메뉴 건너뛰기




Volumn 18, Issue 12, 2016, Pages 1292-1301

Asymmetric division coordinates collective cell migration in angiogenesis

Author keywords

[No Author keywords available]

Indexed keywords

MESSENGER RNA; NOTCH LIGAND DELTA 4 PROTEIN; NOTCH RECEPTOR; SEMAXANIB; UNCLASSIFIED DRUG; VASCULOTROPIN RECEPTOR; VASCULOTROPIN RECEPTOR 2; ENHANCED GREEN FLUORESCENT PROTEIN; GREEN FLUORESCENT PROTEIN; ZEBRAFISH PROTEIN;

EID: 84996761503     PISSN: 14657392     EISSN: 14764679     Source Type: Journal    
DOI: 10.1038/ncb3443     Document Type: Article
Times cited : (82)

References (48)
  • 1
    • 79956328903 scopus 로고    scopus 로고
    • Molecular mechanisms and clinical applications of angiogenesis
    • Carmeliet P, & Jain R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307 (2011).
    • (2011) Nature , vol.473 , pp. 298-307
    • Carmeliet, P.1    Jain, R.K.2
  • 2
    • 80052015813 scopus 로고    scopus 로고
    • Molecular control of endothelial cell behaviour during blood vessel morphogenesis
    • Herbert S. P, & Stainier D. Y. R. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 551-564 (2011).
    • (2011) Nat. Rev. Mol. Cell Biol , vol.12 , pp. 551-564
    • Herbert, S.P.1    Stainier, D.Y.R.2
  • 3
    • 0037815292 scopus 로고    scopus 로고
    • VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia
    • Gerhardt H, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163-1177 (2003).
    • (2003) J. Cell Biol , vol.161 , pp. 1163-1177
    • Gerhardt, H.1
  • 4
    • 0037108152 scopus 로고    scopus 로고
    • Spatially restricted patterning cues provided by heparinbinding VEGF-A control blood vessel branching morphogenesis
    • Ruhrberg C, et al. Spatially restricted patterning cues provided by heparinbinding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684-2698 (2002).
    • (2002) Genes Dev , vol.16 , pp. 2684-2698
    • Ruhrberg, C.1
  • 5
    • 33847039645 scopus 로고    scopus 로고
    • Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries
    • Siekmann A. F, & Lawson N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445, 781-784 (2007).
    • (2007) Nature , vol.445 , pp. 781-784
    • Siekmann, A.F.1    Lawson, N.D.2
  • 6
    • 33847046849 scopus 로고    scopus 로고
    • Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis
    • Hellström M, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776-780 (2007).
    • (2007) Nature , vol.445 , pp. 776-780
    • Hellström, M.1
  • 7
    • 84859453770 scopus 로고    scopus 로고
    • Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling
    • Benedito R, et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484, 110-114 (2012).
    • (2012) Nature , vol.484 , pp. 110-114
    • Benedito, R.1
  • 9
    • 77957607057 scopus 로고    scopus 로고
    • Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting
    • Jakobsson L, et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943-953 (2010).
    • (2010) Nat. Cell Biol , vol.12 , pp. 943-953
    • Jakobsson, L.1
  • 10
    • 80053980982 scopus 로고    scopus 로고
    • Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement
    • Arima S, et al. Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138, 4763-4776 (2011).
    • (2011) Development , vol.138 , pp. 4763-4776
    • Arima, S.1
  • 11
    • 0017370183 scopus 로고
    • Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis
    • Ausprunk D. H, & Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14, 53-65 (1977).
    • (1977) Microvasc. Res , vol.14 , pp. 53-65
    • Ausprunk, D.H.1    Folkman, J.2
  • 12
    • 84927563455 scopus 로고    scopus 로고
    • Fatty acid carbon is essential for dNTP synthesis in endothelial cells
    • Schoors S, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192-197 (2015).
    • (2015) Nature , vol.520 , pp. 192-197
    • Schoors, S.1
  • 13
    • 84923206665 scopus 로고    scopus 로고
    • Synthetic lateral inhibition governs cell-Type bifurcation with robust ratios
