-
1
-
-
79956328903
-
Molecular mechanisms and clinical applications of angiogenesis
-
Carmeliet P., Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473:298-307.
-
(2011)
Nature
, vol.473
, pp. 298-307
-
-
Carmeliet, P.1
Jain, R.K.2
-
2
-
-
0030952289
-
Mechanisms of angiogenesis
-
Risau W. Mechanisms of angiogenesis. Nature 1997, 386:671-674.
-
(1997)
Nature
, vol.386
, pp. 671-674
-
-
Risau, W.1
-
3
-
-
84879666845
-
Notch controls retinal blood vessel maturation and quiescence
-
Ehling M., et al. Notch controls retinal blood vessel maturation and quiescence. Development 2013, 140:3051-3061.
-
(2013)
Development
, vol.140
, pp. 3051-3061
-
-
Ehling, M.1
-
4
-
-
84898801084
-
Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis
-
Korn C., et al. Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis. Development 2014, 141:1757-1766.
-
(2014)
Development
, vol.141
, pp. 1757-1766
-
-
Korn, C.1
-
5
-
-
77949895151
-
Haematopoietic stem cells derive directly from aortic endothelium during development
-
Bertrand J.Y., et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 2010, 464:108-111.
-
(2010)
Nature
, vol.464
, pp. 108-111
-
-
Bertrand, J.Y.1
-
6
-
-
79955150089
-
Embryonic origin of the adult hematopoietic system: advances and questions
-
Medvinsky A., et al. Embryonic origin of the adult hematopoietic system: advances and questions. Development 2011, 138:1017-1031.
-
(2011)
Development
, vol.138
, pp. 1017-1031
-
-
Medvinsky, A.1
-
7
-
-
33750456216
-
Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages
-
Kattman S.J., et al. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 2006, 11:723-732.
-
(2006)
Dev. Cell
, vol.11
, pp. 723-732
-
-
Kattman, S.J.1
-
8
-
-
84865236011
-
Partitioning the heart: mechanisms of cardiac septation and valve development
-
Lin C.J., et al. Partitioning the heart: mechanisms of cardiac septation and valve development. Development 2012, 139:3277-3299.
-
(2012)
Development
, vol.139
, pp. 3277-3299
-
-
Lin, C.J.1
-
9
-
-
68349157530
-
Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors
-
Misfeldt A.M., et al. Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors. Dev. Biol. 2009, 333:78-89.
-
(2009)
Dev. Biol.
, vol.333
, pp. 78-89
-
-
Misfeldt, A.M.1
-
10
-
-
84857004535
-
Coordinating tissue interactions: Notch signaling in cardiac development and disease
-
de la Pompa J.L., Epstein J.A. Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev. Cell 2012, 22:244-254.
-
(2012)
Dev. Cell
, vol.22
, pp. 244-254
-
-
de la Pompa, J.L.1
Epstein, J.A.2
-
11
-
-
34548132413
-
Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure
-
Lemmens K., et al. Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation 2007, 116:954-960.
-
(2007)
Circulation
, vol.116
, pp. 954-960
-
-
Lemmens, K.1
-
12
-
-
0028827104
-
Multiple essential functions of neuregulin in development
-
Meyer D., Birchmeier C. Multiple essential functions of neuregulin in development. Nature 1995, 378:386-390.
-
(1995)
Nature
, vol.378
, pp. 386-390
-
-
Meyer, D.1
Birchmeier, C.2
-
13
-
-
34648817203
-
Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept
-
Crivellato E., et al. Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J. Anat. 2007, 211:415-427.
-
(2007)
J. Anat.
, vol.211
, pp. 415-427
-
-
Crivellato, E.1
-
14
-
-
84870043996
-
Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling
-
Wu B., et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 2012, 151:1083-1096.
-
(2012)
Cell
, vol.151
, pp. 1083-1096
-
-
Wu, B.1
-
15
-
-
0032926182
-
Podocyte differentiation in the absence of endothelial cells as revealed in the zebrafish avascular mutant, cloche
-
Majumdar A., Drummond I.A. Podocyte differentiation in the absence of endothelial cells as revealed in the zebrafish avascular mutant, cloche. Dev. Genet. 1999, 24:220-229.
