, 1525-1541 (2010).
-
(2010)
Am. J. Pathol.
, vol.176
, pp. 1525-1541
-
-
Yao, L.C.1
Baluk, P.2
Feng, J.3
McDonald, D.M.4
-
101
-
-
84939235474
-
Lymph flow regulates collecting lymphatic vessel maturation in vivo
-
Sweet, D. T. et al. Lymph flow regulates collecting lymphatic vessel maturation in vivo. J. Clin. Invest. 125, 2995-3007 (2015).
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 2995-3007
-
-
Sweet, D.T.1
-
102
-
-
84857026228
-
Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation
-
Sabine, A. et al. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev. Cell 22, 430-445 (2012).
-
(2012)
Dev. Cell
, vol.22
, pp. 430-445
-
-
Sabine, A.1
-
103
-
-
0842322958
-
Flow regulates arterial-venous differentiation in the chick embryo yolk sac
-
Noble, F. et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131, 361-375 (2004).
-
(2004)
Development
, vol.131
, pp. 361-375
-
-
Noble, F.1
-
104
-
-
84951850124
-
Somatic activating PIK3CA mutations cause venous malformation
-
Limaye, N. et al. Somatic activating PIK3CA mutations cause venous malformation. Am. J. Hum. Genet. 97, 914-921 (2015).
-
(2015)
Am. J. Hum. Genet.
, vol.97
, pp. 914-921
-
-
Limaye, N.1
-
105
-
-
84933279834
-
Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA
-
Luks, V. L. et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J. Pediatr. 166, 1048-1054.e5 (2015).
-
(2015)
J. Pediatr.
, vol.166
, pp. 1048e5-1048e5
-
-
Luks, V.L.1
-
106
-
-
84922469410
-
Activating PIK3CA alleles and lymphangiogenic phenotype of lymphatic endothelial cells isolated from lymphatic malformations
-
Osborn, A. J. et al. Activating PIK3CA alleles and lymphangiogenic phenotype of lymphatic endothelial cells isolated from lymphatic malformations. Hum. Mol. Genet. 24, 926-938 (2015).
-
(2015)
Hum. Mol. Genet.
, vol.24
, pp. 926-938
-
-
Osborn, A.J.1
-
107
-
-
84962778934
-
Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans
-
Castillo, S. D. et al. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci. Transl Med. 8, 332ra43 (2016).
-
(2016)
Sci. Transl Med.
, vol.8
, pp. 332ra43
-
-
Castillo, S.D.1
-
108
-
-
84962634604
-
Somatic PIK3CA mutations as a driver of sporadic venous malformations
-
Castel, P. et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci. Transl Med. 8, 332ra42 (2016).
-
(2016)
Sci. Transl Med.
, vol.8
, pp. 332ra42
-
-
Castel, P.1
-
109
-
-
84879598902
-
Vascular anomalies: From genetics toward models for therapeutic trials
-
Uebelhoer, M., Boon, L. M. & Vikkula, M. Vascular anomalies: from genetics toward models for therapeutic trials. Cold Spring Harb. Perspect. Med. 2, a009688 (2012).
-
(2012)
Cold Spring Harb. Perspect. Med.
, vol.2
, pp. a009688
-
-
Uebelhoer, M.1
Boon, L.M.2
Vikkula, M.3
-
110
-
-
0347362524
-
Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations
-
Eerola, I. et al. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am. J. Hum. Genet. 73, 1240-1249 (2003).
-
(2003)
Am. J. Hum. Genet.
, vol.73
, pp. 1240-1249
-
-
Eerola, I.1
-
111
-
-
84856540111
-
RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice
-
Lapinski, P. E. et al. RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. J. Clin. Invest. 122, 733-747 (2012).
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 733-747
-
-
Lapinski, P.E.1
-
112
-
-
77950346287
-
H, N and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice
-
Ichise, T., Yoshida, N. & Ichise, H. H, N and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice. Development 137, 1003-1013 (2010).
-
(2010)
Development
, vol.137
, pp. 1003-1013
-
-
Ichise, T.1
Yoshida, N.2
Ichise, H.3
-
113
-
-
84971472477
-
Endothelial mitogen-activated protein kinase kinase kinase kinase 4 is critical for lymphatic vascular development and function
-
Roth Flach, R. J. et al. Endothelial mitogen-activated protein kinase kinase kinase kinase 4 is critical for lymphatic vascular development and function. Mol. Cell. Biol. 36, 1740-1749 (2016).