    • Matsuda M, Koga M, Woltjen K, Nishida E, & Ebisuya M. Synthetic lateral inhibition governs cell-Type bifurcation with robust ratios. Nat. Commun. 6, 6195 (2015).
    • (2015) Nat. Commun , vol.6 , pp. 6195
    • Matsuda, M.1    Koga, M.2    Woltjen, K.3    Nishida, E.4    Ebisuya, M.5
  • 14
    • 84979506874 scopus 로고    scopus 로고
    • Can active perception generate bistability? Heterogeneous collective dynamics and vascular patterning
    • Bentley K, Harrington K, & Regan E. Can active perception generate bistability?. Heterogeneous collective dynamics and vascular patterning. ALIFE http://dx.doi.org/10.7551/978-0-262-32621-6-ch053 (2014).
    • (2014) ALIFE
    • Bentley, K.1    Harrington, K.2    Regan, E.3
  • 15
    • 84919675522 scopus 로고    scopus 로고
    • Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting
    • Sauteur L, et al. Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep. 9, 504-513 (2014).
    • (2014) Cell Rep , vol.9 , pp. 504-513
    • Sauteur, L.1
  • 16
    • 33846911463 scopus 로고    scopus 로고
    • Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation
    • Zeng G, et al. Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 109, 1345-1352 (2007).
    • (2007) Blood , vol.109 , pp. 1345-1352
    • Zeng, G.1
  • 17
    • 84982845674 scopus 로고    scopus 로고
    • Endothelial cell division in angiogenic sprouts of differing cellular architecture
    • Aydogan V, et al. Endothelial cell division in angiogenic sprouts of differing cellular architecture. Biol. Open 4, 1259-1269 (2015).
    • (2015) Biol. Open , vol.4 , pp. 1259-1269
    • Aydogan, V.1
  • 18
    • 39149130360 scopus 로고    scopus 로고
    • Mechanisms of asymmetric stem cell division
    • Knoblich J. A. Mechanisms of asymmetric stem cell division. Cell 132, 583-597 (2008).
    • (2008) Cell , vol.132 , pp. 583-597
    • Knoblich, J.A.1
  • 19
    • 84879000843 scopus 로고    scopus 로고
    • The art of choreographing asymmetric cell division
    • Li R. The art of choreographing asymmetric cell division. Dev. Cell 25, 439-450 (2013).
    • (2013) Dev. Cell , vol.25 , pp. 439-450
    • Li, R.1
  • 20
    • 84897536435 scopus 로고    scopus 로고
    • The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis
    • Bentley K, et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat. Cell Biol. 16, 309-321 (2014).
    • (2014) Nat. Cell Biol , vol.16 , pp. 309-321
    • Bentley, K.1
  • 21
    • 84875081767 scopus 로고    scopus 로고
    • A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development
    • Villefranc J. A, et al. A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development. Development 140 1497-1506 (2013).
    • (2013) Development , vol.140 , pp. 1497-1506
    • Villefranc, J.A.1
  • 22
    • 47349115296 scopus 로고    scopus 로고
    • Microtubule-Targeted drugs inhibit VEGF receptor-2 expression by both transcriptional and post-Transcriptional mechanisms
    • Meissner M, et al. Microtubule-Targeted drugs inhibit VEGF receptor-2 expression by both transcriptional and post-Transcriptional mechanisms. J. Invest. Dermatol. 128, 2084-2091 (2008).
    • (2008) J. Invest. Dermatol , vol.128 , pp. 2084-2091
    • Meissner, M.1
  • 23
    • 62449313467 scopus 로고    scopus 로고
    • Down-regulation of vascular endothelial growth factor receptor 2 is a major molecular determinant of proteasome inhibitor-mediated antiangiogenic action in endothelial cells
    • Meissner M, et al. Down-regulation of vascular endothelial growth factor receptor 2 is a major molecular determinant of proteasome inhibitor-mediated antiangiogenic action in endothelial cells. Cancer Res. 69, 1976-1984 (2009).
    • (2009) Cancer Res , vol.69 , pp. 1976-1984
    • Meissner, M.1
  • 24
    • 79959993516 scopus 로고    scopus 로고
    • FGF-dependent regulation of VEGF receptor 2 expression in mice
    • Murakami M, et al. FGF-dependent regulation of VEGF receptor 2 expression in mice. J. Clin. Invest. 121, 2668-2678 (2011).