-
(1999)
Dev. Genet.
, vol.24
, pp. 220-229
-
-
Majumdar, A.1
Drummond, I.A.2
-
16
-
-
0032931234
-
VEGF is required for growth and survival in neonatal mice
-
Gerber H.P., et al. VEGF is required for growth and survival in neonatal mice. Development 1999, 126:1149-1159.
-
(1999)
Development
, vol.126
, pp. 1149-1159
-
-
Gerber, H.P.1
-
17
-
-
33645456580
-
Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival
-
Eremina V., et al. Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. J. Am. Soc. Nephrol. 2006, 17:724-735.
-
(2006)
J. Am. Soc. Nephrol.
, vol.17
, pp. 724-735
-
-
Eremina, V.1
-
18
-
-
0036006297
-
Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces
-
Serluca F.C., et al. Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr. Biol. 2002, 12:492-497.
-
(2002)
Curr. Biol.
, vol.12
, pp. 492-497
-
-
Serluca, F.C.1
-
19
-
-
2342431290
-
Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities
-
Bjarnegard M., et al. Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 2004, 131:1847-1857.
-
(2004)
Development
, vol.131
, pp. 1847-1857
-
-
Bjarnegard, M.1
-
20
-
-
80052291940
-
Semaphorins in kidney development and disease: modulators of ureteric bud branching, vascular morphogenesis, and podocyte-endothelial crosstalk
-
Reidy K., Tufro A. Semaphorins in kidney development and disease: modulators of ureteric bud branching, vascular morphogenesis, and podocyte-endothelial crosstalk. Pediatr. Nephrol. 2011, 26:1407-1412.
-
(2011)
Pediatr. Nephrol.
, vol.26
, pp. 1407-1412
-
-
Reidy, K.1
Tufro, A.2
-
21
-
-
84859814741
-
The glomerular basement membrane
-
Miner J.H. The glomerular basement membrane. Exp. Cell Res. 2012, 318:973-978.
-
(2012)
Exp. Cell Res.
, vol.318
, pp. 973-978
-
-
Miner, J.H.1
-
22
-
-
0035914069
-
Liver organogenesis promoted by endothelial cells prior to vascular function
-
Matsumoto K., et al. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 2001, 294:559-563.
-
(2001)
Science
, vol.294
, pp. 559-563
-
-
Matsumoto, K.1
-
23
-
-
0037440454
-
Formation of the digestive system in zebrafish. I. Liver morphogenesis
-
Field H.A., et al. Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev. Biol. 2003, 253:279-290.
-
(2003)
Dev. Biol.
, vol.253
, pp. 279-290
-
-
Field, H.A.1
-
24
-
-
68549115658
-
Notch signaling controls liver development by regulating biliary differentiation
-
Zong Y., et al. Notch signaling controls liver development by regulating biliary differentiation. Development 2009, 136:1727-1739.
-
(2009)
Development
, vol.136
, pp. 1727-1739
-
-
Zong, Y.1
-
25
-
-
79952120262
-
An endothelial cell niche induces hepatic specification through dual repression of Wnt and Notch signaling
-
Han S., et al. An endothelial cell niche induces hepatic specification through dual repression of Wnt and Notch signaling. Stem Cells 2011, 29:217-228.
-
(2011)
Stem Cells
, vol.29
, pp. 217-228
-
-
Han, S.1
-
26
-
-
33744795211
-
Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver
-
Battle M.A., et al. Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:8419-8424.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 8419-8424
-
-
Battle, M.A.1
-
27
-
-
0035913986
-
Induction of pancreatic differentiation by signals from blood vessels
-
Lammert E., et al. Induction of pancreatic differentiation by signals from blood vessels. Science 2001, 294:564-567.
