-
1
-
-
79960981005
-
Signal transduction in vasculogenesis and developmental angiogenesis
-
Patel-Hett S, D'Amore PA. 2011. Signal transduction in vasculogenesis and developmental angiogenesis. Int J Dev Biol 55: 353-63.
-
(2011)
Int J Dev Biol
, vol.55
, pp. 353-363
-
-
Patel-Hett, S.1
D'Amore, P.A.2
-
2
-
-
63649138023
-
Arterial-venous specification during development
-
Swift MR, Weinstein BM. 2009. Arterial-venous specification during development. Circ Res 104: 576-88.
-
(2009)
Circ Res
, vol.104
, pp. 576-588
-
-
Swift, M.R.1
Weinstein, B.M.2
-
3
-
-
0033964164
-
Intussusceptive angiogenesis: its role in embryonic vascular network formation
-
Djonov V, Schmid M, Tschanz SA, Burri PH. 2000. Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86: 286-92.
-
(2000)
Circ Res
, vol.86
, pp. 286-292
-
-
Djonov, V.1
Schmid, M.2
Tschanz, S.A.3
Burri, P.H.4
-
4
-
-
77957241701
-
Dynamics of endothelial cell behavior in sprouting angiogenesis
-
Eilken HM, Adams RH. 2010. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22: 617-25.
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 617-625
-
-
Eilken, H.M.1
Adams, R.H.2
-
5
-
-
80052933197
-
Basic and therapeutic aspects of angiogenesis
-
Potente M, Gerhardt H, Carmeliet P. 2011. Basic and therapeutic aspects of angiogenesis. Cell 146: 873-87.
-
(2011)
Cell
, vol.146
, pp. 873-887
-
-
Potente, M.1
Gerhardt, H.2
Carmeliet, P.3
-
6
-
-
77955330142
-
Vascular development: genetic mechanisms and links to vascular disease
-
Chappell JC, Bautch VL. 2010. Vascular development: genetic mechanisms and links to vascular disease. Curr Top Dev Biol 90: 43-72.
-
(2010)
Curr Top Dev Biol
, vol.90
, pp. 43-72
-
-
Chappell, J.C.1
Bautch, V.L.2
-
7
-
-
79956328903
-
Molecular mechanisms and clinical applications of angiogenesis
-
Carmeliet P, Jain RK. 2011. Molecular mechanisms and clinical applications of angiogenesis. Nature 473: 298-307.
-
(2011)
Nature
, vol.473
, pp. 298-307
-
-
Carmeliet, P.1
Jain, R.K.2
-
8
-
-
84868681499
-
Advances in growth factor delivery for therapeutic angiogenesis
-
Said SS, Pickering JG, Mequanint K. 2013. Advances in growth factor delivery for therapeutic angiogenesis. J Vasc Res 50: 35-51.
-
(2013)
J Vasc Res
, vol.50
, pp. 35-51
-
-
Said, S.S.1
Pickering, J.G.2
Mequanint, K.3
-
9
-
-
0042121208
-
Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1
-
Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, et al. 2003. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc Res 66: 102-12.
-
(2003)
Microvasc Res
, vol.66
, pp. 102-112
-
-
Nakatsu, M.N.1
Sainson, R.C.2
Aoto, J.N.3
Taylor, K.L.4
-
10
-
-
0033652114
-
Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices
-
Davis GE, Black SM, Bayless KJ. 2000. Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices. In Vitro Cell Dev Biol Anim 36: 513-9.
-
(2000)
In Vitro Cell Dev Biol Anim
, vol.36
, pp. 513-519
-
-
Davis, G.E.1
Black, S.M.2
Bayless, K.J.3
-
11
-
-
0028783414
-
A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis
-
Nehls V, Drenckhahn D. 1995. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res 50: 311-22.