-
(2016)
Mol. Cell. Biol.
, vol.36
, pp. 1740-1749
-
-
Roth Flach, R.J.1
-
114
-
-
34249026448
-
Binding of ras to phosphoinositide 3kinase p110alpha is required for ras-driven tumorigenesis in mice
-
Gupta, S. et al. Binding of ras to phosphoinositide 3kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129, 957-968 (2007).
-
(2007)
Cell
, vol.129
, pp. 957-968
-
-
Gupta, S.1
-
115
-
-
84938510798
-
PTEN mediates Notch-dependent stalk cell arrest in angiogenesis
-
Serra, H. et al. PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nat. Commun. 6, 7935 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 7935
-
-
Serra, H.1
-
116
-
-
84955112522
-
FOXO1 couples metabolic activity and growth state in the vascular endothelium
-
Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529, 216-220 (2016).
-
(2016)
Nature
, vol.529
, pp. 216-220
-
-
Wilhelm, K.1
-
117
-
-
84920149932
-
Laminar shear stress inhibits endothelial cell metabolism via KLF2mediated repression of PFKFB3
-
Doddaballapur, A. et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2mediated repression of PFKFB3. Arterioscler. Thromb. Vasc. Biol. 35, 137-145 (2015).
-
(2015)
Arterioscler. Thromb. Vasc. Biol.
, vol.35
, pp. 137-145
-
-
Doddaballapur, A.1
-
118
-
-
84991238142
-
Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia
-
Baeyens, N. et al. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J. Cell Biol. 214, 807-816 (2016).
-
(2016)
J. Cell Biol.
, vol.214
, pp. 807-816
-
-
Baeyens, N.1
-
119
-
-
84877106886
-
Cerebral cavernous malformations: From CCM genes to endothelial cell homeostasis
-
Fischer, A., Zalvide, J., Faurobert, E., Albiges-Rizo, C. & Tournier-Lasserve, E. Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol. Med. 19, 302-308 (2013).
-
(2013)
Trends Mol. Med.
, vol.19
, pp. 302-308
-
-
Fischer, A.1
Zalvide, J.2
Faurobert, E.3
Albiges-Rizo, C.4
Tournier-Lasserve, E.5
-
120
-
-
84943279890
-
FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature
-
Sabine, A. et al. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J. Clin. Invest. 125, 3861-3877 (2015).
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 3861-3877
-
-
Sabine, A.1
-
121
-
-
84959088866
-
Constitutive activation of mTORC1 in endothelial cells leads to the development and progression of lymphangiosarcoma through VEGF autocrine signaling
-
Sun, S. et al. Constitutive activation of mTORC1 in endothelial cells leads to the development and progression of lymphangiosarcoma through VEGF autocrine signaling. Cancer Cell 28, 758-772 (2015).
-
(2015)
Cancer Cell
, vol.28
, pp. 758-772
-
-
Sun, S.1
-
122
-
-
76749157186
-
Chronic DLL4 blockade induces vascular neoplasms
-
Yan, M. et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 463, E6-E7 (2010).
-
(2010)
Nature
, vol.463
, pp. E6-E7
-
-
Yan, M.1
-
123
-
-
79551510137
-
Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice
-
Liu, Z. et al. Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J. Clin. Invest. 121, 800-808 (2011).
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 800-808
-
-
Liu, Z.1
-
124
-
-
84955286381
-
Angiocrine functions of organ-specific endothelial cells
-
Rafii, S., Butler, J. M. & Ding, B. S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316-325 (2016).
-
(2016)
Nature
, vol.529
, pp. 316-325
-
-
Rafii, S.1
Butler, J.M.2
Ding, B.S.3
-
125
-
-
84923282085
-
Regulation of tissue morphogenesis by endothelial cell-derived signals
-
Ramasamy, S. K., Kusumbe, A. P. & Adams, R. H. Regulation of tissue morphogenesis by endothelial cell-derived signals. Trends Cell Biol. 25, 148-157 (2015).
-
(2015)
Trends Cell Biol.
