메뉴 건너뛰기




Volumn 17, Issue 10, 2016, Pages 611-625

Mechanisms and regulation of endothelial VEGF receptor signalling

Author keywords

[No Author keywords available]

Indexed keywords

CALCIUM ION; GUANOSINE TRIPHOSPHATASE; MITOGEN ACTIVATED PROTEIN KINASE 1; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHOLIPASE C GAMMA; PHOSPHOTYROSINE; PROTEIN KINASE B; PROTEIN TYROSINE KINASE; STAT PROTEIN; STRESS ACTIVATED PROTEIN KINASE; VASCULOTROPIN RECEPTOR; VASCULOTROPIN RECEPTOR 2; VASCULOTROPIN;

EID: 84979698228     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm.2016.87     Document Type: Review
Times cited : (1077)

References (192)
  • 1
    • 80054012347 scopus 로고    scopus 로고
    • Developmental and pathological angiogenesis
    • Chung, A. S., & Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 27, 563-584 (2011
    • (2011) Annu. Rev. Cell Dev. Biol , vol.27 , pp. 563-584
    • Chung, A.S.1    Ferrara, N.2
  • 2
    • 80052933197 scopus 로고    scopus 로고
    • Basic and therapeutic aspects of angiogenesis
    • Potente, M., Gerhardt, H., & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873-887 (2011
    • (2011) Cell , vol.146 , pp. 873-887
    • Potente, M.1    Gerhardt, H.2    Carmeliet, P.3
  • 3
    • 84885028426 scopus 로고    scopus 로고
    • VEGFR and type v RTK activation and signaling
    • Shibuya, M. VEGFR and type V RTK activation and signaling. Cold Spring Harb. Perspect. Biol. 5, a009092 (2013
    • (2013) Cold Spring Harb. Perspect. Biol , vol.5 , pp. a009092
    • Shibuya, M.1
  • 4
    • 77953896432 scopus 로고    scopus 로고
    • Cell signaling by receptor tyrosine kinases
    • Lemmon, M. A., & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117-1134 (2010
    • (2010) Cell , vol.141 , pp. 1117-1134
    • Lemmon, M.A.1    Schlessinger, J.2
  • 5
    • 79957902010 scopus 로고    scopus 로고
    • Signal transduction by vascular endothelial growth factor receptors
    • Koch, S., Tugues, S., Li, X., Gualandi, L., & Claesson Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437, 169-183 (2011
    • (2011) Biochem. J. , vol.437 , pp. 169-183
    • Koch, S.1    Tugues, S.2    Li, X.3    Gualandi, L.4    Claesson Welsh, L.5
  • 6
    • 84871633270 scopus 로고    scopus 로고
    • Vascular endothelial growth factor and its receptor system: Physiological functions in angiogenesis and pathological roles in various diseases
    • Shibuya, M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem. 153, 13-19 (2013
    • (2013) J. Biochem , vol.153 , pp. 13-19
    • Shibuya, M.1
  • 7
    • 84874622432 scopus 로고    scopus 로고
    • Spatial regulation of VEGF receptor endocytosis in angiogenesis
    • Nakayama, M., et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat. Cell Biol. 15, 249-260 (2013
    • (2013) Nat. Cell Biol , vol.15 , pp. 249-260
    • Nakayama, M.1
  • 8
    • 84864947743 scopus 로고    scopus 로고
    • An inside view: VEGF receptor trafficking and signaling
    • Simons, M. An inside view: VEGF receptor trafficking and signaling. Physiology 27, 213-222 (2012
    • (2012) Physiology , vol.27 , pp. 213-222
    • Simons, M.1
  • 9
    • 77149150968 scopus 로고    scopus 로고
    • Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells
    • Chen, T. T., et al. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J. Cell Biol. 188, 595-609 (2010
    • (2010) J. Cell Biol , vol.188 , pp. 595-609
    • Chen, T.T.1
  • 10
    • 77649096200 scopus 로고    scopus 로고
    • Binding to the extracellular matrix and proteolytic processing: Two key mechanisms regulating vascular endothelial growth factor action
    • Ferrara, N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell 21, 687-690 (2010
    • (2010) Mol. Biol. Cell , vol.21 , pp. 687-690
    • Ferrara, N.1
  • 11
    • 0141672945 scopus 로고    scopus 로고
    • Plasmin activates the lymphangiogenic growth factors VEGF C and VEGF D
    • McColl, B. K., et al. Plasmin activates the lymphangiogenic growth factors VEGF C and VEGF D. J. Exp. Med. 198, 863-868 (2003
    • (2003) J. Exp. Med , vol.198 , pp. 863-868
    • McColl, B.K.1
  • 12
    • 75349091269 scopus 로고    scopus 로고
    • Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling
    • Grunewald, F. S., Prota, A. E., Giese, A., & Ballmer Hofer, K. Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. Biochim. Biophys. Acta 1804, 567-580 (2010
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 567-580
    • Grunewald, F.S.1    Prota, A.E.2    Giese, A.3    Ballmer Hofer, K.4
  • 13
    • 84964501391 scopus 로고    scopus 로고
    • VEGFR 2 conformational switch in response to ligand binding
    • Sarabipour, S., Ballmer-Hofer, K., & Hristova, K. VEGFR 2 conformational switch in response to ligand binding. eLife 5, e13876 (2016
    • (2016) ELife , vol.5 , pp. e13876
    • Sarabipour, S.1    Ballmer-Hofer, K.2    Hristova, K.3
  • 14
    • 84880863720 scopus 로고    scopus 로고
    • The basis for the distinct biological activities of vascular endothelial growth factor receptor 1 ligands
    • ra52
    • Anisimov, A., et al. The basis for the distinct biological activities of vascular endothelial growth factor receptor 1 ligands. Sci. Signal. 6, ra52 (2013
    • (2013) Sci. Signal , vol.6
    • Anisimov, A.1
  • 15
    • 0037098860 scopus 로고    scopus 로고
    • VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down regulated in renal cell carcinoma
    • Bates, D. O., et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down regulated in renal cell carcinoma. Cancer Res. 62, 4123-4131 (2002
    • (2002) Cancer Res , vol.62 , pp. 4123-4131
    • Bates, D.O.1
  • 16
    • 49649088463 scopus 로고    scopus 로고
    • Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor 2 due to lack of coreceptor binding and deficient regulation of kinase activity
    • Kawamura, H., Li, X., Harper, S. J., Bates, D. O., & Claesson-Welsh, L. Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor 2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Res. 68, 4683-4692 (2008
    • (2008) Cancer Res , vol.68 , pp. 4683-4692
    • Kawamura, H.1    Li, X.2    Harper, S.J.3    Bates, D.O.4    Claesson-Welsh, L.5
  • 17
    • 34249694937 scopus 로고    scopus 로고
    • Dimerization of VEGF receptors and implications for signal transduction: A computational study
    • Mac Gabhann, F., & Popel, A. S. Dimerization of VEGF receptors and implications for signal transduction: a computational study. Biophys. Chem. 128, 125-139 (2007
    • (2007) Biophys. Chem , vol.128 , pp. 125-139
    • Mac Gabhann, F.1    Popel, A.S.2
  • 19
    • 17044458971 scopus 로고    scopus 로고
    • Ligand-induced vascular endothelial growth factor receptor 3 (VEGFR 3) heterodimerization with VEGFR 2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites
    • Dixelius, J., et al. Ligand-induced vascular endothelial growth factor receptor 3 (VEGFR 3) heterodimerization with VEGFR 2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J. Biol. Chem. 278, 40973-40979 (2003
    • (2003) J. Biol. Chem , vol.278 , pp. 40973-40979
    • Dixelius, J.1
  • 20
    • 84895923922 scopus 로고    scopus 로고
    • Pulmonary lymphangiectasia resulting from vascular endothelial growth factor C overexpression during a critical period
    • Yao, L. C., et al. Pulmonary lymphangiectasia resulting from vascular endothelial growth factor C overexpression during a critical period. Circ. Res. 114, 806-822 (2014
    • (2014) Circ. Res , vol.114 , pp. 806-822
    • Yao, L.C.1
  • 21
    • 77951498501 scopus 로고    scopus 로고
    • VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts
    • Nilsson, I., et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J. 29, 1377-1388 (2010
    • (2010) EMBO J. , vol.29 , pp. 1377-1388
    • Nilsson, I.1
  • 22
    • 79952443293 scopus 로고    scopus 로고
    • Quantification and cell to cell variation of vascular endothelial growth factor receptors
    • Imoukhuede, P. I., & Popel, A. S. Quantification and cell to cell variation of vascular endothelial growth factor receptors. Exp. Cell Res. 317, 955-965 (2011
    • (2011) Exp. Cell Res , vol.317 , pp. 955-965
    • Imoukhuede, P.I.1    Popel, A.S.2
  • 23
    • 84865129521 scopus 로고    scopus 로고
    • Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF trap, ranibizumab and bevacizumab
    • Papadopoulos, N., et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF trap, ranibizumab and bevacizumab. Angiogenesis 15, 171-185 (2012
    • (2012) Angiogenesis , vol.15 , pp. 171-185
    • Papadopoulos, N.1
  • 24
    • 0037703184 scopus 로고    scopus 로고
    • Role of PlGF in the intra-and intermolecular cross talk between the VEGF receptors Flt1 and Flk1