-
(1995)
Microvasc Res
, vol.50
, pp. 311-322
-
-
Nehls, V.1
Drenckhahn, D.2
-
12
-
-
23744449992
-
Matrigel: basement membrane matrix with biological activity
-
Kleinman HK, Martin GR. 2005. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15: 378-86.
-
(2005)
Semin Cancer Biol
, vol.15
, pp. 378-386
-
-
Kleinman, H.K.1
Martin, G.R.2
-
13
-
-
0005170476
-
An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices
-
Davis GE, Bayless KJ. 2003. An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation 10: 27-44.
-
(2003)
Microcirculation
, vol.10
, pp. 27-44
-
-
Davis, G.E.1
Bayless, K.J.2
-
14
-
-
0029967619
-
An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix
-
Davis GE, Camarillo CW. 1996. An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res 224: 39-51.
-
(1996)
Exp Cell Res
, vol.224
, pp. 39-51
-
-
Davis, G.E.1
Camarillo, C.W.2
-
15
-
-
0033847194
-
RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins
-
Bayless KJ, Salazar R, Davis GE. 2000. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. Am J Pathol 156: 1673-83.
-
(2000)
Am J Pathol
, vol.156
, pp. 1673-1683
-
-
Bayless, K.J.1
Salazar, R.2
Davis, G.E.3
-
16
-
-
33747139066
-
Endothelial tubes assemble from intracellular vacuoles in vivo
-
Kamei M, Saunders WB, Bayless KJ, Dye L, et al. 2006. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442: 453-6.
-
(2006)
Nature
, vol.442
, pp. 453-456
-
-
Kamei, M.1
Saunders, W.B.2
Bayless, K.J.3
Dye, L.4
-
17
-
-
70349997561
-
The molecular basis of vascular lumen formation in the developing mouse aorta
-
Strilic B, Kucera T, Eglinger J, Hughes MR, et al. 2009. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17: 505-15.
-
(2009)
Dev Cell
, vol.17
, pp. 505-515
-
-
Strilic, B.1
Kucera, T.2
Eglinger, J.3
Hughes, M.R.4
-
18
-
-
41149157843
-
Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo
-
Blum Y, Belting HG, Ellertsdottir E, Herwig L, et al. 2008. Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316: 312-22.
-
(2008)
Dev Biol
, vol.316
, pp. 312-322
-
-
Blum, Y.1
Belting, H.G.2
Ellertsdottir, E.3
Herwig, L.4
-
19
-
-
77956583636
-
Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis
-
Wang Y, Kaiser MS, Larson JD, Nasevicius A, et al. 2010. Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137: 3119-28.
-
(2010)
Development
, vol.137
, pp. 3119-3128
-
-
Wang, Y.1
Kaiser, M.S.2
Larson, J.D.3
Nasevicius, A.4
-
20
-
-
0024514893
-
Endothelial basement membrane and seamless-type endothelium in the repair process of cerebral infarction in rats
-
Yoshida Y, Yamada M, Wakabayashi K, Ikuta F, et al. 1989. Endothelial basement membrane and seamless-type endothelium in the repair process of cerebral infarction in rats. Virchows Arch A Pathol Anat Histopathol 414: 385-92.
-
(1989)
Virchows Arch A Pathol Anat Histopathol
, vol.414
, pp. 385-392
-
-
Yoshida, Y.1
Yamada, M.2
Wakabayashi, K.3
Ikuta, F.4
-
21
-
-
81855180719
-
Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo
-
Herwig L, Blum Y, Krudewig A, Ellertsdottir E, et al. 2011. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr Biol 21: 1942-8.
-
(2011)
Curr Biol
, vol.21
, pp. 1942-1948
-
-
Herwig, L.1
Blum, Y.2
Krudewig, A.3
Ellertsdottir, E.4
-
22
-
-
84878985785
-
In Vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis
-
Lenard A, Ellertsdottir E, Herwig L, Krudewig A, et al. 2013. In Vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell 25: 492-506.