, vol.25
, pp. 148-157
-
-
Ramasamy, S.K.1
Kusumbe, A.P.2
Adams, R.H.3
-
126
-
-
84942900570
-
Molecular controls of arterial morphogenesis
-
Simons, M. & Eichmann, A. Molecular controls of arterial morphogenesis. Circ. Res. 116, 1712-1724 (2015).
-
(2015)
Circ. Res.
, vol.116
, pp. 1712-1724
-
-
Simons, M.1
Eichmann, A.2
-
127
-
-
84978127707
-
Sympathetic innervation promotes arterial fate by enhancing endothelial ERK activity
-
Pardanaud, L. et al. Sympathetic innervation promotes arterial fate by enhancing endothelial ERK activity. Circ. Res. 119, 607-620 (2016).
-
(2016)
Circ. Res.
, vol.119
, pp. 607-620
-
-
Pardanaud, L.1
-
128
-
-
84991800719
-
Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors
-
Shin, M. et al. Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors. Development 143, 3785-3795 (2016).
-
(2016)
Development
, vol.143
, pp. 3785-3795
-
-
Shin, M.1
-
129
-
-
84874631217
-
Endothelial ERK signaling controls lymphatic fate specification
-
Deng, Y., Atri, D., Eichmann, A. & Simons, M. Endothelial ERK signaling controls lymphatic fate specification. J. Clin. Invest. 123, 1202-1215 (2013).
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 1202-1215
-
-
Deng, Y.1
Atri, D.2
Eichmann, A.3
Simons, M.4
-
130
-
-
85014267813
-
Cell-matrix signals specify bone endothelial cells during developmental osteogenesis
-
Langen, U. H. et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat. Cell Biol. 19, 189-201 (2017).
-
(2017)
Nat. Cell Biol.
, vol.19
, pp. 189-201
-
-
Langen, U.H.1
-
131
-
-
32944474182
-
VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature
-
Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H560-H576 (2006).
-
(2006)
Am. J. Physiol. Heart Circ. Physiol.
, vol.290
, pp. H560-H576
-
-
Kamba, T.1
-
132
-
-
77950585147
-
Angiopoietin/Tie2 signaling transforms capillaries into venules primed for leukocyte trafficking in airway inflammation
-
Fuxe, J. et al. Angiopoietin/Tie2 signaling transforms capillaries into venules primed for leukocyte trafficking in airway inflammation. Am. J. Pathol. 176, 2009-2018 (2010).
-
(2010)
Am. J. Pathol.
, vol.176
, pp. 2009-2018
-
-
Fuxe, J.1
-
133
-
-
84875981816
-
Getting out and about: The emergence and morphogenesis of the vertebrate lymphatic vasculature
-
Koltowska, K., Betterman, K. L., Harvey, N. L. & Hogan, B. M. Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development 140, 1857-1870 (2013).
-
(2013)
Development
, vol.140
, pp. 1857-1870
-
-
Koltowska, K.1
Betterman, K.L.2
Harvey, N.L.3
Hogan, B.M.4
-
134
-
-
84904356702
-
Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions
-
Zheng, W. et al. Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes Dev. 28, 1592-1603 (2014).
-
(2014)
Genes Dev.
, vol.28
, pp. 1592-1603
-
-
Zheng, W.1
-
135
-
-
84911870696
-
Signaling pathways in the specification of arteries and veins
-
Corada, M., Morini, M. F. & Dejana, E. Signaling pathways in the specification of arteries and veins. Arterioscler. Thromb. Vasc. Biol. 34, 2372-2377 (2014).
-
(2014)
Arterioscler. Thromb. Vasc. Biol.
, vol.34
, pp. 2372-2377
-
-
Corada, M.1
Morini, M.F.2
Dejana, E.3
-
136
-
-
84928610424
-
Sox7 controls arterial specification in conjunction with hey2 and efnb2 function
-
Hermkens, D. M. et al. Sox7 controls arterial specification in conjunction with hey2 and efnb2 function. Development 142, 1695-1704 (2015).
-
(2015)
Development
, vol.142
, pp. 1695-1704
-
-
Hermkens, D.M.1
-
137
-
-
84886678124
-
Sox17 is indispensable for acquisition and maintenance of arterial identity
-
Corada, M. et al. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat. Commun. 4, 2609 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 2609
-
-
Corada, M.1
-
138
-
-
77950469880
-
The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells
-
Srinivasan, R. S. et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696-707 (2010).