    • Autiero, M., et al. Role of PlGF in the intra-and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat. Med. 9, 936-943 (2003
    • (2003) Nat. Med , vol.9 , pp. 936-943
    • Autiero, M.1
  • 25
    • 0042358676 scopus 로고    scopus 로고
    • Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase
    • Jin, Z. G., et al. Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ. Res. 93, 354-363 (2003
    • (2003) Circ. Res , vol.93 , pp. 354-363
    • Jin, Z.G.1
  • 26
    • 79956098305 scopus 로고    scopus 로고
    • PEST motif serine and tyrosine phosphorylation controls vascular endothelial growth factor receptor 2 stability and downregulation
    • Meyer, R. D., et al. PEST motif serine and tyrosine phosphorylation controls vascular endothelial growth factor receptor 2 stability and downregulation. Mol. Cell. Biol. 31, 2010-2025 (2011
    • (2011) Mol. Cell. Biol , vol.31 , pp. 2010-2025
    • Meyer, R.D.1
  • 27
    • 0036840851 scopus 로고    scopus 로고
    • PLEXIN D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis
    • Van der Zwaag, B., et al. PLEXIN D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis. Dev. Dyn. 225, 336-343 (2002
    • (2002) Dev. Dyn , vol.225 , pp. 336-343
    • Van Der Zwaag, B.1
  • 28
    • 84958280510 scopus 로고    scopus 로고
    • Endothelial cell-derived semaphorin 3A inhibits filopodia formation by blood vascular tip cells
    • Ochsenbein, A. M., et al. Endothelial cell-derived semaphorin 3A inhibits filopodia formation by blood vascular tip cells. Development 143, 589-594 (2016
    • (2016) Development , vol.143 , pp. 589-594
    • Ochsenbein, A.M.1
  • 29
    • 84859488831 scopus 로고    scopus 로고
    • Structural basis for selective vascular endothelial growth factor A (VEGF A) binding to neuropilin 1
    • Parker, M. W., Xu, P., Li, X., & Vander Kooi, C. W. Structural basis for selective vascular endothelial growth factor A (VEGF A) binding to neuropilin 1. J. Biol. Chem. 287, 11082-11089 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 11082-11089
    • Parker, M.W.1    Xu, P.2    Li, X.3    Vander Kooi, C.W.4
  • 30
    • 84892730229 scopus 로고    scopus 로고
    • Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis
    • Fantin, A., et al. Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development 141, 556-562 (2014
    • (2014) Development , vol.141 , pp. 556-562
    • Fantin, A.1
  • 31
    • 84901011336 scopus 로고    scopus 로고
    • Neuropilin regulation of angiogenesis, arteriogenesis, and vascular permeability
    • Plein, A., Fantin, A., & Ruhrberg, C. Neuropilin regulation of angiogenesis, arteriogenesis, and vascular permeability. Microcirculation 21, 315-323 (2014
    • (2014) Microcirculation , vol.21 , pp. 315-323
    • Plein, A.1    Fantin, A.2    Ruhrberg, C.3
  • 32
    • 84876976777 scopus 로고    scopus 로고
    • The neuropilin 1 cytoplasmic domain is required for VEGF A dependent arteriogenesis
    • Lanahan, A., et al. The neuropilin 1 cytoplasmic domain is required for VEGF A dependent arteriogenesis. Dev. Cell 25, 156-168 (2013
    • (2013) Dev. Cell , vol.25 , pp. 156-168
    • Lanahan, A.1
  • 33
    • 77952952373 scopus 로고    scopus 로고
    • VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis
    • Lanahan, A. A., et al. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev. Cell 18, 713-724 (2010
    • (2010) Dev. Cell , vol.18 , pp. 713-724
    • Lanahan, A.A.1
  • 34
    • 55749110742 scopus 로고    scopus 로고
    • Neuropilin 1 in regulation of VEGF induced activation of p38MAPK and endothelial cell organization
    • Kawamura, H., et al. Neuropilin 1 in regulation of VEGF induced activation of p38MAPK and endothelial cell organization. Blood 112, 3638-3649 (2008
    • (2008) Blood , vol.112 , pp. 3638-3649
    • Kawamura, H.1
  • 35
    • 84897421093 scopus 로고    scopus 로고
    • NRP1 presented in trans to the endothelium arrests VEGFR2 endocytosis, preventing angiogenic signaling and tumor initiation
    • Koch, S., et al. NRP1 presented in trans to the endothelium arrests VEGFR2 endocytosis, preventing angiogenic signaling and tumor initiation. Dev. Cell 28, 633-646 (2014
    • (2014) Dev. Cell , vol.28 , pp. 633-646
    • Koch, S.1
  • 36
    • 84908281444 scopus 로고    scopus 로고
    • Neurons limit angiogenesis by titrating VEGF in retina
    • Okabe, K., et al. Neurons limit angiogenesis by titrating VEGF in retina. Cell 159, 584-596 (2014
    • (2014) Cell , vol.159 , pp. 584-596
    • Okabe, K.1
  • 37
    • 84964695599 scopus 로고    scopus 로고
    • VEGF189 binds NRP1 and is sufficient for VEGF/NRP1 dependent neuronal patterning in the developing brain
    • Tillo, M., et al. VEGF189 binds NRP1 and is sufficient for VEGF/NRP1 dependent neuronal patterning in the developing brain. Development 142, 314-319 (2015
    • (2015) Development , vol.142 , pp. 314-319
    • Tillo, M.1
  • 38
    • 80051490622 scopus 로고    scopus 로고
    • VEGF signalling controls GnRH neuron survival via NRP1 independently of KDR and blood vessels
    • Cariboni, A., et al. VEGF signalling controls GnRH neuron survival via NRP1 independently of KDR and blood vessels. Development 138, 3723-3733 (2011
    • (2011) Development , vol.138 , pp. 3723-3733
    • Cariboni, A.1
  • 39
    • 0032707249 scopus 로고    scopus 로고
    • A requirement for neuropilin 1 in embryonic vessel formation
    • Kawasaki, T., et al. A requirement for neuropilin 1 in embryonic vessel formation. Development 126, 4895-4902 (1999
    • (1999) Development , vol.126 , pp. 4895-4902
    • Kawasaki, T.1
  • 40
    • 50249094553 scopus 로고    scopus 로고
    • Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos
    • Jones, E. A., Yuan, L., Breant, C., Watts, R. J., & Eichmann, A. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos. Development 135, 2479-2488 (2008
    • (2008) Development , vol.135 , pp. 2479-2488
    • Jones, E.A.1    Yuan, L.2    Breant, C.3    Watts, R.J.4    Eichmann, A.5
  • 41
    • 84991501298 scopus 로고    scopus 로고
    • Neuropilin 1 functions as a VEGFR2 co receptor to guide developmental angiogenesis independent of ligand binding
    • Gelfand, M. V., et al. Neuropilin 1 functions as a VEGFR2 co receptor to guide developmental angiogenesis independent of ligand binding. eLife 3, e03720 (2014
    • (2014) ELife , vol.3 , pp. e03720
    • Gelfand, M.V.1
  • 42
    • 80052515065 scopus 로고    scopus 로고
    • The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins
    • Fantin, A., et al. The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development 138, 4185-4191 (2011
    • (2011) Development , vol.138 , pp. 4185-4191
    • Fantin, A.1
  • 43
    • 84950968787 scopus 로고    scopus 로고
    • Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain
    • Hirota, S., et al. Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development 142, 4363-4373 (2015
    • (2015) Development , vol.142 , pp. 4363-4373
    • Hirota, S.1
  • 44
    • 84934981272 scopus 로고    scopus 로고
    • Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch
    • Aspalter, I. M., et al. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat. Commun. 6, 7264 (2015
    • (2015) Nat. Commun , vol.6 , pp. 7264
    • Aspalter, I.M.1
  • 45
    • 0033636606 scopus 로고    scopus 로고
    • A mechanism for modulation of cellular responses to VEGF: Activation of the integrins
    • Byzova, T. V., et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol. Cell 6, 851-860 (2000
    • (2000) Mol. Cell , vol.6 , pp. 851-860
    • Byzova, T.V.1
  • 46
    • 84857159984 scopus 로고    scopus 로고
    • Integrin β3 crosstalk with VEGFR accommodating tyrosine phosphorylation as a regulatory switch
    • West, X. Z., et al. Integrin β3 crosstalk with VEGFR accommodating tyrosine phosphorylation as a regulatory switch. PLoS ONE 7, e31071 (2012
    • (2012) Plos One , vol.7 , pp. e31071
    • West, X.Z.1
  • 47
    • 84877687768 scopus 로고    scopus 로고
    • Vascular endothelial-cadherin stimulates syndecan 1 coupled insulin-like growth factor 1 receptor and cross-talk between αvβ3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis
    • Rapraeger, A. C., et al. Vascular endothelial-cadherin stimulates syndecan 1 coupled insulin-like growth factor 1 receptor and cross-talk between αVβ3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis. FEBS J. 280, 2194-2206 (2013
    • (2013) FEBS J. , vol.280 , pp. 2194-2206
    • Rapraeger, A.C.1
  • 48
    • 84879570295 scopus 로고    scopus 로고
    • Tetraspanin CD63 promotes vascular endothelial growth factor receptor 2-β1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo
    • Tugues, S., et al. Tetraspanin CD63 promotes vascular endothelial growth factor receptor 2-β1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo. J. Biol. Chem. 288, 19060-19071 (2013
