-
1
-
-
84868610929
-
Integration of chemical catalysis with extractive fermentation to produce fuels
-
Anbarasan P., Baer Z.C., Sreekumar S., Gross E., Binder J.B., Blanch H.W., Clark D.S., Toste F.D. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 2012, 491:235-239.
-
(2012)
Nature
, vol.491
, pp. 235-239
-
-
Anbarasan, P.1
Baer, Z.C.2
Sreekumar, S.3
Gross, E.4
Binder, J.B.5
Blanch, H.W.6
Clark, D.S.7
Toste, F.D.8
-
2
-
-
65549107862
-
Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli
-
Anjem A., Varghese S., Imlay J.a Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol. Microbiol. 2009, 72:844-858.
-
(2009)
Mol. Microbiol.
, vol.72
, pp. 844-858
-
-
Anjem, A.1
Varghese, S.2
Imlay, J.A.3
-
3
-
-
0029867882
-
Effect of ilvBN-encoded α-acetolactate synthase expression on diacetyl production in Lactococcus lactis
-
Benson K.H., Godon J.J., Renault P., Griffin H.G., Gasson M.J. Effect of ilvBN-encoded α-acetolactate synthase expression on diacetyl production in Lactococcus lactis. Appl. Microbiol. Biotechnol. 1996, 45:107-111.
-
(1996)
Appl. Microbiol. Biotechnol.
, vol.45
, pp. 107-111
-
-
Benson, K.H.1
Godon, J.J.2
Renault, P.3
Griffin, H.G.4
Gasson, M.J.5
-
4
-
-
0034748916
-
+-ATPase-Negative Mutant of Lactococcus lactis
-
+-ATPase-Negative Mutant of Lactococcus lactis. J. Bacteriol. 2001, 183:6707-6709.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 6707-6709
-
-
Blank, L.M.1
Koebmann, B.J.2
Michelsen, O.3
Lars, K.4
Jensen, P.R.5
Michelsen, O.L.E.6
Nielsen, L.K.7
-
5
-
-
84941564993
-
Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose
-
Chu H., Xin B., Liu P., Wang Y., Li L., Liu X., Zhang X., Ma C., Xu P., Gao C. Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose. Biotechnol. Biofuels 2015, 8:143.
-
(2015)
Biotechnol. Biofuels
, vol.8
, pp. 143
-
-
Chu, H.1
Xin, B.2
Liu, P.3
Wang, Y.4
Li, L.5
Liu, X.6
Zhang, X.7
Ma, C.8
Xu, P.9
Gao, C.10
-
6
-
-
0025336135
-
Properties of 2,3-butanediol dehydrogenase from lactococcus lactis subsp. lactis in relation to citrate fermentation
-
Crow V.L. Properties of 2,3-butanediol dehydrogenase from lactococcus lactis subsp. lactis in relation to citrate fermentation. Appl. Environ. Microbiol. 1990, 56:1656-1665.
-
(1990)
Appl. Environ. Microbiol.
, vol.56
, pp. 1656-1665
-
-
Crow, V.L.1
-
7
-
-
84862207929
-
Expanding the chemical palate of cells by combining systems biology and metabolic engineering
-
Curran K.A., Alper H.S. Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab. Eng. 2012, 14:289-297.
-
(2012)
Metab. Eng.
, vol.14
, pp. 289-297
-
-
Curran, K.A.1
Alper, H.S.2
-
8
-
-
0034941874
-
Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival
-
Duwat P., Sourice S., Cesselin B., Lamberet G., Vido K., Gaudu P., Le Loir Y., Violet F., Loubière P., Gruss A. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J. Bacteriol. 2001, 183:4509-4516.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 4509-4516
-
-
Duwat, P.1
Sourice, S.2
Cesselin, B.3
Lamberet, G.4
Vido, K.5
Gaudu, P.6
Le Loir, Y.7
Violet, F.8
Loubière, P.9
Gruss, A.10
-
9
-
-
77954051479
-
Two coregulated efflux transporters modulate intracellular heme and protoporphyrin IX availability in Streptococcus agalactiae
-
Fernandez A., Lechardeur D., Derré-Bobillot A., Couvé E., Gaudu P., Gruss A. Two coregulated efflux transporters modulate intracellular heme and protoporphyrin IX availability in Streptococcus agalactiae. PloS Pathog. 2010, 6:e1000860.