-
(2013)
Dev Cell
, vol.25
, pp. 492-506
-
-
Lenard, A.1
Ellertsdottir, E.2
Herwig, L.3
Krudewig, A.4
-
23
-
-
84877144141
-
Polarizing pathways: balancing endothelial polarity, permeability, and lumen formation
-
Lizama CO, Zovein AC. 2013. Polarizing pathways: balancing endothelial polarity, permeability, and lumen formation. Exp Cell Res 319: 1247-54.
-
(2013)
Exp Cell Res
, vol.319
, pp. 1247-1254
-
-
Lizama, C.O.1
Zovein, A.C.2
-
25
-
-
59549100452
-
Novel functions of the CD34 family
-
Nielsen JS, McNagny KM. 2008. Novel functions of the CD34 family. J Cell Sci 121: 3683-92.
-
(2008)
J Cell Sci
, vol.121
, pp. 3683-3692
-
-
Nielsen, J.S.1
McNagny, K.M.2
-
26
-
-
77951150593
-
CCM1 regulates vascular-lumen organization by inducing endothelial polarity
-
Lampugnani MG, Orsenigo F, Rudini N, Maddaluno L, et al. 2010. CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci 123: 1073-80.
-
(2010)
J Cell Sci
, vol.123
, pp. 1073-1080
-
-
Lampugnani, M.G.1
Orsenigo, F.2
Rudini, N.3
Maddaluno, L.4
-
27
-
-
78649288192
-
Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels
-
Strilic B, Eglinger J, Krieg M, Zeeb M, et al. 2010. Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels. Curr Biol 20: 2003-9.
-
(2010)
Curr Biol
, vol.20
, pp. 2003-2009
-
-
Strilic, B.1
Eglinger, J.2
Krieg, M.3
Zeeb, M.4
-
29
-
-
0037413625
-
Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity
-
Speck O, Hughes SC, Noren NK, Kulikauskas RM, et al. 2003. Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature 421: 83-7.
-
(2003)
Nature
, vol.421
, pp. 83-87
-
-
Speck, O.1
Hughes, S.C.2
Noren, N.K.3
Kulikauskas, R.M.4
-
30
-
-
0034253536
-
The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42
-
Joberty G, Petersen C, Gao L, Macara IG. 2000. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2: 531-9.
-
(2000)
Nat Cell Biol
, vol.2
, pp. 531-539
-
-
Joberty, G.1
Petersen, C.2
Gao, L.3
Macara, I.G.4
-
31
-
-
38749151658
-
Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling
-
Koh W, Mahan RD, Davis GE. 2008. Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci 121: 989-1001.
-
(2008)
J Cell Sci
, vol.121
, pp. 989-1001
-
-
Koh, W.1
Mahan, R.D.2
Davis, G.E.3
-
32
-
-
34250702237
-
Cell-matrix adhesion in vascular development
-
Hynes RO. 2007. Cell-matrix adhesion in vascular development. J Thromb Haemost 5: 32-40.
-
(2007)
J Thromb Haemost
, vol.5
, pp. 32-40
-
-
Hynes, R.O.1
-
33
-
-
59249104353
-
Ancestral vascular lumen formation via basal cell surfaces
-
Kucera T, Strilic B, Regener K, Schubert M, et al. 2009. Ancestral vascular lumen formation via basal cell surfaces. PLoS One 4: e4132.
-
(2009)
PLoS One
, vol.4
-
-
Kucera, T.1
Strilic, B.2
Regener, K.3
Schubert, M.4
-
34
-
-
77956716171
-
Formation of cardiovascular tubes in invertebrates and vertebrates
-
Strilic B, Kucera T, Lammert E. 2010. Formation of cardiovascular tubes in invertebrates and vertebrates. Cell Mol Life Sci 67: 3209-18.