    • (2013) J. Biol. Chem , vol.288 , pp. 19060-19071
    • Tugues, S.1
  • 49
    • 25144510997 scopus 로고    scopus 로고
    • A mechanosensory complex that mediates the endothelial cell response to fluid shear stress
    • Tzima, E., et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426-431 (2005
    • (2005) Nature , vol.437 , pp. 426-431
    • Tzima, E.1
  • 50
    • 84939216809 scopus 로고    scopus 로고
    • P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction
    • Wang, S., et al. P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction. J. Clin. Invest. 125, 3077-3086 (2015
    • (2015) J. Clin. Invest , vol.125 , pp. 3077-3086
    • Wang, S.1
  • 51
    • 84856929905 scopus 로고    scopus 로고
    • Mechanoinduction of lymph vessel expansion
    • Planas-Paz, L., et al. Mechanoinduction of lymph vessel expansion. EMBO J. 31, 788-804 (2012
    • (2012) EMBO J. , vol.31 , pp. 788-804
    • Planas-Paz, L.1
  • 52
    • 84964698438 scopus 로고    scopus 로고
    • Vascular remodeling is governed by a VEGFR3 dependent fluid shear stress set point
    • Baeyens, N., et al. Vascular remodeling is governed by a VEGFR3 dependent fluid shear stress set point. eLife 4, e04645 (2015
    • (2015) ELife , vol.4 , pp. e04645
    • Baeyens, N.1
  • 53
    • 84928251808 scopus 로고    scopus 로고
    • Intramembrane binding of VE cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex
    • Coon, B. G., et al. Intramembrane binding of VE cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J. Cell Biol. 208, 975-986 (2015
    • (2015) J. Cell Biol , vol.208 , pp. 975-986
    • Coon, B.G.1
  • 54
    • 50249131363 scopus 로고    scopus 로고
    • Mechanotransduction in an extracted cell model: Fyn drives stretch-and flow-elicited PECAM 1 phosphorylation
    • Chiu, Y. J., McBeath, E., & Fujiwara, K. Mechanotransduction in an extracted cell model: Fyn drives stretch-and flow-elicited PECAM 1 phosphorylation. J. Cell Biol. 182, 753-763 (2008
    • (2008) J. Cell Biol , vol.182 , pp. 753-763
    • Chiu, Y.J.1    McBeath, E.2    Fujiwara, K.3
  • 55
    • 84861207235 scopus 로고    scopus 로고
    • Role of shear-stress-induced VEGF expression in endothelial cell survival
    • dela Paz, N. G., Walshe, T. E., Leach, L. L., Saint-Geniez, M., & D'Amore, P. A. Role of shear-stress-induced VEGF expression in endothelial cell survival. J. Cell Sci. 125, 831-843 (2012
    • (2012) J. Cell Sci , vol.125 , pp. 831-843
    • Dela Paz, N.G.1    Walshe, T.E.2    Leach, L.L.3    Saint-Geniez, M.4    D'Amore, P.A.5
  • 56
    • 73849114175 scopus 로고    scopus 로고
    • Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways
    • Masumura, T., Yamamoto, K., Shimizu, N., Obi, S., & Ando, J. Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arterioscler. Thromb. Vasc. Biol. 29, 2125-2131 (2009
    • (2009) Arterioscler. Thromb. Vasc. Biol , vol.29 , pp. 2125-2131
    • Masumura, T.1    Yamamoto, K.2    Shimizu, N.3    Obi, S.4    Ando, J.5
  • 57
    • 84880467286 scopus 로고    scopus 로고
    • Early VEGFR2 activation in response to flow is VEGF-dependent and mediated by MMP activity
    • dela Paz, N. G., Melchior, B., & Frangos, J. A. Early VEGFR2 activation in response to flow is VEGF-dependent and mediated by MMP activity. Biochem. Biophys. Res. Commun. 434, 641-646 (2013
    • (2013) Biochem. Biophys. Res. Commun , vol.434 , pp. 641-646
    • Dela Paz, N.G.1    Melchior, B.2    Frangos, J.A.3
  • 58
    • 33847402760 scopus 로고    scopus 로고
    • Bone morphogenic protein antagonist Drm/gremlin is a novel proangiogenic factor
    • Stabile, H., et al. Bone morphogenic protein antagonist Drm/gremlin is a novel proangiogenic factor. Blood 109, 1834-1840 (2007
    • (2007) Blood , vol.109 , pp. 1834-1840
    • Stabile, H.1
  • 59
    • 78149300188 scopus 로고    scopus 로고
    • Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2
    • Mitola, S., et al. Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2. Blood 116, 3677-3680 (2010
    • (2010) Blood , vol.116 , pp. 3677-3680
    • Mitola, S.1
  • 60
    • 84942234107 scopus 로고    scopus 로고
    • Β 3 integrin promotes long-lasting activation and polarization of vascular endothelial growth factor receptor 2 by immobilized ligand
    • Ravelli, C., et al. β3 integrin promotes long-lasting activation and polarization of vascular endothelial growth factor receptor 2 by immobilized ligand. Arterioscler. Thromb. Vasc. Biol. 35, 2161-2171 (2015
    • (2015) Arterioscler. Thromb. Vasc. Biol , vol.35 , pp. 2161-2171
    • Ravelli, C.1
  • 61
    • 84892754407 scopus 로고    scopus 로고
    • Emerging principles for the therapeutic exploitation of glycosylation
    • Dalziel, M., Crispin, M., Scanlan, C. N., Zitzmann, N., & Dwek, R. A. Emerging principles for the therapeutic exploitation of glycosylation. Science 343, 1235681 (2014
    • (2014) Science , vol.343 , pp. 1235681
    • Dalziel, M.1    Crispin, M.2    Scanlan, C.N.3    Zitzmann, N.4    Dwek, R.A.5
  • 62
    • 80051930613 scopus 로고    scopus 로고
    • Galectin 3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells
    • Markowska, A. I., Jefferies, K. C., & Panjwani, N. Galectin 3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J. Biol. Chem. 286, 29913-29921 (2011
    • (2011) J. Biol. Chem , vol.286 , pp. 29913-29921
    • Markowska, A.I.1    Jefferies, K.C.2    Panjwani, N.3
  • 63
    • 34147220739 scopus 로고    scopus 로고
    • Endothelial cell response to lactate: Implication of PAR modification of VEGF
    • Kumar, V. B., Viji, R. I., Kiran, M. S., & Sudhakaran, P. R. Endothelial cell response to lactate: implication of PAR modification of VEGF. J. Cell. Physiol. 211, 477-485 (2007
    • (2007) J. Cell. Physiol , vol.211 , pp. 477-485
    • Kumar, V.B.1    Viji, R.I.2    Kiran, M.S.3    Sudhakaran, P.R.4
  • 64
    • 84880525862 scopus 로고    scopus 로고
    • Lactate engages receptor tyrosine kinases Axl Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3 kinase/Akt and promote angiogenesis
    • Ruan, G. X., & Kazlauskas, A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3 kinase/Akt and promote angiogenesis. J. Biol. Chem. 288, 21161-21172 (2013
    • (2013) J. Biol. Chem , vol.288 , pp. 21161-21172
    • Ruan, G.X.1    Kazlauskas, A.2
  • 65
    • 84879246715 scopus 로고    scopus 로고
    • LDL attenuates VEGF-induced angiogenesis via mechanisms involving VEGFR2 internalization and degradation following endosome-trans-Golgi network trafficking
    • Jin, F., et al. LDL attenuates VEGF-induced angiogenesis via mechanisms involving VEGFR2 internalization and degradation following endosome-trans-Golgi network trafficking. Angiogenesis 16, 625-637 (2013
    • (2013) Angiogenesis , vol.16 , pp. 625-637
    • Jin, F.1
  • 66
    • 84942900570 scopus 로고    scopus 로고
    • Molecular controls of arterial morphogenesis
    • Simons, M., & Eichmann, A. Molecular controls of arterial morphogenesis. Circ. Res. 116, 1712-1724 (2015
    • (2015) Circ. Res , vol.116 , pp. 1712-1724
    • Simons, M.1    Eichmann, A.2
  • 67
    • 84876586696 scopus 로고    scopus 로고
    • Phosphoproteomic analysis implicates the mTORC2-FoxO1 axis in VEGF signaling and feedback activation of receptor tyrosine kinases
    • ra25
    • Zhuang, G., et al. Phosphoproteomic analysis implicates the mTORC2-FoxO1 axis in VEGF signaling and feedback activation of receptor tyrosine kinases. Sci. Signal. 6, ra25 (2013
    • (2013) Sci. Signal , vol.6
    • Zhuang, G.1
  • 68
    • 84961764470 scopus 로고    scopus 로고
    • Blood cells and endothelial barrier function
    • Rodrigues, S. F., & Granger, D. N. Blood cells and endothelial barrier function. Tissue Barriers 3, e978720 (2015
    • (2015) Tissue Barriers , vol.3 , pp. e978720
    • Rodrigues, S.F.1    Granger, D.N.2
  • 69
    • 33745646792 scopus 로고    scopus 로고
    • Artery/vein specification is governed by opposing phosphatidylinositol 3 kinase and MAP kinase/ERK signaling
    • Hong, C. C., Peterson, Q. P., Hong, J. Y., & Peterson, R. T. Artery/vein specification is governed by opposing phosphatidylinositol 3 kinase and MAP kinase/ERK signaling. Curr. Biol. 16, 1366-1372 (2006
    • (2006) Curr. Biol , vol.16 , pp. 1366-1372
    • Hong, C.C.1    Peterson, Q.P.2    Hong, J.Y.3    Peterson, R.T.4
  • 70
    • 79959993516 scopus 로고    scopus 로고
    • FGF-dependent regulation of VEGF receptor 2 expression in mice
    • Murakami, M., et al. FGF-dependent regulation of VEGF receptor 2 expression in mice. J. Clin. Invest. 121, 2668-2678 (2011
    • (2011) J. Clin. Invest , vol.121 , pp. 2668-2678
    • Murakami, M.1
  • 71
    • 84874631217 scopus 로고    scopus 로고
    • Endothelial ERK signaling controls lymphatic fate specification