    • (2011) J. Clin. Invest , vol.121 , pp. 2668-2678
    • Murakami, M.1
  • 25
    • 30344460532 scopus 로고    scopus 로고
    • ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis
    • Mavria G, et al. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell 9, 33-44 (2006).
    • (2006) Cancer Cell , vol.9 , pp. 33-44
    • Mavria, G.1
  • 26
    • 0038724937 scopus 로고    scopus 로고
    • Role of Raf in vascular protection from distinct apoptotic stimuli
    • Alavi A, Hood J. D, Frausto R, Stupack D. G, & Cheresh D. A. Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301, 94-96 (2003).
    • (2003) Science , vol.301 , pp. 94-96
    • Alavi, A.1    Hood, J.D.2    Frausto, R.3    Stupack, D.G.4    Cheresh, D.A.5
  • 27
    • 84991783867 scopus 로고    scopus 로고
    • Vegfa signals through ERK to promote angiogenesis, but not artery differentiation
    • Shin M, et al. Vegfa signals through ERK to promote angiogenesis, but not artery differentiation. Development 143, 3796-3805 (2016).
    • (2016) Development , vol.143 , pp. 3796-3805
    • Shin, M.1
  • 28
    • 84991800719 scopus 로고    scopus 로고
    • Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors
    • Shin M, et al. Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors. Development 143, 3785-3795 (2016).
    • (2016) Development , vol.143 , pp. 3785-3795
    • Shin, M.1
  • 29
    • 84990228909 scopus 로고    scopus 로고
    • ERK activation in endothelial cells is a novel marker during neovasculogenesis
    • Nagasawa-Masuda A, & Terai K. ERK activation in endothelial cells is a novel marker during neovasculogenesis. Genes Cells http://dx.doi.org/10.1111/gtc.12438 (2016).
    • (2016) Genes Cells
    • Nagasawa-Masuda, A.1    Terai, K.2
  • 30
    • 84862691108 scopus 로고    scopus 로고
    • Regulation of VEGF signaling by membrane traffic
    • Horowitz A, & Seerapu H. R. Regulation of VEGF signaling by membrane traffic. Cell. Signal. 24, 1810-1820 (2012).
    • (2012) Cell. Signal , vol.24 , pp. 1810-1820
    • Horowitz, A.1    Seerapu, H.R.2
  • 32
    • 34249288541 scopus 로고    scopus 로고
    • Endosomal recycling controls plasma membrane area during mitosis
    • Boucrot E, & Kirchhausen T. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl Acad. Sci. USA 104, 7939-7944 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 7939-7944
    • Boucrot, E.1    Kirchhausen, T.2
  • 33
    • 84884258983 scopus 로고    scopus 로고
    • Filopodia are dispensable for endothelial tip cell guidance
    • Phng, L-K, Stanchi F, & Gerhardt H. Filopodia are dispensable for endothelial tip cell guidance. Development 140, 4031-4040 (2013).
    • (2013) Development , vol.140 , pp. 4031-4040
    • Phng, K.-L.1    Stanchi, F.2    Gerhardt, H.3
  • 34
    • 33646228404 scopus 로고    scopus 로고
    • Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish
    • Covassin L. D, Villefranc J. A, Kacergis M. C, Weinstein B. M, & Lawson N. D. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc. Natl Acad. Sci. USA 103, 6554-6559 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 6554-6559
    • Covassin, L.D.1    Villefranc, J.A.2    Kacergis, M.C.3    Weinstein, B.M.4    Lawson, N.D.5
  • 35
    • 44949118532 scopus 로고    scopus 로고
    • Zebrafish Nomenclature Committee Zebrafish VEGF receptors: A guideline to nomenclature
    • Bussmann J, Lawson N, Zon L, & Schulte-Merker S. Zebrafish Nomenclature Committee. Zebrafish VEGF receptors: a guideline to nomenclature. PLoS Genet. 4, e1000064 (2008).
    • (2008) PLoS Genet , vol.4 , pp. e1000064
    • Bussmann, J.1    Lawson, N.2    Zon, L.3    Schulte-Merker, S.4
  • 36
    • 84930644081 scopus 로고    scopus 로고
    • Lymphatic vessels arise from specialized angioblasts within a venous niche
    • Nicenboim J, et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 522, 56-61 (2015).
    • (2015) Nature , vol.522 , pp. 56-61
    • Nicenboim, J.1
  • 37
    • 84947460320 scopus 로고    scopus 로고