-
(2010)
Cell Mol Life Sci
, vol.67
, pp. 3209-3218
-
-
Strilic, B.1
Kucera, T.2
Lammert, E.3
-
35
-
-
84876439445
-
Endothelial cell-to-cell junctions: adhesion and signaling in physiology and pathology
-
Lampugnani MG. 2012. Endothelial cell-to-cell junctions: adhesion and signaling in physiology and pathology. Cold Spring Harb Perspect Med 2: a006528.
-
(2012)
Cold Spring Harb Perspect Med
, vol.2
-
-
Lampugnani, M.G.1
-
36
-
-
0032972763
-
Role of vascular endothelial-cadherin in vascular morphogenesis
-
Gory-Faure S, Prandini MH, Pointu H, Roullot V, et al. 1999. Role of vascular endothelial-cadherin in vascular morphogenesis. Development 126: 2093-102.
-
(1999)
Development
, vol.126
, pp. 2093-2102
-
-
Gory-Faure, S.1
Prandini, M.H.2
Pointu, H.3
Roullot, V.4
-
37
-
-
0033597718
-
Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis
-
Carmeliet P, Lampugnani MG, Moons L, Breviario F, et al. 1999. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98: 147-57.
-
(1999)
Cell
, vol.98
, pp. 147-157
-
-
Carmeliet, P.1
Lampugnani, M.G.2
Moons, L.3
Breviario, F.4
-
38
-
-
66749189134
-
Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos
-
Montero-Balaguer M, Swirsding K, Orsenigo F, Cotelli F, et al. 2009. Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PLoS One 4: e5772.
-
(2009)
PLoS One
, vol.4
-
-
Montero-Balaguer, M.1
Swirsding, K.2
Orsenigo, F.3
Cotelli, F.4
-
39
-
-
48049094159
-
The role of adherens junctions and VE-cadherin in the control of vascular permeability
-
Dejana E, Orsenigo F, Lampugnani MG. 2008. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121: 2115-22.
-
(2008)
J Cell Sci
, vol.121
, pp. 2115-2122
-
-
Dejana, E.1
Orsenigo, F.2
Lampugnani, M.G.3
-
40
-
-
84875241774
-
The role of VE-cadherin in vascular morphogenesis and permeability control
-
Dejana E, Vestweber D. 2013. The role of VE-cadherin in vascular morphogenesis and permeability control. Prog Mol Biol Transl Sci 116: 119-44.
-
(2013)
Prog Mol Biol Transl Sci
, vol.116
, pp. 119-144
-
-
Dejana, E.1
Vestweber, D.2
-
41
-
-
33751502144
-
A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells
-
Iden S, Rehder D, August B, Suzuki A, et al. 2006. A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells. EMBO Rep 7: 1239-46.
-
(2006)
EMBO Rep
, vol.7
, pp. 1239-1246
-
-
Iden, S.1
Rehder, D.2
August, B.3
Suzuki, A.4
-
42
-
-
77956064817
-
Cell adhesion: integrating cytoskeletal dynamics and cellular tension
-
Parsons JT, Horwitz AR, Schwartz MA. 2010. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11: 633-43.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 633-643
-
-
Parsons, J.T.1
Horwitz, A.R.2
Schwartz, M.A.3
-
43
-
-
0842281652
-
Rho and Rac take center stage
-
Burridge K, Wennerberg K. 2004. Rho and Rac take center stage. Cell 116: 167-79.
-
(2004)
Cell
, vol.116
, pp. 167-179
-
-
Burridge, K.1
Wennerberg, K.2
-
45
-
-
0029166671
-
Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility
-
Nobes CD, Hall A. 1995. Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem Soc Trans 23: 456-9.
-
(1995)
Biochem Soc Trans
, vol.23
, pp. 456-459
-
-
Nobes, C.D.1
Hall, A.2
-
46
-
-
0028961293
-
Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia
-
Nobes CD, Hall A. 1995. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53-62.
-
(1995)
Cell
, vol.81
, pp. 53-62
-
-
Nobes, C.D.1
Hall, A.2
-
47
-
-
0037455574
-
RhoA is required for cortical retraction and rigidity during mitotic cell rounding
-
Maddox AS, Burridge K. 2003. RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J Cell Biol 160: 255-65.