-
(2001)
Science
, vol.294
, pp. 564-567
-
-
Lammert, E.1
-
28
-
-
1342263524
-
Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a
-
Yoshitomi H., Zaret K.S. Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 2004, 131:807-817.
-
(2004)
Development
, vol.131
, pp. 807-817
-
-
Yoshitomi, H.1
Zaret, K.S.2
-
29
-
-
84891771866
-
Vascular endothelial growth factor-a and islet vascularization are necessary in developing, but not adult, pancreatic islets
-
Reinert R.B., et al. Vascular endothelial growth factor-a and islet vascularization are necessary in developing, but not adult, pancreatic islets. Diabetes 2013, 62:4154-4164.
-
(2013)
Diabetes
, vol.62
, pp. 4154-4164
-
-
Reinert, R.B.1
-
30
-
-
79955570050
-
Endoderm and mesoderm reciprocal signaling mediated by CXCL12 and CXCR4 regulates the migration of angioblasts and establishes the pancreatic fate
-
Katsumoto K., Kume S. Endoderm and mesoderm reciprocal signaling mediated by CXCL12 and CXCR4 regulates the migration of angioblasts and establishes the pancreatic fate. Development 2011, 138:1947-1955.
-
(2011)
Development
, vol.138
, pp. 1947-1955
-
-
Katsumoto, K.1
Kume, S.2
-
31
-
-
62849083920
-
On the diabetic menu: zebrafish as a model for pancreas development and function
-
Kinkel M.D., Prince V.E. On the diabetic menu: zebrafish as a model for pancreas development and function. Bioessays 2009, 31:139-152.
-
(2009)
Bioessays
, vol.31
, pp. 139-152
-
-
Kinkel, M.D.1
Prince, V.E.2
-
32
-
-
0037706944
-
Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate
-
Kumar M., et al. Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev. Biol. 2003, 259:109-122.
-
(2003)
Dev. Biol.
, vol.259
, pp. 109-122
-
-
Kumar, M.1
-
33
-
-
16844375322
-
Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme
-
Edsbagge J., et al. Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme. Development 2005, 132:1085-1092.
-
(2005)
Development
, vol.132
, pp. 1085-1092
-
-
Edsbagge, J.1
-
34
-
-
79953028801
-
Growth-limiting role of endothelial cells in endoderm development
-
Sand F.W., et al. Growth-limiting role of endothelial cells in endoderm development. Dev. Biol. 2011, 352:267-277.
-
(2011)
Dev. Biol.
, vol.352
, pp. 267-277
-
-
Sand, F.W.1
-
35
-
-
84862589681
-
The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification
-
Saito D., et al. The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 2012, 336:1578-1581.
-
(2012)
Science
, vol.336
, pp. 1578-1581
-
-
Saito, D.1
-
36
-
-
33646840668
-
Loss of PECAM-1 function impairs alveolarization
-
DeLisser H.M., et al. Loss of PECAM-1 function impairs alveolarization. J. Biol. Chem. 2006, 281:8724-8731.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 8724-8731
-
-
DeLisser, H.M.1
-
37
-
-
0033826997
-
Inhibition of angiogenesis decreases alveolarization in the developing rat lung
-
Jakkula M., et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279:L600-L607.
-
(2000)
Am. J. Physiol. Lung Cell. Mol. Physiol.
, vol.279
, pp. L600-L607
-
-
Jakkula, M.1
-
38
-
-
44849091512
-
The branching programme of mouse lung development
-
Metzger R.J., et al. The branching programme of mouse lung development. Nature 2008, 453:745-750.
-
(2008)
Nature
, vol.453
, pp. 745-750
-
-
Metzger, R.J.1
-
39
-
-
79956320721
-
A perfusion-independent role of blood vessels in determining branching stereotypy of lung airways
-
Lazarus A., et al. A perfusion-independent role of blood vessels in determining branching stereotypy of lung airways. Development 2011, 138:2359-2368.
-
(2011)
Development
, vol.138
, pp. 2359-2368
-
-
Lazarus, A.1
-
40
-
-
0344299061
-
Vascular endothelial growth factor in human preterm lung
-
Lassus P., et al. Vascular endothelial growth factor in human preterm lung. Am. J. Respir. Crit. Care Med. 1999, 159:1429-1433.
