메뉴 건너뛰기




Volumn 3, Issue , 2016, Pages

SIRT3 in Cardiac Physiology and Disease

Author keywords

heart failure; ischemia reperfusion injury; mitochondria; sirtuin 3

Indexed keywords


EID: 85021147470     PISSN: None     EISSN: 2297055X     Source Type: Journal    
DOI: 10.3389/fcvm.2016.00038     Document Type: Review
Times cited : (52)

References (95)
  • 1
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • 10521401
    • Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev (1999) 13(19):2570–80.10.1101/gad.13.19.257010521401
    • (1999) Genes Dev , vol.13 , Issue.19 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 2
    • 61649089277 scopus 로고    scopus 로고
    • Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli
    • 18723842
    • Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics (2009) 8(2):215–25.10.1074/mcp.M800187-MCP20018723842
    • (2009) Mol Cell Proteomics , vol.8 , Issue.2 , pp. 215-225
    • Zhang, J.1    Sprung, R.2    Pei, J.3    Tan, X.4    Kim, S.5    Zhu, H.6
  • 3
    • 2942564591 scopus 로고    scopus 로고
    • Sirtuins: Sir2-related NAD-dependent protein deacetylases
    • 15128440
    • North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol (2004) 5(5):224.10.1186/gb-2004-5-5-22415128440
    • (2004) Genome Biol , vol.5 , Issue.5 , pp. 224
    • North, B.J.1    Verdin, E.2
  • 4
    • 0037166274 scopus 로고    scopus 로고
    • Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels
    • 11884393
    • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Cohen H, Lin SS, et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem (2002) 277(21):18881–90.10.1074/jbc.M11177320011884393
    • (2002) J Biol Chem , vol.277 , Issue.21 , pp. 18881-18890
    • Anderson, R.M.1    Bitterman, K.J.2    Wood, J.G.3    Medvedik, O.4    Cohen, H.5    Lin, S.S.6
  • 5
    • 84881348520 scopus 로고    scopus 로고
    • Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure
    • 23931755
    • Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz SC, Jr Suthammarak W, Gong G, et al. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab (2013) 18(2):239–50.10.1016/j.cmet.2013.07.00223931755
    • (2013) Cell Metab , vol.18 , Issue.2 , pp. 239-250
    • Karamanlidis, G.1    Lee, C.F.2    Garcia-Menendez, L.3    Kolwicz, S.C.4    Suthammarak, W.5    Gong, G.6
  • 6
    • 0034703217 scopus 로고    scopus 로고
    • Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • 11000115
    • Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science (2000) 289(5487):2126–8.10.1126/science.289.5487.212611000115
    • (2000) Science , vol.289 , Issue.5487 , pp. 2126-2128
    • Lin, S.J.1    Defossez, P.A.2    Guarente, L.3
  • 7
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
    • 17923681
    • Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol (2007) 27(24):8807–14.10.1128/MCB.01636-0717923681
    • (2007) Mol Cell Biol , vol.27 , Issue.24 , pp. 8807-8814
    • Lombard, D.B.1    Alt, F.W.2    Cheng, H.L.3    Bunkenborg, J.4    Streeper, R.S.5    Mostoslavsky, R.6
  • 8
    • 84974806885 scopus 로고    scopus 로고
    • Mitochondrial sirtuins in the heart
    • Bugger H, Witt CN, Bode C. Mitochondrial sirtuins in the heart. Heart Fail Rev (2016) 21(5):519.10.1007/s10741-016-9570-7
    • (2016) Heart Fail Rev , vol.21 , Issue.5 , pp. 519
    • Bugger, H.1    Witt, C.N.2    Bode, C.3
  • 9
    • 33746992118 scopus 로고    scopus 로고
    • Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
    • 16916647
    • Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell (2006) 23(4):607–18.10.1016/j.molcel.2006.06.02616916647
    • (2006) Mol Cell , vol.23 , Issue.4 , pp. 607-618
    • Kim, S.C.1    Sprung, R.2    Chen, Y.3    Xu, Y.4    Ball, H.5    Pei, J.6
  • 10
    • 84872276165 scopus 로고    scopus 로고
    • Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
    • 23201123
    • Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell (2013) 49(1):186–99.10.1016/j.molcel.2012.10.02423201123
    • (2013) Mol Cell , vol.49 , Issue.1 , pp. 186-199
    • Hebert, A.S.1    Dittenhafer-Reed, K.E.2    Yu, W.3    Bailey, D.J.4    Selen, E.S.5    Boersma, M.D.6
  • 11
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • 16790548
    • Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A (2006) 103(27):10230–5.10.1073/pnas.060439210316790548
    • (2006) Proc Natl Acad Sci U S A , vol.103 , Issue.27 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 12
    • 84933575770 scopus 로고    scopus 로고
    • Lysine acetylation activates mitochondrial aconitase in the heart
    • 26061789
    • Fernandes J, Weddle A, Kinter CS, Humphries KM, Mather T, Szweda LI, et al. Lysine acetylation activates mitochondrial aconitase in the heart. Biochemistry (2015) 54(25):4008–18.10.1021/acs.biochem.5b0037526061789
    • (2015) Biochemistry , vol.54 , Issue.25 , pp. 4008-4018
    • Fernandes, J.1    Weddle, A.2    Kinter, C.S.3    Humphries, K.M.4    Mather, T.5    Szweda, L.I.6
  • 13
    • 79952266729 scopus 로고    scopus 로고
    • Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
    • 21212461
    • Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) (2010) 2(12):914–23.10.18632/aging.10025221212461
    • (2010) Aging (Albany NY) , vol.2 , Issue.12 , pp. 914-923
    • Hafner, A.V.1    Dai, J.2    Gomes, A.P.3    Xiao, C.Y.4    Palmeira, C.M.5    Rosenzweig, A.6
  • 14
    • 50149103440 scopus 로고    scopus 로고
    • Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
    • 18680753
    • Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol (2008) 382(3):790–801.10.1016/j.jmb.2008.07.04818680753
    • (2008) J Mol Biol , vol.382 , Issue.3 , pp. 790-801
    • Schlicker, C.1    Gertz, M.2    Papatheodorou, P.3    Kachholz, B.4    Becker, C.F.5    Steegborn, C.6
  • 15
    • 53549105529 scopus 로고    scopus 로고
    • SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
    • 18710944
    • Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol (2008) 28(20):6384–401.10.1128/MCB.00426-0818710944
    • (2008) Mol Cell Biol , vol.28 , Issue.20 , pp. 6384-6401
    • Sundaresan, N.R.1    Samant, S.A.2    Pillai, V.B.3    Rajamohan, S.B.4    Gupta, M.P.5
  • 16
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • 20203611
    • Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature (2010) 464(7285):121–5.10.1038/nature0877820203611
    • (2010) Nature , vol.464 , Issue.7285 , pp. 121-125
    • Hirschey, M.D.1    Shimazu, T.2    Goetzman, E.3    Jing, E.4    Schwer, B.5    Lombard, D.B.6
  • 17
    • 70349208608 scopus 로고    scopus 로고
    • Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
    • 19652361
    • Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest (2009) 119(9):2758–71.10.1172/JCI3916219652361
    • (2009) J Clin Invest , vol.119 , Issue.9 , pp. 2758-2771
    • Sundaresan, N.R.1    Gupta, M.2    Kim, G.3    Rajamohan, S.B.4    Isbatan, A.5    Gupta, M.P.6
  • 18
    • 84878441741 scopus 로고    scopus 로고
    • ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4
    • 23396452
    • Mori J, Alrob OA, Wagg CS, Harris RA, Lopaschuk GD, Oudit GY. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am J Physiol Heart Circ Physiol (2013) 304(8):H1103–13.10.1152/ajpheart.00636.201223396452
    • (2013) Am J Physiol Heart Circ Physiol , vol.304 , Issue.8 , pp. H1103-H1113
    • Mori, J.1    Alrob, O.A.2    Wagg, C.S.3    Harris, R.A.4    Lopaschuk, G.D.5    Oudit, G.Y.6
  • 19
    • 75349111140 scopus 로고    scopus 로고
    • Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
    • 20000467
    • Cimen H, Han MJ, Yang Y, Tong Q, Koc H, Koc EC. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry (2010) 49(2):304–11.10.1021/bi901627u20000467
    • (2010) Biochemistry , vol.49 , Issue.2 , pp. 304-311
    • Cimen, H.1    Han, M.J.2    Yang, Y.3    Tong, Q.4    Koc, H.5    Koc, E.C.6
  • 20
    • 80051716282 scopus 로고    scopus 로고
    • Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
    • 21858060
    • Finley LW, Haas W, Desquiret-Dumas V, Wallace DC, Procaccio V, Gygi SP, et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One (2011) 6(8):e23295.10.1371/journal.pone.002329521858060
    • (2011) PLoS One , vol.6 , Issue.8 , pp. e23295
    • Finley, L.W.1    Haas, W.2    Desquiret-Dumas, V.3    Wallace, D.C.4    Procaccio, V.5    Gygi, S.P.6
  • 21
    • 84888329025 scopus 로고    scopus 로고
    • Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
    • 24121500
    • Bharathi SS, Zhang Y, Mohsen AW, Uppala R, Balasubramani M, Schreiber E, et al. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J Biol Chem (2013) 288(47):33837–47.10.1074/jbc.M113.51035424121500
    • (2013) J Biol Chem , vol.288 , Issue.47 , pp. 33837-33847
    • Bharathi, S.S.1    Zhang, Y.2    Mohsen, A.W.3    Uppala, R.4    Balasubramani, M.5    Schreiber, E.6
  • 22
    • 84953389630 scopus 로고    scopus 로고
    • Preserved recovery of cardiac function following ischemia-reperfusion in mice lacking SIRT3
    • 26524632
    • Koentges C, Pfeil K, Meyer-Steenbuck M, Lother A, Hoffmann MM, Odening KE, et al. Preserved recovery of cardiac function following ischemia-reperfusion in mice lacking SIRT3. Can J Physiol Pharmacol (2016) 94(1):72–80.10.1139/cjpp-2015-015226524632
    • (2016) Can J Physiol Pharmacol , vol.94 , Issue.1 , pp. 72-80
    • Koentges, C.1    Pfeil, K.2    Meyer-Steenbuck, M.3    Lother, A.4    Hoffmann, M.M.5    Odening, K.E.6
  • 23
    • 84929088095 scopus 로고    scopus 로고
    • SIRT3 deficiency impairs mitochondrial and contractile function in the heart
    • 25962702
    • Koentges C, Pfeil K, Schnick T, Wiese S, Dahlbock R, Cimolai MC, et al. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol (2015) 110(4):36.10.1007/s00395-015-0493-625962702
    • (2015) Basic Res Cardiol , vol.110 , Issue.4 , pp. 36
    • Koentges, C.1    Pfeil, K.2    Schnick, T.3    Wiese, S.4    Dahlbock, R.5    Cimolai, M.C.6
  • 24
    • 84907339466 scopus 로고    scopus 로고
    • Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling
    • 24966184