-
(2010)
Genes Dev.
, vol.24
, pp. 696-707
-
-
Srinivasan, R.S.1
-
139
-
-
57349142376
-
Sox18 induces development of the lymphatic vasculature in mice
-
Francois, M. et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 456, 643-647 (2008).
-
(2008)
Nature
, vol.456
, pp. 643-647
-
-
Francois, M.1
-
140
-
-
84877901574
-
COUP-TFII orchestrates venous and lymphatic endothelial identity by homo-or hetero-dimerisation with PROX1
-
Aranguren, X. L. et al. COUP-TFII orchestrates venous and lymphatic endothelial identity by homo-or hetero-dimerisation with PROX1. J. Cell Sci. 126, 1164-1175 (2013).
-
(2013)
J. Cell Sci.
, vol.126
, pp. 1164-1175
-
-
Aranguren, X.L.1
-
141
-
-
61849097153
-
Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate
-
Lee, S. et al. Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 113, 1856-1859 (2009).
-
(2009)
Blood
, vol.113
, pp. 1856-1859
-
-
Lee, S.1
-
142
-
-
33846295218
-
FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
-
Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309-323 (2007).
-
(2007)
Cell
, vol.128
, pp. 309-323
-
-
Paik, J.H.1
-
143
-
-
84880948836
-
Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration
-
Nolan, D. J. et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26, 204-219 (2013).
-
(2013)
Dev. Cell
, vol.26
, pp. 204-219
-
-
Nolan, D.J.1
-
144
-
-
84959911185
-
Endothelial fluid shear stress sensing in vascular health and disease
-
Baeyens, N., Bandyopadhyay, C., Coon, B. G., Yun, S. & Schwartz, M. A. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Invest. 126, 821-828 (2016).
-
(2016)
J. Clin. Invest.
, vol.126
, pp. 821-828
-
-
Baeyens, N.1
Bandyopadhyay, C.2
Coon, B.G.3
Yun, S.4
Schwartz, M.A.5
-
145
-
-
84904291455
-
Mechanosensing at the vascular interface
-
Tarbell, J. M., Simon, S. I. & Curry, F. R. Mechanosensing at the vascular interface. Annu. Rev. Biomed. Eng. 16, 505-532 (2014).
-
(2014)
Annu. Rev. Biomed. Eng.
, vol.16
, pp. 505-532
-
-
Tarbell, J.M.1
Simon, S.I.2
Curry, F.R.3
-
146
-
-
84895919128
-
Endothelial cilia mediate low flow sensing during zebrafish vascular development
-
Goetz, J. G. et al. Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep. 6, 799-808 (2014).
-
(2014)
Cell Rep.
, vol.6
, pp. 799-808
-
-
Goetz, J.G.1
-
147
-
-
84971276121
-
Forces and mechanotransduction in 3D vascular biology
-
Kutys, M. L. & Chen, C. S. Forces and mechanotransduction in 3D vascular biology. Curr. Opin. Cell Biol. 42, 73-79 (2016).
-
(2016)
Curr. Opin. Cell Biol.
, vol.42
, pp. 73-79
-
-
Kutys, M.L.1
Chen, C.S.2
-
148
-
-
77953316401
-
Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis
-
Buschmann, I. et al. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development 137, 2187-2196 (2010).
-
(2010)
Development
, vol.137
, pp. 2187-2196
-
-
Buschmann, I.1
-
149
-
-
84861794046
-
Blood flow reprograms lymphatic vessels to blood vessels
-
Chen, C. Y. et al. Blood flow reprograms lymphatic vessels to blood vessels. J. Clin. Invest. 122, 2006-2017 (2012).
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 2006-2017
-
-
Chen, C.Y.1
-
150
-
-
84964698438
-
Vascular remodeling is governed by a VEGFR3 dependent fluid shear stress set point
-
Baeyens, N. et al. Vascular remodeling is governed by a VEGFR3 dependent fluid shear stress set point. eLife 4, e04645 (2015).