-
(1999)
Am. J. Respir. Crit. Care Med.
, vol.159
, pp. 1429-1433
-
-
Lassus, P.1
-
41
-
-
0035891606
-
Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn
-
Lassus P., et al. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am. J. Respir. Crit. Care Med. 2001, 164:1981-1987.
-
(2001)
Am. J. Respir. Crit. Care Med.
, vol.164
, pp. 1981-1987
-
-
Lassus, P.1
-
42
-
-
0027104066
-
Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors
-
Berse B., et al. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol. Biol. Cell 1992, 3:211-220.
-
(1992)
Mol. Biol. Cell
, vol.3
, pp. 211-220
-
-
Berse, B.1
-
43
-
-
0029391381
-
Vascular endothelial growth factor mRNA increases in alveolar epithelial cells during recovery from oxygen injury
-
Maniscalco W.M., et al. Vascular endothelial growth factor mRNA increases in alveolar epithelial cells during recovery from oxygen injury. Am. J. Respir. Cell Mol. Biol. 1995, 13:377-386.
-
(1995)
Am. J. Respir. Cell Mol. Biol.
, vol.13
, pp. 377-386
-
-
Maniscalco, W.M.1
-
44
-
-
27144509839
-
Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization
-
Thebaud B., et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 2005, 112:2477-2486.
-
(2005)
Circulation
, vol.112
, pp. 2477-2486
-
-
Thebaud, B.1
-
45
-
-
0035983324
-
Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice
-
Compernolle V., et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat. Med. 2002, 8:702-710.
-
(2002)
Nat. Med.
, vol.8
, pp. 702-710
-
-
Compernolle, V.1
-
46
-
-
80155148257
-
Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection
-
Kumar P.A., et al. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 2011, 147:525-538.
-
(2011)
Cell
, vol.147
, pp. 525-538
-
-
Kumar, P.A.1
-
47
-
-
80155137529
-
Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization
-
Ding B.S., et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 2011, 147:539-553.
-
(2011)
Cell
, vol.147
, pp. 539-553
-
-
Ding, B.S.1
-
48
-
-
84893436164
-
Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis
-
Lee J.H., et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 2014, 156:440-455.
-
(2014)
Cell
, vol.156
, pp. 440-455
-
-
Lee, J.H.1
-
49
-
-
0037423321
-
Angiogenesis-independent endothelial protection of liver: role of VEGFR-1
-
LeCouter J., et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 2003, 299:890-893.
-
(2003)
Science
, vol.299
, pp. 890-893
-
-
LeCouter, J.1
-
50
-
-
73949091032
-
Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas
-
Michalopoulos G.K. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am. J. Pathol. 2010, 176:2-13.
-
(2010)
Am. J. Pathol.
, vol.176
, pp. 2-13
-
-
Michalopoulos, G.K.1
-
51
-
-
33745926802
-
VEGF modulates erythropoiesis through regulation of adult hepatic erythropoietin synthesis
-
Tam B.Y., et al. VEGF modulates erythropoiesis through regulation of adult hepatic erythropoietin synthesis. Nat. Med. 2006, 12:793-800.
-
(2006)
Nat. Med.
, vol.12
, pp. 793-800
-
-
Tam, B.Y.1
-
52
-
-
84892944118
-
Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat
-
Hu J., et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 2014, 343:416-419.
-
(2014)
Science
, vol.343
, pp. 416-419
-
-
Hu, J.1
-
53
-
-
84255200563
-
Building strong bones: molecular regulation of the osteoblast lineage
-
Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol. 2012, 13:27-38.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 27-38
-
-
Long, F.1
-
54
-
-
79956344963
-
Bone and the hematopoietic niche: a tale of two stem cells
-
Bianco P. Bone and the hematopoietic niche: a tale of two stem cells. Blood 2011, 117:5281-5288.