    • Deng, Y., Atri, D., Eichmann, A., & Simons, M. Endothelial ERK signaling controls lymphatic fate specification. J. Clin. Invest. 123, 1202-1215 (2013
    • (2013) J. Clin. Invest , vol.123 , pp. 1202-1215
    • Deng, Y.1    Atri, D.2    Eichmann, A.3    Simons, M.4
  • 72
    • 12844264070 scopus 로고    scopus 로고
    • Essential role of Flk 1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice
    • Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N., & Shibuya, M. Essential role of Flk 1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl Acad. Sci. USA 102, 1076-1081 (2005
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 1076-1081
    • Sakurai, Y.1    Ohgimoto, K.2    Kataoka, Y.3    Yoshida, N.4    Shibuya, M.5
  • 73
    • 0035355472 scopus 로고    scopus 로고
    • A single autophosphorylation site on KDR/Flk 1 is essential for VEGF A dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells
    • Takahashi, T., Yamaguchi, S., Chida, K., & Shibuya, M. A single autophosphorylation site on KDR/Flk 1 is essential for VEGF A dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768-2778 (2001
    • (2001) EMBO J. , vol.20 , pp. 2768-2778
    • Takahashi, T.1    Yamaguchi, S.2    Chida, K.3    Shibuya, M.4
  • 74
    • 0033118228 scopus 로고    scopus 로고
    • VEGF activates protein kinase C dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells
    • Takahashi, T., Ueno, H., & Shibuya, M. VEGF activates protein kinase C dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18, 2221-2230 (1999
    • (1999) Oncogene , vol.18 , pp. 2221-2230
    • Takahashi, T.1    Ueno, H.2    Shibuya, M.3
  • 75
    • 2642709170 scopus 로고    scopus 로고
    • Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth
    • Xia, P., et al. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. 98, 2018-2026 (1996
    • (1996) J. Clin. Invest , vol.98 , pp. 2018-2026
    • Xia, P.1
  • 76
    • 0038624399 scopus 로고    scopus 로고
    • Phospholipase C gamma 1 is required downstream of vascular endothelial growth factor during arterial development
    • Lawson, N. D., Mugford, J. W., Diamond, B. A., & Weinstein, B. M. Phospholipase C gamma 1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev. 17, 1346-1351 (2003
    • (2003) Genes Dev , vol.17 , pp. 1346-1351
    • Lawson, N.D.1    Mugford, J.W.2    Diamond, B.A.3    Weinstein, B.M.4
  • 77
    • 0029739626 scopus 로고    scopus 로고
    • Immunodeficiency in protein kinase cβ-deficient mice
    • Leitges, M., et al. Immunodeficiency in protein kinase cβ-deficient mice. Science 273, 788-791 (1996
    • (1996) Science , vol.273 , pp. 788-791
    • Leitges, M.1
  • 78
    • 57149148250 scopus 로고    scopus 로고
    • Combinatorial regulation of endothelial gene expression by Ets and forkhead transcription factors
    • De Val, S., et al. Combinatorial regulation of endothelial gene expression by Ets and forkhead transcription factors. Cell 135, 1053-1064 (2008
    • (2008) Cell , vol.135 , pp. 1053-1064
    • De Val, S.1
  • 79
    • 70349260738 scopus 로고    scopus 로고
    • Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis
    • Wei, G., et al. Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis. Blood 114, 1123-1130 (2009
    • (2009) Blood , vol.114 , pp. 1123-1130
    • Wei, G.1
  • 80
    • 84859842562 scopus 로고    scopus 로고
    • Regulation of endothelial and hematopoietic development by the ETS transcription factor Etv2
    • Lammerts Van Bueren, K., & Black, B. L. Regulation of endothelial and hematopoietic development by the ETS transcription factor Etv2. Curr. Opin. Hematol. 19, 199-205 (2012
    • (2012) Curr. Opin. Hematol , vol.19 , pp. 199-205
    • Lammerts Van Bueren, K.1    Black, B.L.2
  • 81
    • 84880512956 scopus 로고    scopus 로고
    • ETS factors regulate Vegf-dependent arterial specification
    • Wythe, J. D., et al. ETS factors regulate Vegf-dependent arterial specification. Dev. Cell 26, 45-58 (2013
    • (2013) Dev. Cell , vol.26 , pp. 45-58
    • Wythe, J.D.1
  • 82
    • 45549101405 scopus 로고    scopus 로고
    • Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7
    • Wang, S., et al. Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc. Natl Acad. Sci. USA 105, 7738-7743 (2008
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 7738-7743
    • Wang, S.1
  • 83
    • 55549090302 scopus 로고    scopus 로고
    • Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma
    • Jinnin, M., et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat. Med. 14, 1236-1246 (2008
    • (2008) Nat. Med , vol.14 , pp. 1236-1246
    • Jinnin, M.1
  • 84
    • 4444320122 scopus 로고    scopus 로고
    • A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis
    • Chang, C. P., et al. A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Cell 118, 649-663 (2004
    • (2004) Cell , vol.118 , pp. 649-663
    • Chang, C.P.1
  • 85
    • 42949122596 scopus 로고    scopus 로고
    • Targeted deletion of the calcineurin inhibitor DSCR1 suppresses tumor growth
    • Ryeom, S., et al. Targeted deletion of the calcineurin inhibitor DSCR1 suppresses tumor growth. Cancer Cell 13, 420-431 (2008
    • (2008) Cancer Cell , vol.13 , pp. 420-431
    • Ryeom, S.1
  • 86
    • 0037188941 scopus 로고    scopus 로고
    • Role of Akt signaling in vascular homeostasis and angiogenesis
    • Shiojima, I., & Walsh, K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 90, 1243-1250 (2002
    • (2002) Circ. Res , vol.90 , pp. 1243-1250
    • Shiojima, I.1    Walsh, K.2
  • 87
    • 84891699959 scopus 로고    scopus 로고
    • Angiopoietin 2 secretion by endothelial cell exosomes: Regulation by the phosphatidylinositol 3 kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) and syndecan 4/syntenin pathways
    • Ju, R., et al. Angiopoietin 2 secretion by endothelial cell exosomes: regulation by the phosphatidylinositol 3 kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) and syndecan 4/syntenin pathways. J. Biol. Chem. 289, 510-519 (2014
    • (2014) J. Biol. Chem , vol.289 , pp. 510-519
    • Ju, R.1
  • 88
    • 30744432102 scopus 로고    scopus 로고
    • Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo
    • Chen, J., et al. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat. Med. 11, 1188-1196 (2005
    • (2005) Nat. Med , vol.11 , pp. 1188-1196
    • Chen, J.1
  • 89
    • 84907227970 scopus 로고    scopus 로고
    • Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates
    • Lee, M. Y., et al. Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proc. Natl Acad. Sci. USA 111, 12865-12870 (2014
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 12865-12870
    • Lee, M.Y.1
  • 90
    • 23644446866 scopus 로고    scopus 로고
    • Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis
    • Ackah, E., et al. Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis. J. Clin. Invest. 115, 2119-2127 (2005
    • (2005) J. Clin. Invest , vol.115 , pp. 2119-2127
    • Ackah, E.1
  • 91
    • 0033597718 scopus 로고    scopus 로고
    • Targeted deficiency or cytosolic truncation of the VE cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis
    • Carmeliet, P., et al. Targeted deficiency or cytosolic truncation of the VE cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147-157 (1999
    • (1999) Cell , vol.98 , pp. 147-157
    • Carmeliet, P.1
  • 92
    • 84859432817 scopus 로고    scopus 로고
    • Axl is essential for VEGF A dependent activation of PI3K/Akt
    • Ruan, G. X., & Kazlauskas, A. Axl is essential for VEGF A dependent activation of PI3K/Akt. EMBO J. 31, 1692-1703 (2012
    • (2012) EMBO J. , vol.31 , pp. 1692-1703
    • Ruan, G.X.1    Kazlauskas, A.2
  • 93
    • 44349119736 scopus 로고    scopus 로고
    • Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration
    • Graupera, M., et al. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453, 662-666 (2008
    • (2008) Nature , vol.453 , pp. 662-666
    • Graupera, M.1
  • 94
    • 44949179828 scopus 로고    scopus 로고
    • An essential role for Rac1 in endothelial cell function and vascular development
    • Tan, W., et al. An essential role for Rac1 in endothelial cell function and vascular development. FASEB J. 22, 1829-1838 (2008
    • (2008) FASEB J. , vol.22 , pp. 1829-1838
    • Tan, W.1
  • 95
    • 79952184750 scopus 로고    scopus 로고
    • RhoJ/TCL regulates endothelial motility and tube formation and modulates actomyosin contractility and focal adhesion numbers
    • Kaur, S., et al. RhoJ/TCL regulates endothelial motility and tube formation and modulates actomyosin contractility and focal adhesion numbers. Arterioscler. Thromb. Vasc. Biol. 31, 657-664 (2011
    • (2011) Arterioscler. Thromb. Vasc. Biol , vol.31 , pp. 657-664
    • Kaur, S.1
  • 96
    • 1242296871 scopus 로고    scopus 로고
