메뉴 건너뛰기




Volumn 9, Issue 1, 2016, Pages

A novel cell factory for efficient production of ethanol from dairy waste

Author keywords

Corn steep liquor hydrolysate; Lactococcus lactis; Lactose catabolism; Residual whey permeate

Indexed keywords

AGRICULTURAL WASTES; BIOETHANOL; CARBON; COST EFFECTIVENESS; COSTS; DAIRY PRODUCTS; ETHANOL; FEEDSTOCKS; FOSSIL FUELS; FUELS; METABOLISM; NUTRIENTS; SUBSTRATES; SUGARS;

EID: 84959340185     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-016-0448-7     Document Type: Article
Times cited : (62)

References (42)
  • 1
    • 0033320056 scopus 로고    scopus 로고
    • BIOMASS ETHANOL: Technical Progress, Opportunities, and Commercial Challenges
    • Wyman CE. BIOMASS ETHANOL: Technical Progress, Opportunities, and Commercial Challenges. Annu Rev Energy Environ. 1999;24:189-226.
    • (1999) Annu Rev Energy Environ , vol.24 , pp. 189-226
    • Wyman, C.E.1
  • 2
    • 84941758700 scopus 로고    scopus 로고
    • Butanol production from food waste: A novel process for producing sustainable energy and reducing environmental pollution
    • Huang H, Singh V, Qureshi N. Butanol production from food waste: A novel process for producing sustainable energy and reducing environmental pollution. Biotechnol Biofuels. 2015;8:147.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 147
    • Huang, H.1    Singh, V.2    Qureshi, N.3
  • 3
    • 84954125896 scopus 로고    scopus 로고
    • Techno-economic evaluation of integrated first- And second-generation ethanol production from grain and straw
    • Joelsson E, Erdei B, Galbe M, Wallberg O. Techno-economic evaluation of integrated first- And second-generation ethanol production from grain and straw. Biotechnol Biofuels. 2016;9:1.
    • (2016) Biotechnol Biofuels , vol.9 , pp. 1
    • Joelsson, E.1    Erdei, B.2    Galbe, M.3    Wallberg, O.4
  • 5
    • 0034985361 scopus 로고    scopus 로고
    • Ethanol production from biomass: Technology and commercialization status
    • 1:CAS:528:DC%2BD3MXltVKkuro%3D
    • Mielenz JR. Ethanol production from biomass: Technology and commercialization status. Curr Opin Microbiol. 2001;4:324-9.
    • (2001) Curr Opin Microbiol , vol.4 , pp. 324-329
    • Mielenz, J.R.1
  • 6
    • 84872786974 scopus 로고    scopus 로고
    • Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments
    • 1:CAS:528:DC%2BC3sXjs12ht74%3D
    • Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels. 2013;6:15.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 15
    • Pu, Y.1    Hu, F.2    Huang, F.3    Davison, B.H.4    Ragauskas, A.J.5
  • 7
    • 84951292012 scopus 로고    scopus 로고
    • Lignocellulose conversion for biofuel: A new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials
    • Wi SG, Cho EJ, Lee D-S, Lee SJ, Lee YJ, Bae H-J. Lignocellulose conversion for biofuel: A new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuels. 2015;8:228.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 228
    • Wi, S.G.1    Cho, E.J.2    Lee, D.-S.3    Lee, S.J.4    Lee, Y.J.5    Bae, H.-J.6
  • 9
    • 84937631023 scopus 로고    scopus 로고
    • Whey-derived valuable products obtained by microbial fermentation
    • 1:CAS:528:DC%2BC2MXhtV2iurfI
    • Pescuma M, de Valdez GF, Mozzi F. Whey-derived valuable products obtained by microbial fermentation. Appl Microbiol Biotechnol. 2015;99:6183-96.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 6183-6196
    • Pescuma, M.1    De Valdez, G.F.2    Mozzi, F.3
  • 10
    • 77949567900 scopus 로고    scopus 로고
    • Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey
    • Guimarães PMR, Teixeira J, Domingues L. Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv. 2010;28:375-84.
    • (2010) Biotechnol Adv , vol.28 , pp. 375-384
    • Guimarães, P.M.R.1    Teixeira, J.2    Domingues, L.3
  • 11
    • 77949569404 scopus 로고    scopus 로고
    • Whey to Ethanol: A Biofuel Role for Dairy Cooperatives?
    • Ling C. Whey to Ethanol: A Biofuel Role for Dairy Cooperatives? Res Rep. 2008;214:1-19.
    • (2008) Res Rep , vol.214 , pp. 1-19
    • Ling, C.1
  • 12
    • 79953269625 scopus 로고    scopus 로고
    • Almeida e Silva JB, Teixeira J. Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder
    • 1:CAS:528:DC%2BC3MXkt12gt74%3D