-
(2011)
Blood
, vol.117
, pp. 5281-5288
-
-
Bianco, P.1
-
55
-
-
78149285919
-
Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration
-
Ding B.S., et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 2010, 468:310-315.
-
(2010)
Nature
, vol.468
, pp. 310-315
-
-
Ding, B.S.1
-
56
-
-
77955569142
-
Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels
-
Maes C., et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell 2010, 19:329-344.
-
(2010)
Dev. Cell
, vol.19
, pp. 329-344
-
-
Maes, C.1
-
57
-
-
84892370936
-
Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis
-
Ding B.S., et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 2014, 505:97-102.
-
(2014)
Nature
, vol.505
, pp. 97-102
-
-
Ding, B.S.1
-
58
-
-
35948954244
-
Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver
-
Friedman S.L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 2008, 88:125-172.
-
(2008)
Physiol. Rev.
, vol.88
, pp. 125-172
-
-
Friedman, S.L.1
-
60
-
-
84877139427
-
Hepatic stellate cells in liver development, regeneration, and cancer
-
Yin C., et al. Hepatic stellate cells in liver development, regeneration, and cancer. J. Clin. Invest. 2013, 123:1902-1910.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 1902-1910
-
-
Yin, C.1
-
61
-
-
67650733297
-
The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf
-
Eshkar-Oren I., et al. The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 2009, 136:1263-1272.
-
(2009)
Development
, vol.136
, pp. 1263-1272
-
-
Eshkar-Oren, I.1
-
62
-
-
0033027858
-
VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation
-
Gerber H.P., et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 1999, 5:623-628.
-
(1999)
Nat. Med.
, vol.5
, pp. 623-628
-
-
Gerber, H.P.1
-
63
-
-
75049083784
-
Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones
-
Maes C., et al. Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J. 2010, 29:424-441.
-
(2010)
EMBO J.
, vol.29
, pp. 424-441
-
-
Maes, C.1
-
64
-
-
84868577455
-
HIF1alpha is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development
-
Bentovim L., et al. HIF1alpha is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development. Development 2012, 139:4473-4483.
-
(2012)
Development
, vol.139
, pp. 4473-4483
-
-
Bentovim, L.1
-
65
-
-
84857316278
-
VEGF-independent cell-autonomous functions of HIF-1alpha regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival
-
Maes C., et al. VEGF-independent cell-autonomous functions of HIF-1alpha regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. J. Bone Miner. Res. 2012, 27:596-609.
-
(2012)
J. Bone Miner. Res.
, vol.27
, pp. 596-609
-
-
Maes, C.1
-
66
-
-
0030953085
-
SEM corrosion-casts study of the microcirculation of the flat bones in the rat
-
Pannarale L., et al. SEM corrosion-casts study of the microcirculation of the flat bones in the rat. Anat. Rec. 1997, 247:462-471.
-
(1997)
Anat. Rec.
, vol.247
, pp. 462-471
-
-
Pannarale, L.1
-
68
-
-
84897882037
-
Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone
-
Kusumbe A.P., et al. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 2014, 507:323-328.
-
(2014)
Nature
, vol.507
, pp. 323-328
-
-
Kusumbe, A.P.1
-
69
-
-
84897830319
-
Endothelial Notch activity promotes angiogenesis and osteogenesis in bone
-
Ramasamy S.K., et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 2014, 507:376-380.
-
(2014)
Nature
, vol.507
, pp. 376-380
-
-
Ramasamy, S.K.1
-
70
-
-
0036166701
-
Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188
-
Maes C., et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech. Dev. 2002, 111:61-73.
-
(2002)
Mech. Dev.
, vol.111
, pp. 61-73
-
-
Maes, C.1
-
71
-
-
0036217067
-
Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A
-
Deckers M.M., et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 2002, 143:1545-1553.
-
(2002)
Endocrinology
, vol.143
, pp. 1545-1553
-
-
Deckers, M.M.1
-
72
-
-
84863040008
-
TGF-beta and BMP signaling in osteoblast differentiation and bone formation
-
Chen G., et al. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012, 8:272-288.