    • Alrob OA, Sankaralingam S, Ma C, Wagg CS, Fillmore N, Jaswal JS, et al. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovasc Res (2014) 103(4):485–97.10.1093/cvr/cvu15624966184
    • (2014) Cardiovasc Res , vol.103 , Issue.4 , pp. 485-497
    • Alrob, O.A.1    Sankaralingam, S.2    Ma, C.3    Wagg, C.S.4    Fillmore, N.5    Jaswal, J.S.6
  • 25
    • 84929121391 scopus 로고    scopus 로고
    • Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD
    • 25748450
    • Chen T, Liu J, Li N, Wang S, Liu H, Li J, et al. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One (2015) 10(3):e0118909.10.1371/journal.pone.011890925748450
    • (2015) PLoS One , vol.10 , Issue.3 , pp. e0118909
    • Chen, T.1    Liu, J.2    Li, N.3    Wang, S.4    Liu, H.5    Li, J.6
  • 26
    • 84902687763 scopus 로고    scopus 로고
    • SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts
    • 24748594
    • Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol (2014) 306(12):H1602–9.10.1152/ajpheart.00027.201424748594
    • (2014) Am J Physiol Heart Circ Physiol , vol.306 , Issue.12 , pp. H1602-H1609
    • Porter, G.A.1    Urciuoli, W.R.2    Brookes, P.S.3    Nadtochiy, S.M.4
  • 27
    • 84928403220 scopus 로고    scopus 로고
    • Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes
    • 25759382
    • Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, et al. Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem (2015) 290(17):10981–93.10.1074/jbc.M114.60796025759382
    • (2015) J Biol Chem , vol.290 , Issue.17 , pp. 10981-10993
    • Cheung, K.G.1    Cole, L.K.2    Xiang, B.3    Chen, K.4    Ma, X.5    Myal, Y.6
  • 28
    • 84929011194 scopus 로고    scopus 로고
    • High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss
    • 25782072
    • Zeng H, Vaka VR, He X, Booz GW, Chen JX. High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss. J Cell Mol Med (2015) 19(8):1847–56.10.1111/jcmm.1255625782072
    • (2015) J Cell Mol Med , vol.19 , Issue.8 , pp. 1847-1856
    • Zeng, H.1    Vaka, V.R.2    He, X.3    Booz, G.W.4    Chen, J.X.5
  • 29
    • 77449120223 scopus 로고    scopus 로고
    • Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
    • 19940131
    • Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem (2010) 285(5):3133–44.10.1074/jbc.M109.07727119940131
    • (2010) J Biol Chem , vol.285 , Issue.5 , pp. 3133-3144
    • Pillai, V.B.1    Sundaresan, N.R.2    Kim, G.3    Gupta, M.4    Rajamohan, S.B.5    Pillai, J.B.6
  • 30
    • 21244492310 scopus 로고    scopus 로고
    • Myocardial substrate metabolism in the normal and failing heart
    • 15987803
    • Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev (2005) 85(3):1093–129.10.1152/physrev.00006.200415987803
    • (2005) Physiol Rev , vol.85 , Issue.3 , pp. 1093-1129
    • Stanley, W.C.1    Recchia, F.A.2    Lopaschuk, G.D.3
  • 31
    • 33947239659 scopus 로고    scopus 로고
    • The failing heart – an engine out of fuel
    • Neubauer S. The failing heart – an engine out of fuel. N Engl J Med (2007) 356(11):1140–51.10.1056/NEJMra063052
    • (2007) N Engl J Med , vol.356 , Issue.11 , pp. 1140-1151
    • Neubauer, S.1
  • 32
    • 34547130863 scopus 로고    scopus 로고
    • The role of mitochondria in protection of the heart by preconditioning
    • 17631856
    • Halestrap AP, Clarke SJ, Khaliulin I. The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta (2007) 1767(8):1007–31.10.1016/j.bbabio.2007.05.00817631856
    • (2007) Biochim Biophys Acta , vol.1767 , Issue.8 , pp. 1007-1031
    • Halestrap, A.P.1    Clarke, S.J.2    Khaliulin, I.3
  • 33
    • 1142273368 scopus 로고    scopus 로고
    • Mitochondrial permeability transition pore opening during myocardial reperfusion – a target for cardioprotection
    • Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion – a target for cardioprotection. Cardiovasc Res (2004) 61(3):372–85.10.1016/S0008-6363(03)00533-9
    • (2004) Cardiovasc Res , vol.61 , Issue.3 , pp. 372-385
    • Halestrap, A.P.1    Clarke, S.J.2    Javadov, S.A.3
  • 34
    • 84892880554 scopus 로고    scopus 로고
    • The breathing heart – mitochondrial respiratory chain dysfunction in cardiac disease
    • Schwarz K, Siddiqi N, Singh S, Neil CJ, Dawson DK, Frenneaux MP. The breathing heart – mitochondrial respiratory chain dysfunction in cardiac disease. Int J Cardiol (2014) 171(2):134–43.10.1016/j.ijcard.2013.12.014
    • (2014) Int J Cardiol , vol.171 , Issue.2 , pp. 134-143
    • Schwarz, K.1    Siddiqi, N.2    Singh, S.3    Neil, C.J.4    Dawson, D.K.5    Frenneaux, M.P.6
  • 35
    • 84872567025 scopus 로고    scopus 로고
    • Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction
    • 23115323
    • Stride N, Larsen S, Hey-Mogensen M, Sander K, Lund JT, Gustafsson F, et al. Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction. Eur J Heart Fail (2013) 15(2):150–7.10.1093/eurjhf/hfs17223115323
    • (2013) Eur J Heart Fail , vol.15 , Issue.2 , pp. 150-157
    • Stride, N.1    Larsen, S.2    Hey-Mogensen, M.3    Sander, K.4    Lund, J.T.5    Gustafsson, F.6
  • 37