-
(2003)
J Cell Biol
, vol.160
, pp. 255-265
-
-
Maddox, A.S.1
Burridge, K.2
-
48
-
-
0029101360
-
An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1
-
Olson MF, Ashworth A, Hall A. 1995. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269: 1270-2.
-
(1995)
Science
, vol.269
, pp. 1270-1272
-
-
Olson, M.F.1
Ashworth, A.2
Hall, A.3
-
49
-
-
0026654125
-
The small GTP-binding protein rac regulates growth factor-induced membrane ruffling
-
Ridley AJ, Paterson HF, Johnston CL, Diekmann D, et al. 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401-10.
-
(1992)
Cell
, vol.70
, pp. 401-410
-
-
Ridley, A.J.1
Paterson, H.F.2
Johnston, C.L.3
Diekmann, D.4
-
50
-
-
33748994545
-
Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking
-
Ridley AJ. 2006. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16: 522-9.
-
(2006)
Trends Cell Biol
, vol.16
, pp. 522-529
-
-
Ridley, A.J.1
-
52
-
-
33644839773
-
Cdc42 regulates adherens junction stability and endothelial permeability by inducing alpha-catenin interaction with the vascular endothelial cadherin complex
-
Broman MT, Kouklis P, Gao X, Ramchandran R, et al. 2006. Cdc42 regulates adherens junction stability and endothelial permeability by inducing alpha-catenin interaction with the vascular endothelial cadherin complex. Circ Res 98: 73-80.
-
(2006)
Circ Res
, vol.98
, pp. 73-80
-
-
Broman, M.T.1
Kouklis, P.2
Gao, X.3
Ramchandran, R.4
-
53
-
-
77954334673
-
Role of GTPases in control of microvascular permeability
-
Spindler V, Schlegel N, Waschke J. 2010. Role of GTPases in control of microvascular permeability. Cardiovasc Res 87: 243-53.
-
(2010)
Cardiovasc Res
, vol.87
, pp. 243-253
-
-
Spindler, V.1
Schlegel, N.2
Waschke, J.3
-
55
-
-
79551652731
-
Active Rac1 improves pathologic VEGF neovessel architecture and reduces vascular leak: mechanistic similarities with angiopoietin-1
-
Hoang MV, Nagy JA, Senger DR. 2011. Active Rac1 improves pathologic VEGF neovessel architecture and reduces vascular leak: mechanistic similarities with angiopoietin-1. Blood 117: 1751-60.
-
(2011)
Blood
, vol.117
, pp. 1751-1760
-
-
Hoang, M.V.1
Nagy, J.A.2
Senger, D.R.3
-
56
-
-
78650780526
-
Cdc42-mediated inhibition of GSK-3 beta improves angio-architecture and lumen formation during VEGF-driven pathological angiogenesis
-
Hoang MV, Nagy JA, Senger DR. 2011. Cdc42-mediated inhibition of GSK-3 beta improves angio-architecture and lumen formation during VEGF-driven pathological angiogenesis. Microvascular Research 81: 34-43.
-
(2011)
Microvascular Research
, vol.81
, pp. 34-43
-
-
Hoang, M.V.1
Nagy, J.A.2
Senger, D.R.3
-
57
-
-
0037121966
-
Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression
-
Tzima E, Del Pozo MA, Kiosses WB, Mohamed SA, et al. 2002. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J 21: 6791-800.
-
(2002)
EMBO J
, vol.21
, pp. 6791-6800
-
-
Tzima, E.1
Del Pozo, M.A.2
Kiosses, W.B.3
Mohamed, S.A.4
-
58
-
-
0032585635
-
Rac1 is required for the formation of three germ layers during gastrulation
-
Sugihara K, Nakatsuji N, Nakamura K, Nakao K, et al. 1998. Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 17: 3427-33.