-
(2010)
PloS Pathog.
, vol.6
, pp. e1000860
-
-
Fernandez, A.1
Lechardeur, D.2
Derré-Bobillot, A.3
Couvé, E.4
Gaudu, P.5
Gruss, A.6
-
10
-
-
84885376218
-
Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation
-
Flahaut N.a L., Wiersma A., van de Bunt B., Martens D.E., Schaap P.J., Sijtsma L., Dos Santos V.a M., de Vos W.M. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation. Appl. Microbiol. Biotechnol. 2013, 97:8729-8739.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 8729-8739
-
-
Flahaut, N.A.L.1
Wiersma, A.2
van de Bunt, B.3
Martens, D.E.4
Schaap, P.J.5
Sijtsma, L.6
Dos Santos, V.A.M.7
de Vos, W.M.8
-
11
-
-
84897503417
-
Metabolic engineering of Candida glabrata for diacetyl production
-
Gao X., Xu N., Li S., Liu L. Metabolic engineering of Candida glabrata for diacetyl production. PloS One 2014, 9.
-
(2014)
PloS One
, pp. 9
-
-
Gao, X.1
Xu, N.2
Li, S.3
Liu, L.4
-
12
-
-
33750578788
-
Getting high (OD) on heme
-
Garrigues C., Johansen E., Pedersen M.B., Møllgaard H., Sørrensen K., Gaudu P., Gruss A., Lamberet G. Getting high (OD) on heme. Nat. Rev. Microbiol. 2006, 4:c2.
-
(2006)
Nat. Rev. Microbiol.
, vol.4
, pp. c2
-
-
Garrigues, C.1
Johansen, E.2
Pedersen, M.B.3
Møllgaard, H.4
Sørrensen, K.5
Gaudu, P.6
Gruss, A.7
Lamberet, G.8
-
13
-
-
0020600404
-
Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing
-
Gasson M.J. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 1983, 154:1-9.
-
(1983)
J. Bacteriol.
, vol.154
, pp. 1-9
-
-
Gasson, M.J.1
-
15
-
-
84932198255
-
Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content : does protein investment explain an anaerobic bacterial Crabtree effect?
-
Goel A., Eckhardt T.H., Puri P., Jong A., De, Branco F., Giera M., Fusetti F., Vos W.M., De, Kok J., Poolman B., Molenaar D., Kuipers O.P., Teusink B. Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content : does protein investment explain an anaerobic bacterial Crabtree effect?. Mol. Microbiol. 2015, 97:77-92.
-
(2015)
Mol. Microbiol.
, vol.97
, pp. 77-92
-
-
Goel, A.1
Eckhardt, T.H.2
Puri, P.3
Jong, A.4
De Branco, F.5
Giera, M.6
Fusetti, F.7
Vos, W.M.8
De Kok, J.9
Poolman, B.10
Molenaar, D.11
Kuipers, O.P.12
Teusink, B.13
-
16
-
-
84860484350
-
Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis
-
Guo T., Kong J., Zhang L., Zhang C., Hu S. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis. PloS One 2012, 7:e36296.
-
(2012)
PloS One
, vol.7
, pp. e36296
-
-
Guo, T.1
Kong, J.2
Zhang, L.3
Zhang, C.4
Hu, S.5
-
17
-
-
0025124416
-
Identification of the minimal replicon of Lactococcus lactis subsp. lactis UC317 plasmid pCI305
-
Hayes F., Daly C., Fitzgerald G.F. Identification of the minimal replicon of Lactococcus lactis subsp. lactis UC317 plasmid pCI305. Appl. Environ. Microbiol. 1990, 56:202-209.
-
(1990)
Appl. Environ. Microbiol.
, vol.56
, pp. 202-209
-
-
Hayes, F.1
Daly, C.2
Fitzgerald, G.F.3
-
18
-
-
0024345189
-
High-frequency transformation, by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media
-
Holo H., Nes I. High-frequency transformation, by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 1989, 55:3119-3223.