    • 84895089601 scopus 로고    scopus 로고
    • Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model
    • 24505357
    • Zeng L, Yang Y, Hu Y, Sun Y, Du Z, Xie Z, et al. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model. PLoS One (2014) 9(2):e88019.10.1371/journal.pone.008801924505357
    • (2014) PLoS One , vol.9 , Issue.2 , pp. e88019
    • Zeng, L.1    Yang, Y.2    Hu, Y.3    Sun, Y.4    Du, Z.5    Xie, Z.6
  • 38
    • 84979239792 scopus 로고    scopus 로고
    • Mitochondria and oxidative stress in heart aging
    • 27449187
    • Martin-Fernandez B, Gredilla R. Mitochondria and oxidative stress in heart aging. Age (Dordr) (2016).10.1007/s11357-016-9933-y27449187
    • (2016) Age (Dordr)
    • Martin-Fernandez, B.1    Gredilla, R.2
  • 39
    • 84928162648 scopus 로고    scopus 로고
    • Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3
    • 25871545
    • Pillai VB, Samant S, Sundaresan NR, Raghuraman H, Kim G, Bonner MY, et al. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nat Commun (2015) 6:6656.10.1038/ncomms765625871545
    • (2015) Nat Commun , vol.6 , pp. 6656
    • Pillai, V.B.1    Samant, S.2    Sundaresan, N.R.3    Raghuraman, H.4    Kim, G.5    Bonner, M.Y.6
  • 40
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • 18794531
    • Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A (2008) 105(38):14447–52.10.1073/pnas.080379010518794531
    • (2008) Proc Natl Acad Sci U S A , vol.105 , Issue.38 , pp. 14447-14452
    • Ahn, B.H.1    Kim, H.S.2    Song, S.3    Lee, I.H.4    Liu, J.5    Vassilopoulos, A.6
  • 41
    • 84949626501 scopus 로고    scopus 로고
    • Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity
    • 26577410
    • Liang L, Li Q, Huang L, Li D, Li X. Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity. Biochem Biophys Res Commun (2015) 468(4):807–12.10.1016/j.bbrc.2015.11.03626577410
    • (2015) Biochem Biophys Res Commun , vol.468 , Issue.4 , pp. 807-812
    • Liang, L.1    Li, Q.2    Huang, L.3    Li, D.4    Li, X.5
  • 42
    • 84455180597 scopus 로고    scopus 로고
    • Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation
    • 21937766
    • Sahar S, Nin V, Barbosa MT, Chini EN, Sassone-Corsi P. Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging (Albany NY) (2011) 3(8):794–802.10.18632/aging.10036821937766
    • (2011) Aging (Albany NY) , vol.3 , Issue.8 , pp. 794-802
    • Sahar, S.1    Nin, V.2    Barbosa, M.T.3    Chini, E.N.4    Sassone-Corsi, P.5
  • 43
    • 78650248160 scopus 로고    scopus 로고
    • Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
    • 21172655
    • Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell (2010) 40(6):893–904.10.1016/j.molcel.2010.12.01321172655
    • (2010) Mol Cell , vol.40 , Issue.6 , pp. 893-904
    • Tao, R.1    Coleman, M.C.2    Pennington, J.D.3    Ozden, O.4    Park, S.H.5    Jiang, H.6
  • 44
    • 78649521247 scopus 로고    scopus 로고
    • Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
    • 21109198
    • Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab (2010) 12(6):662–7.10.1016/j.cmet.2010.11.01521109198
    • (2010) Cell Metab , vol.12 , Issue.6 , pp. 662-667
    • Qiu, X.1    Brown, K.2    Hirschey, M.D.3    Verdin, E.4    Chen, D.5
  • 45
    • 80053064491 scopus 로고    scopus 로고
    • The impact of acetylation and deacetylation on the p53 pathway
    • 21748595
    • Brooks CL, Gu W. The impact of acetylation and deacetylation on the p53 pathway. Protein Cell (2011) 2(6):456–62.10.1007/s13238-011-1063-921748595
    • (2011) Protein Cell , vol.2 , Issue.6 , pp. 456-462
    • Brooks, C.L.1    Gu, W.2
  • 46
    • 77956173286 scopus 로고    scopus 로고
    • SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
    • 20647045
    • Bao J, Scott I, Lu Z, Pang L, Dimond CC, Gius D, et al. SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic Biol Med (2010) 49(7):1230–7.10.1016/j.freeradbiomed.2010.07.00920647045
    • (2010) Free Radic Biol Med , vol.49 , Issue.7 , pp. 1230-1237
    • Bao, J.1    Scott, I.2    Lu, Z.3    Pang, L.4    Dimond, C.C.5    Gius, D.6
  • 47
    • 84979033838 scopus 로고    scopus 로고
    • Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice
    • 26873966
    • Pillai VB, Bindu S, Sharp W, Fang YH, Kim G, Gupta M, et al. Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice. Am J Physiol Heart Circ Physiol (2016) 310(8):H962–72.10.1152/ajpheart.00832.201526873966
    • (2016) Am J Physiol Heart Circ Physiol , vol.310 , Issue.8 , pp. H962-H972
    • Pillai, V.B.1    Bindu, S.2    Sharp, W.3    Fang, Y.H.4    Kim, G.5    Gupta, M.6
  • 48
    • 84857136130 scopus 로고    scopus 로고
    • Non-histone lysine acetylated proteins in heart failure
    • 22155497
    • Grillon JM, Johnson KR, Kotlo K, Danziger RS. Non-histone lysine acetylated proteins in heart failure. Biochim Biophys Acta (2012) 1822(4):607–14.10.1016/j.bbadis.2011.11.01622155497
    • (2012) Biochim Biophys Acta , vol.1822 , Issue.4 , pp. 607-614
    • Grillon, J.M.1    Johnson, K.R.2    Kotlo, K.3    Danziger, R.S.4