-
(1998)
Oncogene
, vol.17
, pp. 3427-3433
-
-
Sugihara, K.1
Nakatsuji, N.2
Nakamura, K.3
Nakao, K.4
-
59
-
-
44949179828
-
An essential role for Rac1 in endothelial cell function and vascular development
-
Tan W, Palmby TR, Gavard J, Amornphimoltham P, et al. 2008. An essential role for Rac1 in endothelial cell function and vascular development. FASEB J 22: 1829-38.
-
(2008)
FASEB J
, vol.22
, pp. 1829-1838
-
-
Tan, W.1
Palmby, T.R.2
Gavard, J.3
Amornphimoltham, P.4
-
60
-
-
18544402891
-
Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability
-
Chen F, Ma L, Parrini MC, Mao X, et al. 2000. Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability. Curr Biol 10: 758-65.
-
(2000)
Curr Biol
, vol.10
, pp. 758-765
-
-
Chen, F.1
Ma, L.2
Parrini, M.C.3
Mao, X.4
-
61
-
-
80051548128
-
Cdc42 controls vascular network assembly through protein kinase Ciota during embryonic vasculogenesis
-
Qi Y, Liu J, Wu X, Brakebusch C, et al. 2011. Cdc42 controls vascular network assembly through protein kinase Ciota during embryonic vasculogenesis. Arterioscler Thromb Vasc Biol 31: 1861-70.
-
(2011)
Arterioscler Thromb Vasc Biol
, vol.31
, pp. 1861-1870
-
-
Qi, Y.1
Liu, J.2
Wu, X.3
Brakebusch, C.4
-
62
-
-
84886921616
-
Deletion of Cdc42 enhances ADAM17-mediated vascular endothelial growth factor receptor 2 shedding and impairs vascular endothelial cell survival and vasculogenesis
-
Jin Y, Liu Y, Lin Q, Li J, et al. 2013. Deletion of Cdc42 enhances ADAM17-mediated vascular endothelial growth factor receptor 2 shedding and impairs vascular endothelial cell survival and vasculogenesis. Mol Cell Biol 33: 4181-97.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 4181-4197
-
-
Jin, Y.1
Liu, Y.2
Lin, Q.3
Li, J.4
-
63
-
-
58149191544
-
Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis
-
Jaffe AB, Kaji N, Durgan J, Hall A. 2008. Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J Cell Biol 183: 625-33.
-
(2008)
J Cell Biol
, vol.183
, pp. 625-633
-
-
Jaffe, A.B.1
Kaji, N.2
Durgan, J.3
Hall, A.4
-
64
-
-
36048973313
-
Rac1 is required for reorientation of polarity and lumen formation through a PI 3-kinase-dependent pathway
-
Liu KD, Datta A, Yu W, Brakeman PR, et al. 2007. Rac1 is required for reorientation of polarity and lumen formation through a PI 3-kinase-dependent pathway. Am J Physiol Renal Physiol 293: F1633-40.
-
(2007)
Am J Physiol Renal Physiol
, vol.293
-
-
Liu, K.D.1
Datta, A.2
Yu, W.3
Brakeman, P.R.4
-
65
-
-
79955872975
-
Two distinct integrin-mediated mechanisms contribute to apical lumen formation in epithelial cells
-
Myllymaki SM, Teravainen TP, Manninen A. 2011. Two distinct integrin-mediated mechanisms contribute to apical lumen formation in epithelial cells. PLoS One 6: e19453.
-
(2011)
PLoS One
, vol.6
-
-
Myllymaki, S.M.1
Teravainen, T.P.2
Manninen, A.3
-
66
-
-
0037087648
-
The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices
-
Bayless KJ, Davis GE. 2002. The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci 115: 1123-36.