-
(2015)
ELife
, vol.4
, pp. e04645
-
-
Baeyens, N.1
-
151
-
-
84939243994
-
GATA2 is required for lymphatic vessel valve development and maintenance
-
Kazenwadel, J. et al. GATA2 is required for lymphatic vessel valve development and maintenance. J. Clin. Invest. 125, 2979-2994 (2015).
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 2979-2994
-
-
Kazenwadel, J.1
-
152
-
-
84960837036
-
Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice
-
Munger, S. J. et al. Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice. Dev. Biol. 412, 173-190 (2016).
-
(2016)
Dev. Biol.
, vol.412
, pp. 173-190
-
-
Munger, S.J.1
-
153
-
-
79960983746
-
Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice
-
Bazigou, E. et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J. Clin. Invest. 121, 2984-2992 (2011).
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 2984-2992
-
-
Bazigou, E.1
-
154
-
-
77950899035
-
Transmural flow modulates cell and fluid transport functions of lymphatic endothelium
-
Miteva, D. O. et al. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ. Res. 106, 920-931 (2010).
-
(2010)
Circ. Res.
, vol.106
, pp. 920-931
-
-
Miteva, D.O.1
-
155
-
-
84959480245
-
Atherosclerosis at arterial bifurcations: Evidence for the role of haemodynamics and geometry
-
Morbiducci, U. et al. Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. Thromb. Haemost. 115, 484-492 (2016).
-
(2016)
Thromb. Haemost.
, vol.115
, pp. 484-492
-
-
Morbiducci, U.1
-
156
-
-
6944233515
-
Hypoxia affects mesoderm and enhances hemangioblast specification during early development
-
Ramirez-Bergeron, D. L. et al. Hypoxia affects mesoderm and enhances hemangioblast specification during early development. Development 131, 4623-4634 (2004).
-
(2004)
Development
, vol.131
, pp. 4623-4634
-
-
Ramirez-Bergeron, D.L.1
-
157
-
-
84955326448
-
The emerging hallmarks of cancer metabolism
-
Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47 (2016).
-
(2016)
Cell Metab.
, vol.23
, pp. 27-47
-
-
Pavlova, N.N.1
Thompson, C.B.2
-
158
-
-
84899675551
-
Reversible acetylation regulates vascular endothelial growth factor receptor2 activity
-
Zecchin, A. et al. Reversible acetylation regulates vascular endothelial growth factor receptor2 activity. J. Mol. Cell Biol. 6, 116-127 (2014).
-
(2014)
J. Mol. Cell Biol.
, vol.6
, pp. 116-127
-
-
Zecchin, A.1
-
159
-
-
79955926985
-
Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase
-
Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473, 234-238 (2011).
-
(2011)
Nature
, vol.473
, pp. 234-238
-
-
Guarani, V.1
-
160
-
-
84960172990
-
A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance
-
Jang, C. et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22, 421-426 (2016).
-
(2016)
Nat. Med.
, vol.22
, pp. 421-426
-
-
Jang, C.1
-
161
-
-
79953329777
-
Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NFkappaB/IL8 pathway that drives tumor angiogenesis
-
Vegran, F., Boidot, R., Michiels, C., Sonveaux, P. & Feron, O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NFkappaB/IL8 pathway that drives tumor angiogenesis. Cancer Res. 71, 2550-2560 (2011).
-
(2011)
Cancer Res.
, vol.71
, pp. 2550-2560
-
-
Vegran, F.1
Boidot, R.2
Michiels, C.3
Sonveaux, P.4
Feron, O.5
-
162
-
-
84880525862
-
Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3kinase/Akt and promote angiogenesis
-
Ruan, G. X. & Kazlauskas, A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3kinase/Akt and promote angiogenesis. J. Biol. Chem. 288, 21161-21172 (2013).
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 21161-21172
-
-
Ruan, G.X.1
Kazlauskas, A.2
-
163
-
-
84962094334
-
Medulloblastoma genotype dictates blood brain barrier phenotype
-
Phoenix, T. N. et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29, 508-522 (2016).
-
(2016)
Cancer Cell
, vol.29
, pp. 508-522
-
-
Phoenix, T.N.1
-
164
-
-
84907011560
-
Lymphatic regulator PROX1 determines Schlemm's canal integrity and identity
-
Park, D. Y. et al. Lymphatic regulator PROX1 determines Schlemm's canal integrity and identity. J. Clin. Invest. 124, 3960-3974 (2014).