  • 49
    • 84861415338 scopus 로고    scopus 로고
    • Direct renin inhibition exerts an anti-hypertrophic effect associated with improved mitochondrial function in post-infarction heart failure in diabetic rats
    • 22613984
    • Parodi-Rullan R, Barreto-Torres G, Ruiz L, Casasnovas J, Javadov S. Direct renin inhibition exerts an anti-hypertrophic effect associated with improved mitochondrial function in post-infarction heart failure in diabetic rats. Cell Physiol Biochem (2012) 29(5–6):841–50.10.1159/00017852622613984
    • (2012) Cell Physiol Biochem , vol.29 , Issue.5–6 , pp. 841-850
    • Parodi-Rullan, R.1    Barreto-Torres, G.2    Ruiz, L.3    Casasnovas, J.4    Javadov, S.5
  • 50
    • 84894047561 scopus 로고    scopus 로고
    • Apelin gene therapy increases myocardial vascular density and ameliorates diabetic cardiomyopathy via upregulation of sirtuin 3
    • 24363305
    • Zeng H, He X, Hou X, Li L, Chen JX. Apelin gene therapy increases myocardial vascular density and ameliorates diabetic cardiomyopathy via upregulation of sirtuin 3. Am J Physiol Heart Circ Physiol (2014) 306(4):H585–97.10.1152/ajpheart.00821.201324363305
    • (2014) Am J Physiol Heart Circ Physiol , vol.306 , Issue.4 , pp. H585-H597
    • Zeng, H.1    He, X.2    Hou, X.3    Li, L.4    Chen, J.X.5
  • 51
    • 84921536410 scopus 로고    scopus 로고
    • Sirt3 is essential for apelin-induced angiogenesis in post-myocardial infarction of diabetes
    • 25311234
    • Hou X, Zeng H, He X, Chen JX. Sirt3 is essential for apelin-induced angiogenesis in post-myocardial infarction of diabetes. J Cell Mol Med (2015) 19(1):53–61.10.1111/jcmm.1245325311234
    • (2015) J Cell Mol Med , vol.19 , Issue.1 , pp. 53-61
    • Hou, X.1    Zeng, H.2    He, X.3    Chen, J.X.4
  • 52
    • 84948129560 scopus 로고    scopus 로고
    • Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart
    • 26101264
    • Vazquez EJ, Berthiaume JM, Kamath V, Achike O, Buchanan E, Montano MM, et al. Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart. Cardiovasc Res (2015) 107(4):453–65.10.1093/cvr/cvv18326101264
    • (2015) Cardiovasc Res , vol.107 , Issue.4 , pp. 453-465
    • Vazquez, E.J.1    Berthiaume, J.M.2    Kamath, V.3    Achike, O.4    Buchanan, E.5    Montano, M.M.6
  • 53
    • 84987851027 scopus 로고    scopus 로고
    • Garlic activates SIRT-3 to prevent cardiac oxidative stress and mitochondrial dysfunction in diabetes
    • 27590611
    • Sultana MR, Bagul PK, Katare PB, Anwar S, Padiya R, Banerjee SK. Garlic activates SIRT-3 to prevent cardiac oxidative stress and mitochondrial dysfunction in diabetes. Life Sci (2016) 164:42–51.10.1016/j.lfs.2016.08.03027590611
    • (2016) Life Sci , vol.164 , pp. 42-51
    • Sultana, M.R.1    Bagul, P.K.2    Katare, P.B.3    Anwar, S.4    Padiya, R.5    Banerjee, S.K.6
  • 54
    • 77955347446 scopus 로고    scopus 로고
    • Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis
    • 20661474
    • Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, et al. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One (2010) 5(7):e11707.10.1371/journal.pone.001170720661474
    • (2010) PLoS One , vol.5 , Issue.7 , pp. e11707
    • Kong, X.1    Wang, R.2    Xue, Y.3    Liu, X.4    Zhang, H.5    Chen, Y.6
  • 55
    • 84945494393 scopus 로고    scopus 로고
    • Dihydromyricetin improves skeletal muscle insulin sensitivity by inducing autophagy via the AMPK-PGC-1alpha-Sirt3 signaling pathway
    • Shi L, Zhang T, Zhou Y, Zeng X, Ran L, Zhang Q, et al. Dihydromyricetin improves skeletal muscle insulin sensitivity by inducing autophagy via the AMPK-PGC-1alpha-Sirt3 signaling pathway. Endocrine (2015) 50(2):378–89.10.1007/s12020-015-0599-5
    • (2015) Endocrine , vol.50 , Issue.2 , pp. 378-389
    • Shi, L.1    Zhang, T.2    Zhou, Y.3    Zeng, X.4    Ran, L.5    Zhang, Q.6
  • 56
    • 77956572071 scopus 로고    scopus 로고
    • Mitochondria in the diabetic heart
    • 20639213
    • Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res (2010) 88(2):229–40.10.1093/cvr/cvq23920639213
    • (2010) Cardiovasc Res , vol.88 , Issue.2 , pp. 229-240
    • Bugger, H.1    Abel, E.D.2
  • 57
    • 84940742362 scopus 로고    scopus 로고
    • Exercise for the heart: signaling pathways
    • 26318584
    • Tao L, Bei Y, Zhang H, Xiao J, Li X. Exercise for the heart: signaling pathways. Oncotarget (2015) 6(25):20773–84.10.18632/oncotarget.477026318584
    • (2015) Oncotarget , vol.6 , Issue.25 , pp. 20773-20784
    • Tao, L.1    Bei, Y.2    Zhang, H.3    Xiao, J.4    Li, X.5
  • 58
    • 84961219278 scopus 로고    scopus 로고
    • SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3beta
    • Sundaresan NR, Bindu S, Pillai VB, Samant S, Pan Y, Huang JY, et al. SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3beta. Mol Cell Biol (2015) 36(5):678–92.10.1128/MCB.00586-15
    • (2015) Mol Cell Biol , vol.36 , Issue.5 , pp. 678-692
    • Sundaresan, N.R.1    Bindu, S.2    Pillai, V.B.3    Samant, S.4    Pan, Y.5    Huang, J.Y.6
  • 59
    • 35148896262 scopus 로고    scopus 로고
    • Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors
    • 17919258
    • Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev (2007) 25(3):235–60.10.1111/j.1527-3466.2007.00018.x17919258
    • (2007) Cardiovasc Drug Rev , vol.25 , Issue.3 , pp. 235-260
    • Pacher, P.1    Szabo, C.2
  • 60
    • 34548627517 scopus 로고    scopus 로고
    • Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
    • 17889652
    • Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell (2007) 130(6):1095–107.10.1016/j.cell.2007.07.03517889652
    • (2007) Cell , vol.130 , Issue.6 , pp. 1095-1107
    • Yang, H.1    Yang, T.2    Baur, J.A.3    Perez, E.4    Matsui, T.5    Carmona, J.J.6
  • 61
    • 34548746306 scopus 로고    scopus 로고
    • Myocardial reperfusion injury
    • Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med (2007) 357(11):1121–35.10.1056/NEJMra071667
    • (2007) N Engl J Med , vol.357 , Issue.11 , pp. 1121-1135
    • Yellon, D.M.1    Hausenloy, D.J.2
  • 62
    • 84873848690 scopus 로고    scopus 로고
    • Myocardial ischemia-reperfusion injury: a neglected therapeutic target
    • 23281415
    • Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest (2013) 123(1):92–100.10.1172/JCI6287423281415
    • (2013) J Clin Invest , vol.123 , Issue.1 , pp. 92-100
    • Hausenloy, D.J.1    Yellon, D.M.2
  • 63
    • 0035951823 scopus 로고    scopus 로고
    • Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart
    • 11073947
    • Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem (2001) 276(4):2571–5.10.1074/jbc.M00682520011073947
    • (2001) J Biol Chem , vol.276 , Issue.4 , pp. 2571-2575
    • Di Lisa, F.1    Menabo, R.2    Canton, M.3    Barile, M.4    Bernardi, P.5
  • 64
    • 84878014406 scopus 로고    scopus 로고
    • Age-related differences in cardiac ischemia-reperfusion injury: effects of estrogen deficiency
    • 23525672
    • Korzick DH, Lancaster TS. Age-related differences in cardiac ischemia-reperfusion injury: effects of estrogen deficiency. Pflugers Arch (2013) 465(5):669–85.10.1007/s00424-013-1255-723525672
    • (2013) Pflugers Arch , vol.465 , Issue.5 , pp. 669-685
    • Korzick, D.H.1    Lancaster, T.S.2
  • 65
    • 0028725260 scopus 로고
    • Aging increases ischemia-reperfusion injury in the isolated, buffer-perfused heart
    • 7798799
    • Lesnefsky EJ, Gallo DS, Ye J, Whittingham TS, Lust WD. Aging increases ischemia-reperfusion injury in the isolated, buffer-perfused heart. J Lab Clin Med (1994) 124(6):843–51.7798799
    • (1994) J Lab Clin Med , vol.124 , Issue.6 , pp. 843-851
    • Lesnefsky, E.J.1    Gallo, D.S.2    Ye, J.3    Whittingham, T.S.4    Lust, W.D.5
  • 66
    • 0033572337 scopus 로고    scopus 로고
    • Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria
    • 10600182
    • Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys (1999) 372(2):399–407.10.1006/abbi.1999.150810600182
    • (1999) Arch Biochem Biophys , vol.372 , Issue.2 , pp. 399-407
    • Fannin, S.W.1    Lesnefsky, E.J.2    Slabe, T.J.3    Hassan, M.O.4    Hoppel, C.L.5
  • 67
    • 14644417749 scopus 로고    scopus 로고
    • Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging
    • 15642720
    • Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C. Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J (2005) 19(3):419–21.10.1096/fj.04-2622fje15642720
    • (2005) FASEB J , vol.19 , Issue.3 , pp. 419-421
    • Judge, S.1    Jang, Y.M.2    Smith, A.3    Hagen, T.4    Leeuwenburgh, C.5
  • 69
    • 0017751995 scopus 로고
    • Ultrastructure of the aging myocardium: a morphometric approach
    • 930852
    • Sachs HG, Colgan JA, Lazarus ML. Ultrastructure of the aging myocardium: a morphometric approach. Am J Anat (1977) 150(1):63–71.10.1002/aja.1001500105930852
    • (1977) Am J Anat , vol.150 , Issue.1 , pp. 63-71
    • Sachs, H.G.1    Colgan, J.A.2    Lazarus, M.L.3
  • 70
    • 0028268734 scopus 로고
    • Mitochondrial oxidative damage, hydrogen peroxide release, and aging
    • 8026805
    • Sohal RS, Dubey A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radic Biol Med (1994) 16(5):621–6.10.1016/0891-5849(94)90062-08026805
    • (1994) Free Radic Biol Med , vol.16 , Issue.5 , pp. 621-626
    • Sohal, R.S.1    Dubey, A.2
  • 71
    • 0028342438 scopus 로고
    • Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse
    • 7934203
    • Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev (1994) 74(1–2):121–33.10.1016/0047-6374(94)90104-X7934203
    • (1994) Mech Ageing Dev , vol.74 , Issue.1–2 , pp. 121-133
    • Sohal, R.S.1    Ku, H.H.2    Agarwal, S.3    Forster, M.J.4    Lal, H.5
  • 72
    • 84911051649 scopus 로고    scopus 로고
    • Decreased SIRT3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress
    • 25210848
    • Wang XQ, Shao Y, Ma CY, Chen W, Sun L, Liu W, et al. Decreased SIRT3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress. J Cell Mol Med (2014) 18(11):2298–310.10.1111/jcmm.1239525210848
    • (2014) J Cell Mol Med , vol.18 , Issue.11 , pp. 2298-2310