-
(2002)
J Cell Sci
, vol.115
, pp. 1123-1136
-
-
Bayless, K.J.1
Davis, G.E.2
-
67
-
-
69449102133
-
Formation of endothelial lumens requires a coordinated PKCepsilon-, Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation
-
Koh W, Sachidanandam K, Stratman AN, Sacharidou A, et al. 2009. Formation of endothelial lumens requires a coordinated PKCepsilon-, Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. J Cell Sci 122: 1812-22.
-
(2009)
J Cell Sci
, vol.122
, pp. 1812-1822
-
-
Koh, W.1
Sachidanandam, K.2
Stratman, A.N.3
Sacharidou, A.4
-
68
-
-
77954684182
-
Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events
-
Sacharidou A, Koh W, Stratman AN, Mayo AM, et al. 2010. Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 115: 5259-69.
-
(2010)
Blood
, vol.115
, pp. 5259-5269
-
-
Sacharidou, A.1
Koh, W.2
Stratman, A.N.3
Mayo, A.M.4
-
69
-
-
79951665407
-
Ccm1 regulates microvascular morphogenesis during angiogenesis
-
Liu H, Rigamonti D, Badr A, Zhang J. 2011. Ccm1 regulates microvascular morphogenesis during angiogenesis. J Vasc Res 48: 130-40.
-
(2011)
J Vasc Res
, vol.48
, pp. 130-140
-
-
Liu, H.1
Rigamonti, D.2
Badr, A.3
Zhang, J.4
-
70
-
-
0026778133
-
The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors
-
Ridley AJ, Hall A. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389-99.
-
(1992)
Cell
, vol.70
, pp. 389-399
-
-
Ridley, A.J.1
Hall, A.2
-
71
-
-
0029995797
-
Rho-stimulated contractility drives the formation of stress fibers and focal adhesions
-
Chrzanowska-Wodnicka M, Burridge K. 1996. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133: 1403-15.
-
(1996)
J Cell Biol
, vol.133
, pp. 1403-1415
-
-
Chrzanowska-Wodnicka, M.1
Burridge, K.2
-
72
-
-
1642564595
-
Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small GTPase Rho
-
Bayless KJ, Davis GE. 2004. Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small GTPase Rho. J Biol Chem 279: 11686-95.
-
(2004)
J Biol Chem
, vol.279
, pp. 11686-11695
-
-
Bayless, K.J.1
Davis, G.E.2
-
73
-
-
79954554710
-
Blood Vessel Tubulogenesis Requires Rasip1 Regulation of GTPase Signaling
-
Xu K, Sacharidou A, Fu S, Chong DC, et al. 2011. Blood Vessel Tubulogenesis Requires Rasip1 Regulation of GTPase Signaling. Dev Cell 20: 526-39.
-
(2011)
Dev Cell
, vol.20
, pp. 526-539
-
-
Xu, K.1
Sacharidou, A.2
Fu, S.3
Chong, D.C.4
-
74
-
-
1242296871
-
Rho activity critically and selectively regulates endothelial cell organization during angiogenesis
-
Hoang MV, Whelan MC. Senger DR. 2004. Rho activity critically and selectively regulates endothelial cell organization during angiogenesis. Proc Natl Acad Sci USA 101: 1874-9.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 1874-1879
-
-
Hoang, M.V.1
Whelan, M.C.2
Senger, D.R.3
-
75
-
-
84880437945
-
Transcriptional regulation of blood vessel formation: The role of the CASZ1/Egfl7/RhoA pathway
-
Charpentier MS, Dorr KM, Conlon FL. 2013. Transcriptional regulation of blood vessel formation: The role of the CASZ1/Egfl7/RhoA pathway. Cell Cycle 12: 2165-6.
-
(2013)
Cell Cycle
, vol.12
, pp. 2165-2166
-
-
Charpentier, M.S.1
Dorr, K.M.2
Conlon, F.L.3
-
76
-
-
84876993423
-
CASZ1 promotes vascular assembly and morphogenesis through the direct regulation of an EGFL7/RhoA-mediated pathway
-
Charpentier MS, Christine KS, Amin NM, Dorr KM, et al. 2013. CASZ1 promotes vascular assembly and morphogenesis through the direct regulation of an EGFL7/RhoA-mediated pathway. Dev Cell 25: 132-43.