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 3960-3974
-
-
Park, D.Y.1
-
165
-
-
84907010946
-
The Schlemm's canal is a VEGFC/VEGFR3responsive lymphatic-like vessel
-
Aspelund, A. et al. The Schlemm's canal is a VEGFC/VEGFR3responsive lymphatic-like vessel. J. Clin. Invest. 124, 3975-3986 (2014).
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 3975-3986
-
-
Aspelund, A.1
-
166
-
-
84905381920
-
Schlemm's canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process
-
Kizhatil, K., Ryan, M., Marchant, J. K., Henrich, S. & John, S. W. Schlemm's canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol. 12, e1001912 (2014).
-
(2014)
PLoS Biol.
, vol.12
, pp. e1001912
-
-
Kizhatil, K.1
Ryan, M.2
Marchant, J.K.3
Henrich, S.4
John, S.W.5
-
167
-
-
84978431523
-
Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity
-
Souma, T. et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J. Clin. Invest. 126, 2575-2587 (2016).
-
(2016)
J. Clin. Invest.
, vol.126
, pp. 2575-2587
-
-
Souma, T.1
-
168
-
-
77951044950
-
Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity
-
Stockton, R. A., Shenkar, R., Awad, I. A. & Ginsberg, M. H. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J. Exp. Med. 207, 881-896 (2010).
-
(2010)
J. Exp. Med.
, vol.207
, pp. 881-896
-
-
Stockton, R.A.1
Shenkar, R.2
Awad, I.A.3
Ginsberg, M.H.4
-
169
-
-
84879690589
-
EndMT contributes to the onset and progression of cerebral cavernous malformations
-
Maddaluno, L. et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498, 492-496 (2013).
-
(2013)
Nature
, vol.498
, pp. 492-496
-
-
Maddaluno, L.1
-
170
-
-
84921495905
-
Lack of CCM1 induces hypersprouting and impairs response to flow
-
Mleynek, T. M. et al. Lack of CCM1 induces hypersprouting and impairs response to flow. Hum. Mol. Genet. 23, 6223-6234 (2014).
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 6223-6234
-
-
Mleynek, T.M.1
-
171
-
-
84921453121
-
Regulation of beta1 integrinKlf2mediated angiogenesis by CCM proteins
-
Renz, M. et al. Regulation of beta1 integrinKlf2mediated angiogenesis by CCM proteins. Dev. Cell 32, 181-190 (2015).
-
(2015)
Dev. Cell
, vol.32
, pp. 181-190
-
-
Renz, M.1
-
172
-
-
84956845911
-
KLF4 is a key determinant in the development and progression of cerebral cavernous malformations
-
Cuttano, R. et al. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol. Med. 8, 6-24 (2015).
-
(2015)
EMBO Mol. Med.
, vol.8
, pp. 6-24
-
-
Cuttano, R.1
-
173
-
-
84963532773
-
Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling
-
Zhou, Z. et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532, 122-126 (2016).
-
(2016)
Nature
, vol.532
, pp. 122-126
-
-
Zhou, Z.1
-
174
-
-
80054831800
-
Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice
-
Boulday, G. et al. Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. J. Exp. Med. 208, 1835-1847 (2011).
-
(2011)
J. Exp. Med.
, vol.208
, pp. 1835-1847
-
-
Boulday, G.1
-
175
-
-
70449392400
-
Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia
-
Park, S. O. et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 119, 3487-3496 (2009).
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 3487-3496
-
-
Park, S.O.1
-
176
-
-
79955448391
-
Interaction between alk1 and blood flow in the development of arteriovenous malformations
-
Corti, P. et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138, 1573-1582 (2011).
-
(2011)
Development
, vol.138
, pp. 1573-1582
-
-
Corti, P.1
-
177
-
-
84880943217
-
Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence
-
Laux, D. W. et al. Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence. Development 140, 3403-3412 (2013).
-
(2013)
Development
, vol.140
, pp. 3403-3412
-
-
Laux, D.W.1
-
178
-
-
84978722293
-
Alk1 controls arterial endothelial cell migration in lumenized vessels
-
Rochon, E. R., Menon, P. G. & Roman, B. L. Alk1 controls arterial endothelial cell migration in lumenized vessels. Development 143, 2593-2602 (2016).