    • Wang, X.Q.1    Shao, Y.2    Ma, C.Y.3    Chen, W.4    Sun, L.5    Liu, W.6
  • 73
    • 84939837185 scopus 로고    scopus 로고
    • Expression of SIRT1 and SIRT3 varies according to age in mice
    • 25806122
    • Kwon Y, Kim J, Lee CY, Kim H. Expression of SIRT1 and SIRT3 varies according to age in mice. Anat Cell Biol (2015) 48(1):54–61.10.5115/acb.2015.48.1.5425806122
    • (2015) Anat Cell Biol , vol.48 , Issue.1 , pp. 54-61
    • Kwon, Y.1    Kim, J.2    Lee, C.Y.3    Kim, H.4
  • 74
    • 84893442805 scopus 로고    scopus 로고
    • Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
    • 24360282
    • Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell (2013) 155(7):1624–38.10.1016/j.cell.2013.11.03724360282
    • (2013) Cell , vol.155 , Issue.7 , pp. 1624-1638
    • Gomes, A.P.1    Price, N.L.2    Ling, A.J.3    Moslehi, J.J.4    Montgomery, M.K.5    Rajman, L.6
  • 75
    • 84880517634 scopus 로고    scopus 로고
    • The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
    • 23870130
    • Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Canto C, et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell (2013) 154(2):430–41.10.1016/j.cell.2013.06.01623870130
    • (2013) Cell , vol.154 , Issue.2 , pp. 430-441
    • Mouchiroud, L.1    Houtkooper, R.H.2    Moullan, N.3    Katsyuba, E.4    Ryu, D.5    Canto, C.6
  • 76
    • 80053920774 scopus 로고    scopus 로고
    • Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
    • 21982712
    • Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab (2011) 14(4):528–36.10.1016/j.cmet.2011.08.01421982712
    • (2011) Cell Metab , vol.14 , Issue.4 , pp. 528-536
    • Yoshino, J.1    Mills, K.F.2    Yoon, M.J.3    Imai, S.4
  • 77
    • 84919433898 scopus 로고    scopus 로고
    • Molecular targets of Honokiol: a promising phytochemical for effective cancer management
    • 27102704
    • Averett C, Arora S, Zubair H, Singh S, Bhardwaj A, Singh AP. Molecular targets of Honokiol: a promising phytochemical for effective cancer management. Enzymes (2014) 36:175–93.10.1016/B978-0-12-802215-3.00009-427102704
    • (2014) Enzymes , vol.36 , pp. 175-193
    • Averett, C.1    Arora, S.2    Zubair, H.3    Singh, S.4    Bhardwaj, A.5    Singh, A.P.6
  • 78
    • 84877626764 scopus 로고    scopus 로고
    • Honokiol analogs: a novel class of anticancer agents targeting cell signaling pathways and other bioactivities
    • 23651094
    • Kumar A, Kumar Singh U, Chaudhary A. Honokiol analogs: a novel class of anticancer agents targeting cell signaling pathways and other bioactivities. Future Med Chem (2013) 5(7):809–29.10.4155/fmc.13.3223651094
    • (2013) Future Med Chem , vol.5 , Issue.7 , pp. 809-829
    • Kumar, A.1    Kumar Singh, U.2    Chaudhary, A.3
  • 79
    • 84937532657 scopus 로고    scopus 로고
    • Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases
    • 25451966
    • Zordoky BN, Robertson IM, Dyck JR. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta (2015) 1852(6):1155–77.10.1016/j.bbadis.2014.10.01625451966
    • (2015) Biochim Biophys Acta , vol.1852 , Issue.6 , pp. 1155-1177
    • Zordoky, B.N.1    Robertson, I.M.2    Dyck, J.R.3
  • 80
    • 85050577528 scopus 로고    scopus 로고
    • Anti-tumor effects and cellular mechanisms of resveratrol
    • 25788047
    • Han G, Xia J, Gao J, Inagaki Y, Tang W, Kokudo N. Anti-tumor effects and cellular mechanisms of resveratrol. Drug Discov Ther (2015) 9(1):1–12.10.5582/ddt.2015.0100725788047
    • (2015) Drug Discov Ther , vol.9 , Issue.1 , pp. 1-12
    • Han, G.1    Xia, J.2    Gao, J.3    Inagaki, Y.4    Tang, W.5    Kokudo, N.6
  • 81
    • 84928635872 scopus 로고    scopus 로고
    • Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-beta/Smad3 pathway
    • Chen T, Li J, Liu J, Li N, Wang S, Liu H, et al. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-beta/Smad3 pathway. Am J Physiol Heart Circ Physiol (2015) 308(5):H424–34.10.1152/ajpheart.00454.2014
    • (2015) Am J Physiol Heart Circ Physiol , vol.308 , Issue.5 , pp. H424-H434
    • Chen, T.1    Li, J.2    Liu, J.3    Li, N.4    Wang, S.5    Liu, H.6
  • 82
    • 84981156632 scopus 로고    scopus 로고
    • Normalization of NAD+ redox balance as a therapy for heart failure
    • 27489254
    • Lee CF, Chavez JD, Garcia-Menendez L, Choi Y, Roe ND, Chiao YA, et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation (2016) 134(12):883–94.10.1161/CIRCULATIONAHA.116.02249527489254
    • (2016) Circulation , vol.134 , Issue.12 , pp. 883-894
    • Lee, C.F.1    Chavez, J.D.2    Garcia-Menendez, L.3    Choi, Y.4    Roe, N.D.5    Chiao, Y.A.6
  • 83
    • 84902579141 scopus 로고    scopus 로고
    • Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion
    • 24905194
    • Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One (2014) 9(6):e98972.10.1371/journal.pone.009897224905194
    • (2014) PLoS One , vol.9 , Issue.6 , pp. e98972
    • Yamamoto, T.1    Byun, J.2    Zhai, P.3    Ikeda, Y.4    Oka, S.5    Sadoshima, J.6
  • 84
    • 84961842095 scopus 로고    scopus 로고