-
(1989)
Appl. Environ. Microbiol.
, vol.55
, pp. 3119-3223
-
-
Holo, H.1
Nes, I.2
-
19
-
-
0033031823
-
Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering
-
Hols P., Kleerebezem M., Schanck A.N., Ferain T., Hugenholtz J., Delcour J., de Vos W.M. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat. Biotechnol. 1999, 17:588-592.
-
(1999)
Nat. Biotechnol.
, vol.17
, pp. 588-592
-
-
Hols, P.1
Kleerebezem, M.2
Schanck, A.N.3
Ferain, T.4
Hugenholtz, J.5
Delcour, J.6
de Vos, W.M.7
-
21
-
-
40649112563
-
The lactic acid bacterium as a cell factory for food ingredient production
-
Hugenholtz J. The lactic acid bacterium as a cell factory for food ingredient production. Int. Dairy J. 2008, 18:466-475.
-
(2008)
Int. Dairy J.
, vol.18
, pp. 466-475
-
-
Hugenholtz, J.1
-
22
-
-
0033823727
-
Lactococcus lactis as a cell factory for high-level diacetyl production
-
Hugenholtz J. Lactococcus lactis as a cell factory for high-level diacetyl production. Appl. Environ. Microbiol. 2000, 66:4112-4114.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, pp. 4112-4114
-
-
Hugenholtz, J.1
-
23
-
-
0035380714
-
Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate
-
Jensen N.B.S., Melchiorsen C.R., Jokumsen K., Væ., Villadsen J. Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Appl. Environ. Microbiol. 2001, 67:2677-2682.
-
(2001)
Appl. Environ. Microbiol.
, vol.67
, pp. 2677-2682
-
-
Jensen, N.B.S.1
Melchiorsen, C.R.2
Jokumsen, K.3
Væ.4
Villadsen, J.5
-
24
-
-
79952694448
-
Microbial 2,3-butanediol production: a state-of-the-art review
-
Ji X.J., Huang H., Ouyang P.K. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 2011, 29:351-364.
-
(2011)
Biotechnol. Adv.
, vol.29
, pp. 351-364
-
-
Ji, X.J.1
Huang, H.2
Ouyang, P.K.3
-
25
-
-
84870988352
-
Synthesis: a constructive debate
-
Keasling J.D., Mendoza A., Baran P. Synthesis: a constructive debate. Nature 2012, 492:188-189.
-
(2012)
Nature
, vol.492
, pp. 188-189
-
-
Keasling, J.D.1
Mendoza, A.2
Baran, P.3
-
26
-
-
84940033066
-
Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing
-
Kim S., Hahn J.-S. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab. Eng. 2015, 31:94-101.
-
(2015)
Metab. Eng.
, vol.31
, pp. 94-101
-
-
Kim, S.1
Hahn, J.-S.2
-
27
-
-
43049105432
-
Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions
-
Koebmann B., Blank L.M., Solem C., Petranovic D., Nielsen L.K., Jensen P.R. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions. Biotechnol. Appl. Biochem. 2008, 50:25-33.
-
(2008)
Biotechnol. Appl. Biochem.
, vol.50
, pp. 25-33
-
-
Koebmann, B.1
Blank, L.M.2
Solem, C.3
Petranovic, D.4
Nielsen, L.K.5
Jensen, P.R.6
-
28
-
-
0036727253
-
Expression of genes encoding F1-ATPase results in uncoupling of glycolysis from biomass production in Lactococus lactis
-
Koebmann B.J., Solem C., Pedersen M.B., Nilsson D., Jensen P.R. Expression of genes encoding F1-ATPase results in uncoupling of glycolysis from biomass production in Lactococus lactis. Microbiology 2002, 68:4274-4282.