-
(2016)
Development
, vol.143
, pp. 2593-2602
-
-
Rochon, E.R.1
Menon, P.G.2
Roman, B.L.3
-
179
-
-
84883774229
-
The classification and diagnostic algorithm for primary lymphatic dysplasia: An update from 2010 to include molecular findings
-
Connell, F. C. et al. The classification and diagnostic algorithm for primary lymphatic dysplasia: an update from 2010 to include molecular findings. Clin. Genet. 84, 303-314 (2013).
-
(2013)
Clin. Genet.
, vol.84
, pp. 303-314
-
-
Connell, F.C.1
-
180
-
-
84896797032
-
Genetics of lymphatic anomalies
-
Brouillard, P., Boon, L. & Vikkula, M. Genetics of lymphatic anomalies. J. Clin. Invest. 124, 898-904 (2014).
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 898-904
-
-
Brouillard, P.1
Boon, L.2
Vikkula, M.3
-
181
-
-
84939490816
-
Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver
-
Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180-185 (2015).
-
(2015)
Nature
, vol.524
, pp. 180-185
-
-
Wang, B.1
Zhao, L.2
Fish, M.3
Logan, C.Y.4
Nusse, R.5
-
182
-
-
78149285919
-
Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration
-
Ding, B. S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 310-315 (2010).
-
(2010)
Nature
, vol.468
, pp. 310-315
-
-
Ding, B.S.1
-
183
-
-
84892944118
-
Endothelial cell-derived angiopoietin2 controls liver regeneration as a spatiotemporal rheostat
-
Hu, J. et al. Endothelial cell-derived angiopoietin2 controls liver regeneration as a spatiotemporal rheostat. Science 343, 416-419 (2014).
-
(2014)
Science
, vol.343
, pp. 416-419
-
-
Hu, J.1
-
184
-
-
84892370936
-
Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis
-
Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97-102 (2014).
-
(2014)
Nature
, vol.505
, pp. 97-102
-
-
Ding, B.S.1
-
185
-
-
84964466755
-
Age-dependent modulation of vascular niches for haematopoietic stem cells
-
Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380-384 (2016).
-
(2016)
Nature
, vol.532
, pp. 380-384
-
-
Kusumbe, A.P.1
-
186
-
-
33846849237
-
Phenotypic heterogeneity of the endothelium: II
-
Aird, W. C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ. Res. 100, 174-190 (2007).
-
(2007)
Representative Vascular Beds. Circ. Res.
, vol.100
, pp. 174-190
-
-
Aird, W.C.1
-
187
-
-
0037423321
-
Angiogenesis-independent endothelial protection of liver: Role of VEGFR1
-
LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR1. Science 299, 890-893 (2003).
-
(2003)
Science
, vol.299
, pp. 890-893
-
-
LeCouter, J.1
-
188
-
-
40949117599
-
Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway
-
Klein, D. et al. Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatology 47, 1018-1031 (2008).
-
(2008)
Hepatology
, vol.47
, pp. 1018-1031
-
-
Klein, D.1
-
189
-
-
84994881458
-
Heterogeneity in the lymphatic vascular system and its origin
-
Ulvmar, M. H. & Makinen, T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc. Res. 111, 310-321 (2016).
-
(2016)
Cardiovasc. Res.
, vol.111
, pp. 310-321
-
-
Ulvmar, M.H.1
Makinen, T.2
-
190
-
-
84946478463
-
VEGFC is required for intestinal lymphatic vessel maintenance and lipid absorption
-
Nurmi, H. et al. VEGFC is required for intestinal lymphatic vessel maintenance and lipid absorption. EMBO Mol. Med. 7, 1418-1425 (2015).
-
(2015)
EMBO Mol. Med.
, vol.7
, pp. 1418-1425
-
-
Nurmi, H.1
-
191
-
-
84942469639
-
A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules
-
Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991-999 (2015).
-
(2015)
J. Exp. Med.
, vol.212
, pp. 991-999
-
-
Aspelund, A.1
-
192
-
-
84936871460
-
Structural and functional features of central nervous system lymphatic vessels
-
Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337-341 (2015).