    • Rho activity critically and selectively regulates endothelial cell organization during angiogenesis
    • Hoang, M. V., Whelan, M. C., & Senger, D. R. Rho activity critically and selectively regulates endothelial cell organization during angiogenesis. Proc. Natl Acad. Sci. USA 101, 1874-1879 (2004
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 1874-1879
    • Hoang, M.V.1    Whelan, M.C.2    Senger, D.R.3
  • 97
    • 84935140511 scopus 로고    scopus 로고
    • A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis
    • Abraham, S., et al. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis. Nat. Commun. 6, 7286 (2015
    • (2015) Nat. Commun , vol.6 , pp. 7286
    • Abraham, S.1
  • 98
    • 84940785313 scopus 로고    scopus 로고
    • Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice
    • Barry, D. M., et al. Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice. Development 142, 3058-3070 (2015
    • (2015) Development , vol.142 , pp. 3058-3070
    • Barry, D.M.1
  • 99
    • 84949884017 scopus 로고    scopus 로고
    • Targeting NCK-mediated endothelial cell front-rear polarity inhibits neovascularization
    • Dubrac, A., et al. Targeting NCK-mediated endothelial cell front-rear polarity inhibits neovascularization. Circulation 133, 409-421 (2016
    • (2016) Circulation , vol.133 , pp. 409-421
    • Dubrac, A.1
  • 100
    • 84925225303 scopus 로고    scopus 로고
    • Rac[e] to the pole: Setting up polarity in endothelial cells
    • Collins, C., & Tzima, E. Rac[e] to the pole: setting up polarity in endothelial cells. Small GTPases 5, e28650 (2014
    • (2014) Small GTPases , vol.5 , pp. e28650
    • Collins, C.1    Tzima, E.2
  • 101
    • 84962295137 scopus 로고    scopus 로고
    • VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread
    • Li, X., et al. VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nat. Commun. 7, 11017 (2016
    • (2016) Nat. Commun , vol.7 , pp. 11017
    • Li, X.1
  • 102
    • 84864292241 scopus 로고    scopus 로고
    • VEGFR2 induces c Src signaling and vascular permeability in vivo via the adaptor protein TSAd
    • Sun, Z., et al. VEGFR2 induces c Src signaling and vascular permeability in vivo via the adaptor protein TSAd. J. Exp. Med. 209, 1363-1377 (2012
    • (2012) J. Exp. Med , vol.209 , pp. 1363-1377
    • Sun, Z.1
  • 103
    • 0031838055 scopus 로고    scopus 로고
    • Shear stress activates p60src-Ras- MAPK signaling pathways in vascular endothelial cells
    • Jalali, S., et al. Shear stress activates p60src-Ras- MAPK signaling pathways in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 18, 227-234 (1998
    • (1998) Arterioscler. Thromb. Vasc. Biol , vol.18 , pp. 227-234
    • Jalali, S.1
  • 104
    • 84864798558 scopus 로고    scopus 로고
    • Identification of targets of c Src tyrosine kinase by chemical complementation and phosphoproteomics
    • Ferrando, I. M., et al. Identification of targets of c Src tyrosine kinase by chemical complementation and phosphoproteomics. Mol. Cell. Proteomics 11, 355-369 (2012
    • (2012) Mol. Cell. Proteomics , vol.11 , pp. 355-369
    • Ferrando, I.M.1
  • 105
    • 4444338326 scopus 로고    scopus 로고
    • SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling
    • Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C., & Carragher, N. O. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol. Cell. Biol. 24, 8113-8133 (2004
    • (2004) Mol. Cell. Biol , vol.24 , pp. 8113-8133
    • Westhoff, M.A.1    Serrels, B.2    Fincham, V.J.3    Frame, M.C.4    Carragher, N.O.5
  • 106
    • 84862907457 scopus 로고    scopus 로고
    • VEGF-induced vascular permeability is mediated by FAK
    • Chen, X. L., et al. VEGF-induced vascular permeability is mediated by FAK. Dev. Cell 22, 146-157 (2012
    • (2012) Dev. Cell , vol.22 , pp. 146-157
    • Chen, X.L.1
  • 107
    • 7244247062 scopus 로고    scopus 로고
    • Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis
    • Weis, S., Cui, J., Barnes, L., & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223-229 (2004
    • (2004) J. Cell Biol , vol.167 , pp. 223-229
    • Weis, S.1    Cui, J.2    Barnes, L.3    Cheresh, D.4
  • 108
    • 84925358255 scopus 로고    scopus 로고
    • ZO 1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation
    • Tornavaca, O., et al. ZO 1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J. Cell Biol. 208, 821-838 (2015
    • (2015) J. Cell Biol , vol.208 , pp. 821-838
    • Tornavaca, O.1
  • 109
    • 73949085724 scopus 로고    scopus 로고
    • P38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis
    • Gee, E., Milkiewicz, M., & Haas, T. L. p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis. J. Cell. Physiol. 222, 120-126 (2010
    • (2010) J. Cell. Physiol , vol.222 , pp. 120-126
    • Gee, E.1    Milkiewicz, M.2    Haas, T.L.3
  • 110
    • 20444385832 scopus 로고    scopus 로고
    • Activation of p38 has opposing effects on the proliferation and migration of endothelial cells
    • McMullen, M. E., Bryant, P. W., Glembotski, C. C., Vincent, P. A., & Pumiglia, K. M. Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. J. Biol. Chem. 280, 20995-21003 (2005
    • (2005) J. Biol. Chem , vol.280 , pp. 20995-21003
    • McMullen, M.E.1    Bryant, P.W.2    Glembotski, C.C.3    Vincent, P.A.4    Pumiglia, K.M.5
  • 111
    • 0037313641 scopus 로고    scopus 로고
    • P38 MAP kinase - A molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability
    • Issbrucker, K., et al. p38 MAP kinase - a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. FASEB J. 17, 262-264 (2003
    • (2003) FASEB J. , vol.17 , pp. 262-264
    • Issbrucker, K.1
  • 113
    • 1442278553 scopus 로고    scopus 로고
    • Vascular endothelial growth factor-mediated activation of p38 is dependent upon Src and RAFTK/Pyk2
    • McMullen, M., Keller, R., Sussman, M., & Pumiglia, K. Vascular endothelial growth factor-mediated activation of p38 is dependent upon Src and RAFTK/Pyk2. Oncogene 23, 1275-1282 (2004
    • (2004) Oncogene , vol.23 , pp. 1275-1282
    • McMullen, M.1    Keller, R.2    Sussman, M.3    Pumiglia, K.4
  • 114
    • 0034721758 scopus 로고    scopus 로고
    • Vascular endothelial growth factor activates STAT proteins in aortic endothelial cells
    • Bartoli, M., et al. Vascular endothelial growth factor activates STAT proteins in aortic endothelial cells. J. Biol. Chem. 275, 33189-33192 (2000
    • (2000) J. Biol. Chem , vol.275 , pp. 33189-33192
    • Bartoli, M.1
  • 115
    • 0034657336 scopus 로고    scopus 로고
    • The role of STATs in transcriptional control and their impact on cellular function
    • Bromberg, J., & Darnell, J. E. Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19, 2468-2473 (2000
    • (2000) Oncogene , vol.19 , pp. 2468-2473
    • Bromberg, J.1    Darnell, J.E.2
  • 116
    • 77953148019 scopus 로고    scopus 로고
    • Glucose intolerance and impaired insulin secretion in pancreas-specific signal transducer and activator of transcription 3 knockout mice are associated with microvascular alterations in the pancreas
    • Kostromina, E., et al. Glucose intolerance and impaired insulin secretion in pancreas-specific signal transducer and activator of transcription 3 knockout mice are associated with microvascular alterations in the pancreas. Endocrinology 151, 2050-2059 (2010
    • (2010) Endocrinology , vol.151 , pp. 2050-2059
    • Kostromina, E.1
  • 117
    • 0029021660 scopus 로고
    • Role of the Flt 1 receptor tyrosine kinase in regulating the assembly of vascular endothelium
    • Fong, G. H., Rossant, J., Gertsenstein, M., & Breitman, M. L. Role of the Flt 1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70 (1995
    • (1995) Nature , vol.376 , pp. 66-70
    • Fong, G.H.1    Rossant, J.2    Gertsenstein, M.3    Breitman, M.L.4
  • 118
    • 0032482978 scopus 로고    scopus 로고
    • Flt 1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice
    • Hiratsuka, S., Minowa, O., Kuno, J., Noda, T., & Shibuya, M. Flt 1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl Acad. Sci. USA 95, 9349-9354 (1998
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , pp. 9349-9354
    • Hiratsuka, S.1    Minowa, O.2    Kuno, J.3    Noda, T.4    Shibuya, M.5
  • 119
    • 84867115539 scopus 로고    scopus 로고
    • Crosstalk and signaling switches in mitogen-activated protein kinase cascades
    • Fey, D., Croucher, D. R., Kolch, W., & Kholodenko, B. N. Crosstalk and signaling switches in mitogen-activated protein kinase cascades. Front. Physiol. 3, 355 (2012
    • (2012) Front. Physiol , vol.3 , pp. 355
    • Fey, D.1    Croucher, D.R.2    Kolch, W.3    Kholodenko, B.N.4
  • 120
    • 0027053487 scopus 로고
    • Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro
    • Pepper, M. S., Ferrara, N., Orci, L., & Montesano, R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 189, 824-831 (1992
    • (1992) Biochem. Biophys. Res. Commun , vol.189 , pp. 824-831
    • Pepper, M.S.1    Ferrara, N.2    Orci, L.3    Montesano, R.4
  • 121
    • 18144364350 scopus 로고    scopus 로고
    • Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis
    • Presta, M., et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16, 159-178 (2005
    • (2005) Cytokine Growth Factor Rev , vol.16 , pp. 159-178
    • Presta, M.1
  • 122
    • 41949092558 scopus 로고    scopus 로고
    • Fibroblast growth factor regulation of neovascularization
    • Murakami, M., & Simons, M. Fibroblast growth factor regulation of neovascularization. Curr. Opin. Hematol. 15, 215-220 (2008
    • (2008) Curr. Opin. Hematol , vol.15 , pp. 215-220
    • Murakami, M.1    Simons, M.2
  • 123
    • 0037172970 scopus 로고    scopus 로고
    • Blockade of vascular endothelial growth factor receptor 3 signaling inhibits fibroblast growth factor 2 induced lymphangiogenesis in mouse cornea
    • Kubo, H., et al. Blockade of vascular endothelial growth factor receptor 3 signaling inhibits fibroblast growth factor 2 induced lymphangiogenesis in mouse cornea. Proc. Natl Acad. Sci. USA 99, 8868-8873 (2002
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 8868-8873
    • Kubo, H.1
  • 124
    • 84898827703 scopus 로고    scopus 로고
    • The docking protein FRS2α is a critical regulator of VEGF receptors signaling
    • Chen, P. Y., et al. The docking protein FRS2α is a critical regulator of VEGF receptors signaling. Proc. Natl Acad. Sci. USA 111, 5514-5519 (2014
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 5514-5519
    • Chen, P.Y.1
  • 125
    • 0036771763 scopus 로고    scopus 로고
    • The docking protein FRS2α controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors
    • Lax, I., et al. The docking protein FRS2α controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors. Mol. Cell 10, 709-719 (2002
    • (2002) Mol. Cell , vol.10 , pp. 709-719
    • Lax, I.1
  • 126
    • 84903774559 scopus 로고    scopus 로고
    • Protein interaction switches coordinate Raf 1 and MST2/Hippo signalling
    • Romano, D., et al. Protein interaction switches coordinate Raf 1 and MST2/Hippo signalling. Nat. Cell Biol. 16, 673-684 (2014
    • (2014) Nat. Cell Biol , vol.16 , pp. 673-684
    • Romano, D.1
  • 128
    • 84939839224 scopus 로고    scopus 로고
    • Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway
    • Zhou, X., et al. Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway. Drug Des. Devel. Ther. 9, 4599-4611 (2015
    • (2015) Drug Des. Devel. Ther , vol.9 , pp. 4599-4611
    • Zhou, X.1
  • 129
    • 77951160785 scopus 로고    scopus 로고
    • ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish
    • Ren, B., et al. ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J. Clin. Invest. 120, 1217-1228 (2010
    • (2010) J. Clin. Invest , vol.120 , pp. 1217-1228
    • Ren, B.1
  • 130
    • 84888320759 scopus 로고    scopus 로고
    • Phosphorylation of angiomotin by Lats1/2 kinases inhibits F actin binding, cell migration, and angiogenesis
    • Dai, X., et al. Phosphorylation of angiomotin by Lats1/2 kinases inhibits F actin binding, cell migration, and angiogenesis. J. Biol. Chem. 288, 34041-34051 (2013
    • (2013) J. Biol. Chem , vol.288 , pp. 34041-34051
    • Dai, X.1
  • 131
    • 84880066284 scopus 로고    scopus 로고
    • Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors
    • Nejigane, S., Takahashi, S., Haramoto, Y., Michiue, T., & Asashima, M. Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors. Int. J. Dev. Biol. 57, 407-414 (2013
    • (2013) Int. J. Dev. Biol , vol.57 , pp. 407-414
    • Nejigane, S.1    Takahashi, S.2    Haramoto, Y.3    Michiue, T.4    Asashima, M.5
  • 132
    • 84922435279 scopus 로고    scopus 로고
    • An emerging role for Hippo-YAP signaling in cardiovascular development
    • Zhou, J. An emerging role for Hippo-YAP signaling in cardiovascular development. J. Biomed. Res. 28, 251-254 (2014
    • (2014) J. Biomed. Res , vol.28 , pp. 251-254
    • Zhou, J.1
  • 133
    • 80052015813 scopus 로고    scopus 로고
    • Molecular control of endothelial cell behaviour during blood vessel morphogenesis
    • Herbert, S. P., & Stainier, D. Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 551-564 (2011
    • (2011) Nat. Rev. Mol. Cell Biol , vol.12 , pp. 551-564
    • Herbert, S.P.1    Stainier, D.Y.2
  • 134
    • 8644290828 scopus 로고    scopus 로고
    • Haploinsufficiency of δ-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development
    • Gale, N. W., et al. Haploinsufficiency of δ-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc. Natl Acad. Sci. USA 101, 15949-15954 (2004
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 15949-15954
    • Gale, N.W.1
  • 135
    • 17144403287 scopus 로고    scopus 로고
    • Essential role of endothelial Notch1 in angiogenesis
    • Limbourg, F. P., et al. Essential role of endothelial Notch1 in angiogenesis. Circulation 111, 1826-1832 (2005
    • (2005) Circulation , vol.111 , pp. 1826-1832
    • Limbourg, F.P.1
  • 136
    • 80053564674 scopus 로고    scopus 로고
    • VEGFR 3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling
    • Tammela, T., et al. VEGFR 3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat. Cell Biol. 13, 1202-1213 (2011
    • (2011) Nat. Cell Biol , vol.13 , pp. 1202-1213
    • Tammela, T.1
  • 137
    • 33847607880 scopus 로고    scopus 로고
    • The notch ligand δ-like 4 negatively regulates endothelial tip cell formation and vessel branching
    • Suchting, S., et al. The Notch ligand δ-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA 104, 3225-3230 (2007
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 3225-3230
    • Suchting, S.1
  • 138
    • 33847046849 scopus 로고    scopus 로고
    • Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis
    • Hellstrom, M., et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776-780 (2007
    • (2007) Nature , vol.445 , pp. 776-780
    • Hellstrom, M.1
  • 139
    • 66449123068 scopus 로고    scopus 로고
    • The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis
    • Benedito, R., et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124-1135 (2009
    • (2009) Cell , vol.137 , pp. 1124-1135
    • Benedito, R.1
  • 140
    • 48349129069 scopus 로고    scopus 로고
    • Blocking VEGFR 3 suppresses angiogenic sprouting and vascular network formation
    • Tammela, T., et al. Blocking VEGFR 3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656-660 (2008
    • (2008) Nature , vol.454 , pp. 656-660
    • Tammela, T.1
  • 141
    • 77957607057 scopus 로고    scopus 로고
    • Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting
    • Jakobsson, L., et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943-953 (2010
    • (2010) Nat. Cell Biol , vol.12 , pp. 943-953
    • Jakobsson, L.1
  • 142
    • 84858176226 scopus 로고    scopus 로고
    • ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway
    • Larrivee, B., et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev. Cell 22, 489-500 (2012
    • (2012) Dev. Cell , vol.22 , pp. 489-500
    • Larrivee, B.1
  • 143
    • 65549156893 scopus 로고    scopus 로고
    • Purinergic regulation of vascular endothelial growth factor signaling in angiogenesis
    • Rumjahn, S. M., Yokdang, N., Baldwin, K. A., Thai, J., & Buxton, I. L. Purinergic regulation of vascular endothelial growth factor signaling in angiogenesis. Br. J. Cancer 100, 1465-1470 (2009
    • (2009) Br. J. Cancer , vol.100 , pp. 1465-1470
    • Rumjahn, S.M.1    Yokdang, N.2    Baldwin, K.A.3    Thai, J.4    Buxton, I.L.5
  • 144
    • 0942275690 scopus 로고    scopus 로고
    • KDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11 mediated activation of a small GTPase RhoA
    • Zeng, H., Zhao, D., & Mukhopadhyay, D. KDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11 mediated activation of a small GTPase RhoA. J. Biol. Chem. 277, 46791-46798 (2002
    • (2002) J. Biol. Chem , vol.277 , pp. 46791-46798
    • Zeng, H.1    Zhao, D.2    Mukhopadhyay, D.3
  • 145
    • 84866044722 scopus 로고    scopus 로고
    • The sphingosine 1 phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE cadherin and VEGFR2
    • Gaengel, K., et al. The sphingosine 1 phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE cadherin and VEGFR2. Dev. Cell 23, 587-599 (2012
    • (2012) Dev. Cell , vol.23 , pp. 587-599
    • Gaengel, K.1
  • 146
    • 33745107561 scopus 로고    scopus 로고
    • Vascular endothelial cell-specific phosphotyrosine phosphatase (VE PTP) activity is required for blood vessel development