-
(2002)
Microbiology
, vol.68
, pp. 4274-4282
-
-
Koebmann, B.J.1
Solem, C.2
Pedersen, M.B.3
Nilsson, D.4
Jensen, P.R.5
-
29
-
-
84856824403
-
Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis
-
Lechardeur D., Cesselin B., Liebl U., Vos M.H., Fernandez A., Brun C., Gruss A., Gaudu P. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis. J. Biol. Chem. 2012, 287:4752-4758.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 4752-4758
-
-
Lechardeur, D.1
Cesselin, B.2
Liebl, U.3
Vos, M.H.4
Fernandez, A.5
Brun, C.6
Gruss, A.7
Gaudu, P.8
-
30
-
-
84861440312
-
Systems metabolic engineering of microorganisms for natural and non-natural chemicals
-
Lee J.W., Na D., Park J.M., Lee J., Choi S., Lee S.Y. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 2012, 8:536-546.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 536-546
-
-
Lee, J.W.1
Na, D.2
Park, J.M.3
Lee, J.4
Choi, S.5
Lee, S.Y.6
-
31
-
-
84857098244
-
Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli
-
Li L., Wang Y., Zhang L., Ma C., Wang A., Tao F., Xu P. Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresour. Technol. 2012, 115:111-116.
-
(2012)
Bioresour. Technol.
, vol.115
, pp. 111-116
-
-
Li, L.1
Wang, Y.2
Zhang, L.3
Ma, C.4
Wang, A.5
Tao, F.6
Xu, P.7
-
32
-
-
84919915096
-
Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars
-
Li L., Li K., Wang Y., Chen C., Xu Y., Zhang L., Han B., Gao C., Tao F., Ma C., Xu P. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab. Eng. 2014, 28:19-27.
-
(2014)
Metab. Eng.
, vol.28
, pp. 19-27
-
-
Li, L.1
Li, K.2
Wang, Y.3
Chen, C.4
Xu, Y.5
Zhang, L.6
Han, B.7
Gao, C.8
Tao, F.9
Ma, C.10
Xu, P.11
-
33
-
-
84896297653
-
Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol
-
Lian J., Chao R., Zhao H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab. Eng. 2014, 23:92-99.
-
(2014)
Metab. Eng.
, vol.23
, pp. 92-99
-
-
Lian, J.1
Chao, R.2
Zhao, H.3
-
34
-
-
63949086417
-
Multiple control of the acetate pathway in Lactococcus lactis under aeration by catabolite repression and metabolites
-
Lopez de Felipe F., Gaudu P. Multiple control of the acetate pathway in Lactococcus lactis under aeration by catabolite repression and metabolites. Appl. Microbiol. Biotechnol. 2009, 82:1115-1122.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.82
, pp. 1115-1122
-
-
Lopez de Felipe, F.1
Gaudu, P.2
-
35
-
-
0040157922
-
Construction of food-grade mutants of lactic acid bacteria
-
Maguin E., Prevost H., Gruss A. Construction of food-grade mutants of lactic acid bacteria. Le Lait 1996, 76:139-146.
-
(1996)
Le Lait
, vol.76
, pp. 139-146
-
-
Maguin, E.1
Prevost, H.2
Gruss, A.3
-
36
-
-
1642457253
-
The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
-
Mahadevan R., Schilling C.H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 2003, 5:264-276.
-
(2003)
Metab. Eng.
, vol.5
, pp. 264-276
-
-
Mahadevan, R.1
Schilling, C.H.2
-
37
-
-
0031585420
-
A new method for the determination of 2-acetolactate in dairy products
-
Mohr B., Aymes F., Rea M.C., Monnet C., Cogan T.M. A new method for the determination of 2-acetolactate in dairy products. Int. Dairy J. 1997, 7:701-706.
-
(1997)
Int. Dairy J.
, vol.7
, pp. 701-706
-
-
Mohr, B.1
Aymes, F.2
Rea, M.C.3
Monnet, C.4
Cogan, T.M.5
-
38
-
-
0034466792
-
Diacetyl and α-acetolactate overproduction by Lactococcus lactis subsp. lactis biovar diacetylactis mutants that are deficient in α-acetolactate decarboxylase and have a low lactate dehydrogenase activity
-
Monnet C., Aymes F., Corrieu G., Ge L.De Diacetyl and α-acetolactate overproduction by Lactococcus lactis subsp. lactis biovar diacetylactis mutants that are deficient in α-acetolactate decarboxylase and have a low lactate dehydrogenase activity. Appl. Environ. Microbiol. 2000, 66:5518-5520.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, pp. 5518-5520
-
-
Monnet, C.1
Aymes, F.2
Corrieu, G.3
Ge, L.D.4
-
39
-
-
84907311048
-
Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin
-
Nakashima N., Akita H., Hoshino T. Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin. Metab. Eng. 2014, 25:204-214.