-
(2015)
Nature
, vol.523
, pp. 337-341
-
-
Louveau, A.1
-
193
-
-
58149152854
-
Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations
-
Limaye, N. et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat. Genet. 41, 118-124 (2009).
-
(2009)
Nat. Genet.
, vol.41
, pp. 118-124
-
-
Limaye, N.1
-
194
-
-
0030460775
-
Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2
-
Vikkula, M. et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87, 1181-1190 (1996).
-
(1996)
Cell
, vol.87
, pp. 1181-1190
-
-
Vikkula, M.1
-
195
-
-
85006815923
-
Blue rubber bleb nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations
-
Soblet, J. et al. Blue rubber bleb nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations. J. Invest. Dermatol. 137, 207-216 (2017).
-
(2017)
J. Invest. Dermatol.
, vol.137
, pp. 207-216
-
-
Soblet, J.1
-
196
-
-
0036201378
-
Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas")
-
Brouillard, P. et al. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas"). Am. J. Hum. Genet. 70, 866-874 (2002).
-
(2002)
Am. J. Hum. Genet.
, vol.70
, pp. 866-874
-
-
Brouillard, P.1
-
197
-
-
0034041161
-
Missense mutations interfere with VEGFR3 signalling in primary lymphoedema
-
Karkkainen, M. J. et al. Missense mutations interfere with VEGFR3 signalling in primary lymphoedema. Nat. Genet. 25, 153-159 (2000).
-
(2000)
Nat. Genet.
, vol.25
, pp. 153-159
-
-
Karkkainen, M.J.1
-
198
-
-
0035873625
-
Truncating mutations in FOXC2 cause multiple lymphedema syndromes
-
Finegold, D. N. et al. Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum. Mol. Genet. 10, 1185-1189 (2001).
-
(2001)
Hum. Mol. Genet.
, vol.10
, pp. 1185-1189
-
-
Finegold, D.N.1
-
199
-
-
0033646615
-
Mutations in FOXC2 (MFH1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome
-
Fang, J. et al. Mutations in FOXC2 (MFH1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am. J. Hum. Genet. 67, 1382-1388 (2000).
-
(2000)
Am. J. Hum. Genet.
, vol.67
, pp. 1382-1388
-
-
Fang, J.1
-
200
-
-
12144286738
-
A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4)
-
Gallione, C. J. et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363, 852-859 (2004).
-
(2004)
Lancet
, vol.363
, pp. 852-859
-
-
Gallione, C.J.1
-
201
-
-
0030050973
-
Mutations in the activin receptor like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2
-
Johnson, D. W. et al. Mutations in the activin receptor like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat. Genet. 13, 189-195 (1996).
-
(1996)
Nat. Genet.
, vol.13
, pp. 189-195
-
-
Johnson, D.W.1
-
202
-
-
0028171579
-
Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1
-
McAllister, K. A. et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 8, 345-351 (1994).
-
(1994)
Nat. Genet.
, vol.8
, pp. 345-351
-
-
McAllister, K.A.1
-
203
-
-
0032695959
-
Mutations in the gene encoding KRIT1, a Krev1/rap1a binding protein, cause cerebral cavernous malformations (CCM1)
-
Sahoo, T. et al. Mutations in the gene encoding KRIT1, a Krev1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum. Mol. Genet. 8, 2325-2333 (1999).
-
(1999)
Hum. Mol. Genet.
, vol.8
, pp. 2325-2333
-
-
Sahoo, T.1
-
204
-
-
9144261692
-
Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations
-
Liquori, C. L. et al. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am. J. Hum. Genet. 73, 1459-1464 (2003).
-
(2003)
Am. J. Hum. Genet.
, vol.73
, pp. 1459-1464
-
-
Liquori, C.L.1
-
205
-
-
0032851217
-
Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas
-
Labergele Couteulx, S. et al. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat. Genet. 23, 189-193 (1999).
-
(1999)
Nat. Genet.
, vol.23
, pp. 189-193
-
-
Labergele Couteulx, S.1
-
206
-
-
19944394831
-
Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations
-
Bergametti, F. et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am. J. Hum. Genet. 76, 42-51 (2005).
-
(2005)
Am. J. Hum. Genet.
, vol.76
, pp. 42-51
-
-
Bergametti, F.1
|