    • Vegfc regulates bipotential precursor division and prox1 expression to promote lymphatic identity in zebrafish
    • Koltowska K, et al. Vegfc regulates bipotential precursor division and prox1 expression to promote lymphatic identity in zebrafish. Cell Rep. 13, 1828-1841 (2015).
    • (2015) Cell Rep , vol.13 , pp. 1828-1841
    • Koltowska, K.1
  • 38
    • 67649528138 scopus 로고    scopus 로고
    • Collective cell migration in morphogenesis, regeneration and cancer
    • Friedl P, & Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445-457 (2009).
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 445-457
    • Friedl, P.1    Gilmour, D.2
  • 39
    • 41149157843 scopus 로고    scopus 로고
    • Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo
    • Blum Y, et al. Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev. Biol. 316, 312-322 (2008).
    • (2008) Dev. Biol , vol.316 , pp. 312-322
    • Blum, Y.1
  • 40
    • 84905722080 scopus 로고    scopus 로고
    • Visualizing the cell-cycle progression of endothelial cells in zebrafish
    • Fukuhara S, et al. Visualizing the cell-cycle progression of endothelial cells in zebrafish. Dev. Biol. 393, 10-23 (2014).
    • (2014) Dev. Biol , vol.393 , pp. 10-23
    • Fukuhara, S.1
  • 41
    • 29644439510 scopus 로고    scopus 로고
    • Cellular and molecular analyses of vascular tube and lumen formation in zebrafish
    • Jin S. W. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199-5209 (2005).
    • (2005) Development , vol.132 , pp. 5199-5209
    • Jin, S.W.1
  • 42
    • 41149162273 scopus 로고    scopus 로고
    • Foxn4 directly regulates tbx2b expression and atrioventricular canal formation
    • Chi N. C, et al. Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev. 22, 734-739 (2008).
    • (2008) Genes Dev , vol.22 , pp. 734-739
    • Chi, N.C.1
  • 43
    • 70349856167 scopus 로고    scopus 로고
    • Arterial-venous segregation by selective cell sprouting: An alternative mode of blood vessel formation
    • Herbert S. P, et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326, 294-298 (2009).
    • (2009) Science , vol.326 , pp. 294-298
    • Herbert, S.P.1
  • 44
    • 84867404143 scopus 로고    scopus 로고
    • Determination of endothelial stalk versus tip cell potential during angiogenesis by H2.0-like Homeobox-1
    • Herbert S. P, Cheung J. Y. M, & Stainier D. Y. R. Determination of endothelial stalk versus tip cell potential during angiogenesis by H2.0-like Homeobox-1. Curr. Biol. 22, 1789-1794 (2012).
    • (2012) Curr. Biol , vol.22 , pp. 1789-1794
    • Herbert, S.P.1    Cheung, J.Y.M.2    Stainier, D.Y.R.3
  • 45
    • 84881119066 scopus 로고    scopus 로고
    • Role of PFKFB3-driven glycolysis in vessel sprouting
    • De Bock K, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651-663 (2013).
    • (2013) Cell , vol.154 , pp. 651-663
    • De Bock, K.1
  • 46
    • 0037107132 scopus 로고    scopus 로고
    • Three functionally distinct adhesions in filopodia: Shaft adhesions control lamellar extension
    • Steketee M. B, & Tosney K. W. Three functionally distinct adhesions in filopodia: shaft adhesions control lamellar extension. J. Neurosci. 22, 8071-8083 (2002).
    • (2002) J. Neurosci , vol.22 , pp. 8071-8083
    • Steketee, M.B.1    Tosney, K.W.2
  • 47
    • 36348997609 scopus 로고    scopus 로고
    • Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation
    • Bentley K, Gerhardt H, & Bates P. A. Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J. Theor. Biol. 250, 25-36 (2008).
    • (2008) J. Theor. Biol , vol.250 , pp. 25-36
    • Bentley, K.1    Gerhardt, H.2    Bates, P.A.3
  • 48
    • 84896892567 scopus 로고    scopus 로고
    • Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis
    • Le Guen L, et al. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141, 1239-1249 (2014).
    • (2014) Development , vol.141 , pp. 1239-1249
    • Le Guen, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.