    • Using mitochondrial sirtuins as drug targets: disease implications and available compounds
    • 27007507
    • Gertz M, Steegborn C. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Cell Mol Life Sci (2016) 73(15):2871–96.10.1007/s00018-016-2180-727007507
    • (2016) Cell Mol Life Sci , vol.73 , Issue.15 , pp. 2871-2896
    • Gertz, M.1    Steegborn, C.2
  • 85
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • 16959573
    • Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell (2006) 126(5):941–54.10.1016/j.cell.2006.06.05716959573
    • (2006) Cell , vol.126 , Issue.5 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3    Fahie, K.4    Christodoulou, D.C.5    Murphy, A.J.6
  • 86
    • 84878891625 scopus 로고    scopus 로고
    • SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
    • 23746352
    • Laurent G, German NJ, Saha AK, de Boer VC, Davies M, Koves TR, et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell (2013) 50(5):686–98.10.1016/j.molcel.2013.05.01223746352
    • (2013) Mol Cell , vol.50 , Issue.5 , pp. 686-698
    • Laurent, G.1    German, N.J.2    Saha, A.K.3    de Boer, V.C.4    Davies, M.5    Koves, T.R.6
  • 87
    • 84919933749 scopus 로고    scopus 로고
    • Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity
    • 25525879
    • Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, Rowland EA, et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell (2014) 159(7):1615–25.10.1016/j.cell.2014.11.04625525879
    • (2014) Cell , vol.159 , Issue.7 , pp. 1615-1625
    • Mathias, R.A.1    Greco, T.M.2    Oberstein, A.3    Budayeva, H.G.4    Chakrabarti, R.5    Rowland, E.A.6
  • 88
    • 85019716725 scopus 로고    scopus 로고
    • Sirt4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity
    • 27099261
    • Luo YX, Tang X, An XZ, Xie XM, Chen XF, Zhao X, et al. Sirt4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J (2016).10.1093/eurheartj/ehw13827099261
    • (2016) Eur Heart J
    • Luo, Y.X.1    Tang, X.2    An, X.Z.3    Xie, X.M.4    Chen, X.F.5    Zhao, X.6
  • 89
    • 84884995947 scopus 로고    scopus 로고
    • SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells
    • 24029877
    • Liu B, Che W, Xue J, Zheng C, Tang K, Zhang J, et al. SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells. Cell Physiol Biochem (2013) 32(3):655–62.10.1159/00035446924029877
    • (2013) Cell Physiol Biochem , vol.32 , Issue.3 , pp. 655-662
    • Liu, B.1    Che, W.2    Xue, J.3    Zheng, C.4    Tang, K.5    Zhang, J.6
  • 90
    • 84867746901 scopus 로고    scopus 로고
    • Sirtuin-4 modulates sensitivity to induction of the mitochondrial permeability transition pore
    • 23044393
    • Verma M, Shulga N, Pastorino JG. Sirtuin-4 modulates sensitivity to induction of the mitochondrial permeability transition pore. Biochim Biophys Acta (2013) 1827(1):38–49.10.1016/j.bbabio.2012.09.01623044393
    • (2013) Biochim Biophys Acta , vol.1827 , Issue.1 , pp. 38-49
    • Verma, M.1    Shulga, N.2    Pastorino, J.G.3
  • 91
    • 84889636259 scopus 로고    scopus 로고
    • SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
    • 24315375
    • Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab (2013) 18(6):920–33.10.1016/j.cmet.2013.11.01324315375
    • (2013) Cell Metab , vol.18 , Issue.6 , pp. 920-933
    • Rardin, M.J.1    He, W.2    Nishida, Y.3    Newman, J.C.4    Carrico, C.5    Danielson, S.R.6
  • 92
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • 21908771
    • Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics (2011) 10(12):M111012658.10.1074/mcp.M111.01265821908771
    • (2011) Mol Cell Proteomics , vol.10 , Issue.12 , pp. M111012658
    • Peng, C.1    Lu, Z.2    Xie, Z.3    Cheng, Z.4    Chen, Y.5    Tan, M.6
  • 93
    • 84964374813 scopus 로고    scopus 로고
    • Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function
    • 27051063
    • Sadhukhan S, Liu X, Ryu D, Nelson OD, Stupinski JA, Li Z, et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci U S A (2016) 113(16):4320–5.10.1073/pnas.151985811327051063
    • (2016) Proc Natl Acad Sci U S A , vol.113 , Issue.16 , pp. 4320-4325
    • Sadhukhan, S.1    Liu, X.2    Ryu, D.3    Nelson, O.D.4    Stupinski, J.A.5    Li, Z.6
  • 94
    • 84942514336 scopus 로고    scopus 로고
    • Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury
    • 26388266
    • Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol (2015) 88:73–81.10.1016/j.yjmcc.2015.09.00526388266
    • (2015) J Mol Cell Cardiol , vol.88 , pp. 73-81
    • Boylston, J.A.1    Sun, J.2    Chen, Y.3    Gucek, M.4    Sack, M.N.5    Murphy, E.6
  • 95
    • 84911466192 scopus 로고    scopus 로고
    • Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
    • 25383517
    • Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature (2014) 515(7527):431–5.10.1038/nature1390925383517
    • (2014) Nature , vol.515 , Issue.7527 , pp. 431-435
    • Chouchani, E.T.1    Pell, V.R.2    Gaude, E.3    Aksentijevic, D.4    Sundier, S.Y.5    Robb, E.L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.