-
(2012)
Int. J. Biol. Sci.
, vol.8
, pp. 272-288
-
-
Chen, G.1
-
73
-
-
33646872488
-
The Noggin null mouse phenotype is strain dependent and haploinsufficiency leads to skeletal defects
-
Tylzanowski P., et al. The Noggin null mouse phenotype is strain dependent and haploinsufficiency leads to skeletal defects. Dev. Dyn. 2006, 235:1599-1607.
-
(2006)
Dev. Dyn.
, vol.235
, pp. 1599-1607
-
-
Tylzanowski, P.1
-
74
-
-
84859375357
-
Conditional inactivation of noggin in the postnatal skeleton causes osteopenia
-
Canalis E., et al. Conditional inactivation of noggin in the postnatal skeleton causes osteopenia. Endocrinology 2012, 153:1616-1626.
-
(2012)
Endocrinology
, vol.153
, pp. 1616-1626
-
-
Canalis, E.1
-
75
-
-
0037733130
-
Skeletal overexpression of noggin results in osteopenia and reduced bone formation
-
Devlin R.D., et al. Skeletal overexpression of noggin results in osteopenia and reduced bone formation. Endocrinology 2003, 144:1972-1978.
-
(2003)
Endocrinology
, vol.144
, pp. 1972-1978
-
-
Devlin, R.D.1
-
76
-
-
79959810834
-
Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells
-
Nagasawa T., et al. Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol. 2011, 32:315-320.
-
(2011)
Trends Immunol.
, vol.32
, pp. 315-320
-
-
Nagasawa, T.1
-
77
-
-
84856147560
-
Endothelial and perivascular cells maintain haematopoietic stem cells
-
Ding L., et al. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012, 481:457-462.
-
(2012)
Nature
, vol.481
, pp. 457-462
-
-
Ding, L.1
-
78
-
-
33845445939
-
Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
-
Sugiyama T., et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006, 25:977-988.
-
(2006)
Immunity
, vol.25
, pp. 977-988
-
-
Sugiyama, T.1
-
79
-
-
84871699237
-
Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche
-
Himburg H.A., et al. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep. 2012, 2:964-975.
-
(2012)
Cell Rep.
, vol.2
, pp. 964-975
-
-
Himburg, H.A.1
-
80
-
-
84869155711
-
Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance
-
Winkler I.G., et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat. Med. 2012, 18:1651-1657.
-
(2012)
Nat. Med.
, vol.18
, pp. 1651-1657
-
-
Winkler, I.G.1
-
81
-
-
84884157062
-
Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis
-
Poulos M.G., et al. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 2013, 4:1022-1034.
-
(2013)
Cell Rep.
, vol.4
, pp. 1022-1034
-
-
Poulos, M.G.1
-
82
-
-
84886947010
-
Arteriolar niches maintain haematopoietic stem cell quiescence
-
Kunisaki Y., et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013, 502:637-643.
-
(2013)
Nature
, vol.502
, pp. 637-643
-
-
Kunisaki, Y.1
-
83
-
-
0034597430
-
Vascular niche for adult hippocampal neurogenesis
-
Palmer T.D., et al. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 2000, 425:479-494.
-
(2000)
J. Comp. Neurol.
, vol.425
, pp. 479-494
-
-
Palmer, T.D.1
-
84
-
-
84872132572
-
A specialized microvascular domain in the mouse neural stem cell niche
-
Culver J.C., et al. A specialized microvascular domain in the mouse neural stem cell niche. PLoS ONE 2013, 8:e53546.
-
(2013)
PLoS ONE
, vol.8
, pp. e53546
-
-
Culver, J.C.1
-
85
-
-
73449115641
-
The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction
-
Engelhardt B., Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin. Immunopathol. 2009, 31:497-511.
-
(2009)
Semin. Immunopathol.
, vol.31
, pp. 497-511
-
-
Engelhardt, B.1
Sorokin, L.2
-
86
-
-
38149090292
-
The blood-brain barrier in health and chronic neurodegenerative disorders
-
Zlokovic B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008, 57:178-201.