-
(2013)
Dev Cell
, vol.25
, pp. 132-143
-
-
Charpentier, M.S.1
Christine, K.S.2
Amin, N.M.3
Dorr, K.M.4
-
77
-
-
41649104495
-
Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline
-
Christine KS, Conlon FL. 2008. Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline. Dev Cell 14: 616-23.
-
(2008)
Dev Cell
, vol.14
, pp. 616-623
-
-
Christine, K.S.1
Conlon, F.L.2
-
78
-
-
77953230966
-
Blood pressure and hypertension are associated with 7 loci in the Japanese population
-
Takeuchi F, Isono M, Katsuya T, Yamamoto K, et al. 2010. Blood pressure and hypertension are associated with 7 loci in the Japanese population. Circulation 121: 2302-9.
-
(2010)
Circulation
, vol.121
, pp. 2302-2309
-
-
Takeuchi, F.1
Isono, M.2
Katsuya, T.3
Yamamoto, K.4
-
79
-
-
11144356184
-
The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation
-
Parker LH, Schmidt M, Jin SW, Gray AM, et al. 2004. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 428: 754-8.
-
(2004)
Nature
, vol.428
, pp. 754-758
-
-
Parker, L.H.1
Schmidt, M.2
Jin, S.W.3
Gray, A.M.4
-
80
-
-
2442713978
-
Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells
-
Fitch MJ, Campagnolo L, Kuhnert F, Stuhlmann H. 2004. Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn 230: 316-24.
-
(2004)
Dev Dyn
, vol.230
, pp. 316-324
-
-
Fitch, M.J.1
Campagnolo, L.2
Kuhnert, F.3
Stuhlmann, H.4
-
81
-
-
84856747091
-
SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton
-
Langdon Y, Tandon P, Paden E, Duddy J, et al. 2012. SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton. Development 139: 948-57.
-
(2012)
Development
, vol.139
, pp. 948-957
-
-
Langdon, Y.1
Tandon, P.2
Paden, E.3
Duddy, J.4
-
82
-
-
78149274251
-
Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos
-
Deiters A, Garner RA, Lusic H, Govan JM, et al. 2010. Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos. J Am Chem Soc 132: 15644-50.
-
(2010)
J Am Chem Soc
, vol.132
, pp. 15644-15650
-
-
Deiters, A.1
Garner, R.A.2
Lusic, H.3
Govan, J.M.4
-
83
-
-
83755206269
-
A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos
-
Morckel AR, Lusic H, Farzana L, Yoder JA, et al. 2012. A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos. Development 139: 437-42.
-
(2012)
Development
, vol.139
, pp. 437-442
-
-
Morckel, A.R.1
Lusic, H.2
Farzana, L.3
Yoder, J.A.4
-
84
-
-
84878890732
-
The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment
-
Helker CS, Schuermann A, Karpanen T, Zeuschner D, et al. 2013. The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment. Development 140: 2776-86.
-
(2013)
Development
, vol.140
, pp. 2776-2786
-
-
Helker, C.S.1
Schuermann, A.2
Karpanen, T.3
Zeuschner, D.4
-
86
-
-
79957894276
-
Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases
-
Carmeliet P, Jain RK. 2011. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10: 417-27.
-
(2011)
Nat Rev Drug Discov
, vol.10
, pp. 417-427
-
-
Carmeliet, P.1
Jain, R.K.2
-
87
-
-
74249091561
-
Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism
-
Zovein AC, Luque A, Turlo KA, Hofmann JJ. et al. 2010. Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell 18: 39-51.
-
(2010)
Dev Cell
, vol.18
, pp. 39-51
-
-
Zovein, A.C.1
Luque, A.2
Turlo, K.A.3
Hofmann, J.J.4
|