-
(2014)
Metab. Eng.
, vol.25
, pp. 204-214
-
-
Nakashima, N.1
Akita, H.2
Hoshino, T.3
-
40
-
-
77950603940
-
A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering
-
Nørholm M.H.H. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol. 2010, 10:21.
-
(2010)
BMC Biotechnol.
, vol.10
, pp. 21
-
-
Nørholm, M.H.H.1
-
41
-
-
47249092884
-
Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon
-
Pedersen M.B., Garrigues C., Tuphile K., Brun C., Vido K., Bennedsen M., Møllgaard H., Gaudu P., Gruss A. Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J. Bacteriol. 2008, 190:4903-4911.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 4903-4911
-
-
Pedersen, M.B.1
Garrigues, C.2
Tuphile, K.3
Brun, C.4
Vido, K.5
Bennedsen, M.6
Møllgaard, H.7
Gaudu, P.8
Gruss, A.9
-
42
-
-
84862671067
-
Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology
-
Pedersen M.B., Gaudu P., Lechardeur D., Petit M.-A., Gruss A. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu. Rev. Food Sci. Technol. 2012, 3:37-58.
-
(2012)
Annu. Rev. Food Sci. Technol.
, vol.3
, pp. 37-58
-
-
Pedersen, M.B.1
Gaudu, P.2
Lechardeur, D.3
Petit, M.-A.4
Gruss, A.5
-
44
-
-
0014912569
-
Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides
-
Sijpesteijn A.K. Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie Van. Leeuwenhoek 1970, 36:335-348.
-
(1970)
Antonie Van. Leeuwenhoek
, vol.36
, pp. 335-348
-
-
Sijpesteijn, A.K.1
-
45
-
-
84904658326
-
A Biocompatible Alkene Hydrogenation Merges Organic Synthesis with Microbial Metabolism
-
Sirasani G., Tong L., Balskus E.P. A Biocompatible Alkene Hydrogenation Merges Organic Synthesis with Microbial Metabolism. Angew. Chem. Int. 2014, 53:7785-7788.
-
(2014)
Angew. Chem. Int.
, vol.53
, pp. 7785-7788
-
-
Sirasani, G.1
Tong, L.2
Balskus, E.P.3
-
46
-
-
49449099815
-
Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis
-
Solem C., Defoor E., Jensen P.R., Martinussen J. Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis. Appl. Environ. Microbiol. 2008, 74:4772-4775.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 4772-4775
-
-
Solem, C.1
Defoor, E.2
Jensen, P.R.3
Martinussen, J.4
-
48
-
-
0036250071
-
Modulation of gene expression made easy
-
Solem C., Jensen P.R. Modulation of gene expression made easy. Appl. Environ. Microbiol. 2002, 68:2397-2403.
-
(2002)
Appl. Environ. Microbiol.
, vol.68
, pp. 2397-2403
-
-
Solem, C.1
Jensen, P.R.2
-
49
-
-
0016686551
-
Improved medium for lactic streptococci and their bacteriophages
-
Terzaghi B.E., Sandine W.E. Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol. 1975, 29:807-813.
-
(1975)
Appl. Microbiol.
, vol.29
, pp. 807-813
-
-
Terzaghi, B.E.1
Sandine, W.E.2
-
50
-
-
31344432121
-
Modelling strategies for the industrial exploitation of lactic acid bacteria
-
Teusink B., Smid E.J. Modelling strategies for the industrial exploitation of lactic acid bacteria. Nat. Rev. Microbiol. 2006, 4:46-56.
-
(2006)
Nat. Rev. Microbiol.