-
(2008)
Neuron
, vol.57
, pp. 178-201
-
-
Zlokovic, B.V.1
-
87
-
-
77956241246
-
Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling
-
Kokovay E., et al. Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 2010, 7:163-173.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 163-173
-
-
Kokovay, E.1
-
88
-
-
50849102656
-
A specialized vascular niche for adult neural stem cells
-
Tavazoie M., et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008, 3:279-288.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 279-288
-
-
Tavazoie, M.1
-
89
-
-
2542626091
-
Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells
-
Shen Q., et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 2004, 304:1338-1340.
-
(2004)
Science
, vol.304
, pp. 1338-1340
-
-
Shen, Q.1
-
90
-
-
50249110037
-
Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1alpha-regulated VEGF signaling
-
Roitbak T., et al. Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1alpha-regulated VEGF signaling. J. Cereb. Blood Flow Metab. 2008, 28:1530-1542.
-
(2008)
J. Cereb. Blood Flow Metab.
, vol.28
, pp. 1530-1542
-
-
Roitbak, T.1
-
91
-
-
33845383924
-
Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study
-
Li Q., et al. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J. Neurosci. Res. 2006, 84:1656-1668.
-
(2006)
J. Neurosci. Res.
, vol.84
, pp. 1656-1668
-
-
Li, Q.1
-
92
-
-
64149125114
-
Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche
-
Schmidt N.O., et al. Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Res. 2009, 1268:24-37.
-
(2009)
Brain Res.
, vol.1268
, pp. 24-37
-
-
Schmidt, N.O.1
-
93
-
-
73649124594
-
VEGF is required for dendritogenesis of newly born olfactory bulb interneurons
-
Licht T., et al. VEGF is required for dendritogenesis of newly born olfactory bulb interneurons. Development 2010, 137:261-271.
-
(2010)
Development
, vol.137
, pp. 261-271
-
-
Licht, T.1
-
94
-
-
79953170934
-
Reversible modulations of neuronal plasticity by VEGF
-
Licht T., et al. Reversible modulations of neuronal plasticity by VEGF. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:5081-5086.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 5081-5086
-
-
Licht, T.1
-
95
-
-
79955408372
-
Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis
-
Calvo C.F., et al. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes Dev. 2011, 25:831-844.
-
(2011)
Genes Dev.
, vol.25
, pp. 831-844
-
-
Calvo, C.F.1
-
96
-
-
33344455016
-
Pigment epithelium-derived factor is a niche signal for neural stem cell renewal
-
Ramirez-Castillejo C., et al. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci. 2006, 9:331-339.
-
(2006)
Nat. Neurosci.
, vol.9
, pp. 331-339
-
-
Ramirez-Castillejo, C.1
-
97
-
-
70450258365
-
Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone
-
Andreu-Agullo C., et al. Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat. Neurosci. 2009, 12:1514-1523.
-
(2009)
Nat. Neurosci.
, vol.12
, pp. 1514-1523
-
-
Andreu-Agullo, C.1
-
98
-
-
84908508160
-
Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells
-
Ottone C., et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat. Cell Biol. 2014, 16:1045-1056.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 1045-1056
-
-
Ottone, C.1
-
99
-
-
84880254528
-
Netrin 1 contributes to vascular remodeling in the subventricular zone and promotes progenitor emigration after demyelination
-
Cayre M., et al. Netrin 1 contributes to vascular remodeling in the subventricular zone and promotes progenitor emigration after demyelination. Development 2013, 140:3107-3117.
-
(2013)
Development
, vol.140
, pp. 3107-3117
-
-
Cayre, M.1
-
100
-
-
84875804132
-
Vascular-derived TGF-beta increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain
-
Pineda J.R., et al. Vascular-derived TGF-beta increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol. Med. 2013, 5:548-562.
-
(2013)
EMBO Mol. Med.
, vol.5
, pp. 548-562
-
-
Pineda, J.R.1
|