    • Baumer, S., et al. Vascular endothelial cell-specific phosphotyrosine phosphatase (VE PTP) activity is required for blood vessel development. Blood 107, 4754-4762 (2006
    • (2006) Blood , vol.107 , pp. 4754-4762
    • Baumer, S.1
  • 147
    • 84899463890 scopus 로고    scopus 로고
    • Phosphatases and kinases as regulators of the endothelial barrier function
    • Kuppers, V., Vockel, M., Nottebaum, A. F., & Vestweber, D. Phosphatases and kinases as regulators of the endothelial barrier function. Cell Tissue Res. 355, 577-586 (2014
    • (2014) Cell Tissue Res , vol.355 , pp. 577-586
    • Kuppers, V.1    Vockel, M.2    Nottebaum, A.F.3    Vestweber, D.4
  • 148
    • 84961218854 scopus 로고    scopus 로고
    • Interfering with VE PTP stabilizes endothelial junctions in vivo via Tie 2 in the absence of VE cadherin
    • Frye, M., et al. Interfering with VE PTP stabilizes endothelial junctions in vivo via Tie 2 in the absence of VE cadherin. J. Exp. Med. 212, 2267-2287 (2015
    • (2015) J. Exp. Med , vol.212 , pp. 2267-2287
    • Frye, M.1
  • 149
    • 84877788239 scopus 로고    scopus 로고
    • VE PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation
    • Hayashi, M., et al. VE PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat. Commun. 4, 1672 (2013
    • (2013) Nat. Commun , vol.4 , pp. 1672
    • Hayashi, M.1
  • 150
    • 78049253878 scopus 로고    scopus 로고
    • In control at the ER: PTP1B and the down-regulation of RTKs by dephosphorylation and endocytosis
    • Stuible, M., & Tremblay, M. L. In control at the ER: PTP1B and the down-regulation of RTKs by dephosphorylation and endocytosis. Trends Cell Biol. 20, 672-679 (2010
    • (2010) Trends Cell Biol , vol.20 , pp. 672-679
    • Stuible, M.1    Tremblay, M.L.2
  • 151
    • 33846259264 scopus 로고    scopus 로고
    • Direct interaction between ER membrane-bound PTP1B and its plasma membrane-anchored targets
    • Anderie, I., Schulz, I., & Schmid, A. Direct interaction between ER membrane-bound PTP1B and its plasma membrane-anchored targets. Cell. Signall. 19, 582-592 (2007
    • (2007) Cell. Signall , vol.19 , pp. 582-592
    • Anderie, I.1    Schulz, I.2    Schmid, A.3
  • 152
    • 84908657259 scopus 로고    scopus 로고
    • PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells
    • Lanahan, A. A., et al. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation 130, 902-909 (2014
    • (2014) Circulation , vol.130 , pp. 902-909
    • Lanahan, A.A.1
  • 153
    • 59149103545 scopus 로고    scopus 로고
    • The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling
    • Mattila, E., Auvinen, K., Salmi, M., & Ivaska, J. The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling. J. Cell Sci. 121, 3570-3580 (2008
    • (2008) J. Cell Sci , vol.121 , pp. 3570-3580
    • Mattila, E.1    Auvinen, K.2    Salmi, M.3    Ivaska, J.4
  • 154
    • 33748756029 scopus 로고    scopus 로고
    • VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment
    • Gampel, A., et al. VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108, 2624-2631 (2006
    • (2006) Blood , vol.108 , pp. 2624-2631
    • Gampel, A.1
  • 155
    • 84908609208 scopus 로고    scopus 로고
    • Differential apicobasal VEGF signaling at vascular blood-neural barriers
    • Hudson, N., et al. Differential apicobasal VEGF signaling at vascular blood-neural barriers. Dev. Cell 30, 541-552 (2014
    • (2014) Dev. Cell , vol.30 , pp. 541-552
    • Hudson, N.1
  • 156
    • 43049116513 scopus 로고    scopus 로고
    • Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell- matrix contacts
    • Saharinen, P., et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell- matrix contacts. Nat. Cell Biol. 10, 527-537 (2008
    • (2008) Nat. Cell Biol , vol.10 , pp. 527-537
    • Saharinen, P.1
  • 157
    • 79251553130 scopus 로고    scopus 로고
    • Regulation of vascular endothelial growth factor receptor 2 trafficking and angiogenesis by Golgi localized t SNARE syntaxin 6
    • Manickam, V., et al. Regulation of vascular endothelial growth factor receptor 2 trafficking and angiogenesis by Golgi localized t SNARE syntaxin 6. Blood 117, 1425-1435 (2011
    • (2011) Blood , vol.117 , pp. 1425-1435
    • Manickam, V.1
  • 158
    • 84874599441 scopus 로고    scopus 로고
    • The myosin motor Myo1c is required for VEGFR2 delivery to the cell surface and for angiogenic signaling
    • Tiwari, A., Jung, J. J., Inamdar, S. M., Nihalani, D., & Choudhury, A. The myosin motor Myo1c is required for VEGFR2 delivery to the cell surface and for angiogenic signaling. Am J Physiol. Heart Circ. Physiol. 304, H687-H696 (2013
    • (2013) Am J Physiol. Heart Circ. Physiol , vol.304 , pp. H687-H696
    • Tiwari, A.1    Jung, J.J.2    Inamdar, S.M.3    Nihalani, D.4    Choudhury, A.5
  • 159
    • 79960720320 scopus 로고    scopus 로고
    • Molecular mechanism and physiological functions of clathrin-mediated endocytosis
    • McMahon, H. T., & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517-533 (2011
    • (2011) Nat. Rev. Mol. Cell Biol , vol.12 , pp. 517-533
    • McMahon, H.T.1    Boucrot, E.2
  • 160
    • 79960690759 scopus 로고    scopus 로고
    • Neuropilin 1 promotes VEGFR 2 trafficking through Rab11 vesicles thereby specifying signal output
    • Ballmer-Hofer, K., Andersson, A. E., Ratcliffe, L. E., & Berger, P. Neuropilin 1 promotes VEGFR 2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118, 816-826 (2011
    • (2011) Blood , vol.118 , pp. 816-826
    • Ballmer-Hofer, K.1    Andersson, A.E.2    Ratcliffe, L.E.3    Berger, P.4
  • 161
    • 84906934320 scopus 로고    scopus 로고
    • Receptor tyrosine kinase endocytosis in endothelium: Biology and signaling
    • Zhang, X., & Simons, M. Receptor tyrosine kinase endocytosis in endothelium: biology and signaling. Arterioscler. Thromb. Vasc. Biol 34, 1831-1837 (2014
    • (2014) Arterioscler. Thromb. Vasc. Biol , vol.34 , pp. 1831-1837
    • Zhang, X.1    Simons, M.2
  • 162
    • 77953022206 scopus 로고    scopus 로고
    • Ephrin B2 regulates VEGFR2 function in developmental and tumour angiogenesis
    • Sawamiphak, S., et al. Ephrin B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465, 487-491 (2010
    • (2010) Nature , vol.465 , pp. 487-491
    • Sawamiphak, S.1
  • 163
    • 77953029002 scopus 로고    scopus 로고
    • Ephrin B2 controls VEGF-induced angiogenesis and lymphangiogenesis
    • Wang, Y., et al. Ephrin B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483-486 (2010
    • (2010) Nature , vol.465 , pp. 483-486
    • Wang, Y.1
  • 164
    • 0038699077 scopus 로고    scopus 로고
    • Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin β-catenin and the phosphatase DEP 1/CD148
    • Lampugnani, G. M., et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, β-catenin, and the phosphatase DEP 1/CD148. J. Cell Biol. 161, 793-804 (2003
    • (2003) J. Cell Biol , vol.161 , pp. 793-804
    • Lampugnani, G.M.1
  • 165
    • 33747165872 scopus 로고    scopus 로고
    • Vascular endothelial cadherin controls VEGFR 2 internalization and signaling from intracellular compartments
    • Lampugnani, M. G., Orsenigo, F., Gagliani, M. C., Tacchetti, C., & Dejana, E. Vascular endothelial cadherin controls VEGFR 2 internalization and signaling from intracellular compartments. J. Cell Biol. 174, 593-604 (2006
    • (2006) J. Cell Biol , vol.174 , pp. 593-604
    • Lampugnani, M.G.1    Orsenigo, F.2    Gagliani, M.C.3    Tacchetti, C.4    Dejana, E.5
  • 166
    • 84870548371 scopus 로고    scopus 로고
    • Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling
    • Pasula, S., et al. Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. J. Clin. Invest. 122, 4424-4438 (2012
    • (2012) J. Clin. Invest , vol.122 , pp. 4424-4438
    • Pasula, S.1
  • 167
    • 84894993139 scopus 로고    scopus 로고
    • Genetic reduction of vascular endothelial growth factor receptor 2 rescues aberrant angiogenesis caused by epsin deficiency
    • Tessneer, K. L., et al. Genetic reduction of vascular endothelial growth factor receptor 2 rescues aberrant angiogenesis caused by epsin deficiency. Arterioscler. Thromb. Vasc. Biol. 34, 331-337 (2014
    • (2014) Arterioscler. Thromb. Vasc. Biol , vol.34 , pp. 331-337
    • Tessneer, K.L.1
  • 168
    • 84908399275 scopus 로고    scopus 로고
    • Temporal and spatial regulation of epsin abundance and VEGFR3 signaling are required for lymphatic valve formation and function
    • ra97
    • Liu, X., et al. Temporal and spatial regulation of epsin abundance and VEGFR3 signaling are required for lymphatic valve formation and function. Sci. Signal. 7, ra97 (2014
    • (2014) Sci. Signal , vol.7
    • Liu, X.1
  • 169
    • 84938065011 scopus 로고    scopus 로고