, vol.4
, pp. 46-56
-
-
Teusink, B.1
Smid, E.J.2
-
51
-
-
0035131713
-
Stereochemical applications of the expression of the l-2,3-butanediol dehydrogenase gene in Escherichia coli
-
Ui S., Takusagawa Y., Ohtsuki T., Mimura a, Ohkuma M., Kudo T. Stereochemical applications of the expression of the l-2,3-butanediol dehydrogenase gene in Escherichia coli. Lett. Appl. Microbiol. 2001, 32:93-98.
-
(2001)
Lett. Appl. Microbiol.
, vol.32
, pp. 93-98
-
-
Ui, S.1
Takusagawa, Y.2
Ohtsuki, T.3
Mimura, A.4
Ohkuma, M.5
Kudo, T.6
-
52
-
-
9644289456
-
Production of l-2,3-butanediol by a new pathway constructed in Escherichia coli
-
Ui S., Takusagawa Y., Sato T., Ohtsuki T., Mimura a, Ohkuma M., Kudo T. Production of l-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett. Appl. Microbiol. 2004, 39:533-537.
-
(2004)
Lett. Appl. Microbiol.
, vol.39
, pp. 533-537
-
-
Ui, S.1
Takusagawa, Y.2
Sato, T.3
Ohtsuki, T.4
Mimura, A.5
Ohkuma, M.6
Kudo, T.7
-
53
-
-
0028146781
-
Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
-
Varma A., Palsson B. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 1994, 60:3724-3731.
-
(1994)
Appl. Environ. Microbiol.
, vol.60
, pp. 3724-3731
-
-
Varma, A.1
Palsson, B.2
-
54
-
-
84928626673
-
Interfacing microbial styrene production with a biocompatible cyclopropanation reaction
-
Wallace S., Balskus E.P. Interfacing microbial styrene production with a biocompatible cyclopropanation reaction. Angew. Chem. Int. 2015, 54:7106-7109.
-
(2015)
Angew. Chem. Int.
, vol.54
, pp. 7106-7109
-
-
Wallace, S.1
Balskus, E.P.2
-
56
-
-
84864301531
-
A colorimetric determination of blood acetoin
-
Westerfeld W. A colorimetric determination of blood acetoin. J. Biol. Chem. 1945, 161:495-502.
-
(1945)
J. Biol. Chem.
, vol.161
, pp. 495-502
-
-
Westerfeld, W.1
-
57
-
-
84896847314
-
Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol
-
Xu Y., Chu H., Gao C., Tao F., Zhou Z., Li K., Li L., Ma C., Xu P. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab. Eng. 2014, 23:22-33.
-
(2014)
Metab. Eng.
, vol.23
, pp. 22-33
-
-
Xu, Y.1
Chu, H.2
Gao, C.3
Tao, F.4
Zhou, Z.5
Li, K.6
Li, L.7
Ma, C.8
Xu, P.9
-
58
-
-
84859776222
-
The future of metabolic engineering and synthetic biology: Towards a systematic practice
-
Yadav V.G., De Mey M., Giaw Lim C., Kumaran Ajikumar P., Stephanopoulos G. The future of metabolic engineering and synthetic biology: Towards a systematic practice. Metab. Eng. 2012, 14:233-241.
-
(2012)
Metab. Eng.
, vol.14
, pp. 233-241
-
-
Yadav, V.G.1
De Mey, M.2
Giaw Lim, C.3
Kumaran Ajikumar, P.4
Stephanopoulos, G.5
-
59
-
-
84924911756
-
Production of diacetyl by metabolically engineered Enterobacter cloacae
-
Zhang L., Zhang Y., Liu Q., Meng L., Hu M., Lv M., Li K., Gao C., Xu P., Ma C. Production of diacetyl by metabolically engineered Enterobacter cloacae. Sci. Rep. 2015, 5:9033.
-
(2015)
Sci. Rep.
, vol.5
, pp. 9033
-
-
Zhang, L.1
Zhang, Y.2
Liu, Q.3
Meng, L.4
Hu, M.5
Lv, M.6
Li, K.7
Gao, C.8
Xu, P.9
Ma, C.10
|