    • Regulation of vascular endothelial growth factor receptor function in angiogenesis by numb and numb-like
    • Van Lessen, M., et al. Regulation of vascular endothelial growth factor receptor function in angiogenesis by numb and numb-like. Arterioscler. Thromb. Vasc. Biol. 35, 1815-1825 (2015
    • (2015) Arterioscler. Thromb. Vasc. Biol , vol.35 , pp. 1815-1825
    • Van Lessen, M.1
  • 170
    • 0038165451 scopus 로고    scopus 로고
    • Vascular endothelial growth factor-dependent down regulation of Flk 1/KDR involves Cbl-mediated ubiquitination consequences on nitric oxide production from endothelial cells
    • Duval, M., Bedard-Goulet, S., Delisle, C., & Gratton, J. P. Vascular endothelial growth factor-dependent down regulation of Flk 1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J. Biol. Chem. 278, 20091-20097 (2003
    • (2003) J. Biol. Chem , vol.278 , pp. 20091-20097
    • Duval, M.1    Bedard-Goulet, S.2    Delisle, C.3    Gratton, J.P.4
  • 171
    • 79955841718 scopus 로고    scopus 로고
    • Role of c Cbl-dependent regulation of phospholipase Cγ1 activation in experimental choroidal neovascularization
    • Husain, D., et al. Role of c Cbl-dependent regulation of phospholipase Cγ1 activation in experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 51, 6803-6809 (2010
    • (2010) Invest. Ophthalmol. Vis. Sci , vol.51 , pp. 6803-6809
    • Husain, D.1
  • 172
    • 79955811775 scopus 로고    scopus 로고
    • C Cbl inhibits angiogenesis and tumor growth by suppressing activation of PLCγ1
    • Meyer, R. D., Husain, D., & Rahimi, N. c Cbl inhibits angiogenesis and tumor growth by suppressing activation of PLCγ1. Oncogene 30, 2198-2206 (2011
    • (2011) Oncogene , vol.30 , pp. 2198-2206
    • Meyer, R.D.1    Husain, D.2    Rahimi, N.3
  • 173
    • 84864296672 scopus 로고    scopus 로고
    • SCF(β-TRCP) suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2
    • Shaik, S., et al. SCF(β-TRCP) suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. J. Exp. Med. 209, 1289-1307 (2012
    • (2012) J. Exp. Med , vol.209 , pp. 1289-1307
    • Shaik, S.1
  • 174
    • 84894519880 scopus 로고    scopus 로고
    • Glycaemic control improves perfusion recovery and VEGFR2 protein expression in diabetic mice following experimental PAD
    • Dokun, A. O., Chen, L., Lanjewar, S. S., Lye, R. J., & Annex, B. H. Glycaemic control improves perfusion recovery and VEGFR2 protein expression in diabetic mice following experimental PAD. Cardiovasc. Res. 101, 364-372 (2014
    • (2014) Cardiovasc. Res , vol.101 , pp. 364-372
    • Dokun, A.O.1    Chen, L.2    Lanjewar, S.S.3    Lye, R.J.4    Annex, B.H.5
  • 175
    • 84930608070 scopus 로고    scopus 로고
    • A functional role for VEGFR1 expressed in peripheral sensory neurons in cancer pain
    • Selvaraj, D., et al. A functional role for VEGFR1 expressed in peripheral sensory neurons in cancer pain. Cancer Cell 27, 780-796 (2015
    • (2015) Cancer Cell , vol.27 , pp. 780-796
    • Selvaraj, D.1
  • 176
    • 84864856289 scopus 로고    scopus 로고
    • The role of heterodimerization between VEGFR 1 and VEGFR 2 in the regulation of endothelial cell homeostasis
    • Cudmore, M. J., et al. The role of heterodimerization between VEGFR 1 and VEGFR 2 in the regulation of endothelial cell homeostasis. Nat. Commun. 3, 972 (2012
    • (2012) Nat. Commun , vol.3 , pp. 972
    • Cudmore, M.J.1
  • 177
    • 0032483374 scopus 로고    scopus 로고
    • Identification of vascular endothelial growth factor receptor 1 tyrosine phosphorylation sites and binding of SH2 domain containing molecules
    • Ito, N., Wernstedt, C., Engstrom, U., & Claesson Welsh, L. Identification of vascular endothelial growth factor receptor 1 tyrosine phosphorylation sites and binding of SH2 domain containing molecules. J. Biol. Chem. 273, 23410-23418 (1998
    • (1998) J. Biol. Chem , vol.273 , pp. 23410-23418
    • Ito, N.1    Wernstedt, C.2    Engstrom, U.3    Claesson Welsh, L.4
  • 178
    • 84861058134 scopus 로고    scopus 로고
    • Cardiac angiogenic imbalance leads to peripartum cardiomyopathy
    • Patten, I. S., et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 485, 333-338 (2012
    • (2012) Nature , vol.485 , pp. 333-338
    • Patten, I.S.1
  • 179
    • 84954069038 scopus 로고    scopus 로고
    • Predictive value of the sFlt 1: PlGF ratio in women with suspected preeclampsia
    • Zeisler, H., et al. Predictive value of the sFlt 1: PlGF ratio in women with suspected preeclampsia. N. Engl. J. Med. 374, 13-22 (2016
    • (2016) N. Engl. J. Med , vol.374 , pp. 13-22
    • Zeisler, H.1
  • 180
    • 35548982639 scopus 로고    scopus 로고
    • Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels
    • Fischer, C., et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131, 463-475 (2007
    • (2007) Cell , vol.131 , pp. 463-475
    • Fischer, C.1
  • 181
    • 0035902538 scopus 로고    scopus 로고
    • Vascular endothelial growth factor-B deficient mice display an atrial conduction defect
    • Aase, K., et al. Vascular endothelial growth factor-B deficient mice display an atrial conduction defect. Circulation 104, 358-364 (2001
    • (2001) Circulation , vol.104 , pp. 358-364
    • Aase, K.1
  • 182
    • 18844473540 scopus 로고    scopus 로고
    • Mice lacking the vascular endothelial growth factor B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia
    • Bellomo, D., et al. Mice lacking the vascular endothelial growth factor B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 86, E29-E35 (2000
    • (2000) Circ. Res , vol.86 , pp. E29-E35
    • Bellomo, D.1
  • 183
    • 36749103151 scopus 로고    scopus 로고
    • Ligand independent activation of vascular endothelial growth factor receptor 1 by low-density lipoprotein
    • Usui, R., Shibuya, M., Ishibashi, S., & Maru, Y. Ligand independent activation of vascular endothelial growth factor receptor 1 by low-density lipoprotein. EMBO Rep. 8, 1155-1161 (2007
    • (2007) EMBO Rep , vol.8 , pp. 1155-1161
    • Usui, R.1    Shibuya, M.2    Ishibashi, S.3    Maru, Y.4
  • 184
    • 84862005373 scopus 로고    scopus 로고
    • ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1
    • Avraham-Davidi, I., et al. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nat. Med. 18, 967-973 (2012
    • (2012) Nat. Med , vol.18 , pp. 967-973
    • Avraham-Davidi, I.1
  • 185
    • 84924530916 scopus 로고    scopus 로고
    • Vascular endothelial growth factor receptor 3 controls neural stem cell activation in mice and humans
    • Han, J., et al. Vascular endothelial growth factor receptor 3 controls neural stem cell activation in mice and humans. Cell Rep. 10, 1158-1172 (2015
    • (2015) Cell Rep , vol.10 , pp. 1158-1172
    • Han, J.1
  • 186
    • 84859809053 scopus 로고    scopus 로고
    • Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature
    • Cha, Y. R., et al. Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev. Cell 22, 824-836 (2012
    • (2012) Dev. Cell , vol.22 , pp. 824-836
    • Cha, Y.R.1
  • 187
    • 81255188905 scopus 로고    scopus 로고
    • The lymphatic vasculature in disease
    • Alitalo, K. The lymphatic vasculature in disease. Nat. Med. 17, 1371-1380 (2011
    • (2011) Nat. Med , vol.17 , pp. 1371-1380
    • Alitalo, K.1
  • 188
    • 84859453770 scopus 로고    scopus 로고
    • Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling
    • Benedito, R., et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484, 110-114 (2012
    • (2012) Nature , vol.484 , pp. 110-114
    • Benedito, R.1
  • 189
    • 9144236286 scopus 로고    scopus 로고
    • Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins
    • Karkkainen, M. J., et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74-80 (2004
    • (2004) Nat. Immunol , vol.5 , pp. 74-80
    • Karkkainen, M.J.1
  • 190
    • 77957365795 scopus 로고    scopus 로고
    • Akt/protein kinase B is required for lymphatic network formation, remodeling, and valve development
    • Zhou, F., et al. Akt/protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am. J. Pathol. 177, 2124-2133 (2010
    • (2010) Am. J. Pathol , vol.177 , pp. 2124-2133
    • Zhou, F.1
  • 191
    • 84938880467 scopus 로고    scopus 로고
    • Mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish
    • Koltowska, K., et al. Mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes Dev. 29, 1618-1630 (2015
    • (2015) Genes Dev , vol.29 , pp. 1618-1630
    • Koltowska, K.1
  • 192
    • 77956385127 scopus 로고    scopus 로고
    • Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans
    • Au, A. C., et al. Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans. Am. J. Hum. Genet. 87, 436-444 (2010
    • (2010) Am. J. Hum. Genet , vol.87 , pp. 436-444
    • Au, A.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.