    • Dragone G, Mussatto SI. Almeida e Silva JB, Teixeira J. Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder. Biomass Bioenergy. 2011;35:1977-82.
    • (2011) Biomass Bioenergy , vol.35 , pp. 1977-1982
    • Dragone, G.1    Mussatto, S.I.2
  • 13
    • 17844382436 scopus 로고    scopus 로고
    • Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: A flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels
    • 1:CAS:528:DC%2BD2MXjs1Kku7k%3D
    • Silveira WB, Passos FJV, Mantovani HC, Passos FML. Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: A flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme Microb Technol. 2005;36:930-6.
    • (2005) Enzyme Microb Technol , vol.36 , pp. 930-936
    • Silveira, W.B.1    Passos, F.J.V.2    Mantovani, H.C.3    Passos, F.M.L.4
  • 14
    • 0027112224 scopus 로고
    • Lactose/whey utilization and ethanol production by transformed Saccharomyces cerevisiae cells
    • 1:CAS:528:DyaK38Xhslagtbc%3D
    • Porro D, Martegani E, Ranzi BM, Alberghina L. Lactose/whey utilization and ethanol production by transformed Saccharomyces cerevisiae cells. Biotechnol Bioeng. 1992;39:799-805.
    • (1992) Biotechnol Bioeng , vol.39 , pp. 799-805
    • Porro, D.1    Martegani, E.2    Ranzi, B.M.3    Alberghina, L.4
  • 15
    • 0034213221 scopus 로고    scopus 로고
    • Lactic acid bacteria as a cell factory: Rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering
    • 1:CAS:528:DC%2BD3cXktFSjuro%3D
    • Kleerebezemab M, Hols P, Hugenholtz J. Lactic acid bacteria as a cell factory: Rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering. Enzyme Microb Technol. 2000;26:840-8.
    • (2000) Enzyme Microb Technol , vol.26 , pp. 840-848
    • Kleerebezemab, M.1    Hols, P.2    Hugenholtz, J.3
  • 16
    • 40649112563 scopus 로고    scopus 로고
    • The lactic acid bacterium as a cell factory for food ingredient production
    • 1:CAS:528:DC%2BD1cXjtl2gt78%3D
    • Hugenholtz J. The lactic acid bacterium as a cell factory for food ingredient production. Int Dairy J. 2008;18:466-75.
    • (2008) Int Dairy J , vol.18 , pp. 466-475
    • Hugenholtz, J.1
  • 17
    • 84876161704 scopus 로고    scopus 로고
    • Rewiring Lactococcus lactis for ethanol production
    • 1:CAS:528:DC%2BC3sXlvVKlsr8%3D
    • Solem C, Dehli T, Jensen PR. Rewiring Lactococcus lactis for ethanol production. Appl Environ Microbiol. 2013;79:2512-8.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 2512-2518
    • Solem, C.1    Dehli, T.2    Jensen, P.R.3
  • 18
    • 0020600404 scopus 로고
    • Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing
    • 1:CAS:528:DyaL3sXhslKjsbo%3D
    • Gasson MJ. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol. 1983;154:1-9.
    • (1983) J Bacteriol , vol.154 , pp. 1-9
    • Gasson, M.J.1
  • 19
    • 84870312215 scopus 로고    scopus 로고
    • Molecular characterization and structural instability of the industrially important composite metabolic plasmid pLP712
    • 1:CAS:528:DC%2BC3sXhslGitrw%3D
    • Wegmann U, Overweg K, Jeanson S, Gasson M, Shearman C. Molecular characterization and structural instability of the industrially important composite metabolic plasmid pLP712. Microbiol. 2012;158:2936-45.
    • (2012) Microbiol , vol.158 , pp. 2936-2945
    • Wegmann, U.1    Overweg, K.2    Jeanson, S.3    Gasson, M.4    Shearman, C.5
  • 20
    • 0027485665 scopus 로고
    • Minimal requirements for exponential growth of Lactococcus lactis
    • 1:CAS:528:DyaK2cXislansA%3D%3D
    • Jensen P, Hammer K. Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol. 1993;59:4363-6.
    • (1993) Appl Environ Microbiol , vol.59 , pp. 4363-4366
    • Jensen, P.1    Hammer, K.2
  • 22
    • 39049181833 scopus 로고    scopus 로고
    • L-lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal
    • 1:CAS:528:DC%2BD2sXisVyktLc%3D
    • Li Z, Ding S, Li Z, Tan T. L-lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal. Biotechnol J. 2006;1:1453-8.
    • (2006) Biotechnol J , vol.1 , pp. 1453-1458
    • Li, Z.1    Ding, S.2    Li, Z.3    Tan, T.4
  • 23
    • 0025264750 scopus 로고
    • The effect of yeast extract supplementation on the production of lactic acid from whey permeate by Lactobacillus helueticus
    • 1:CAS:528:DyaK3cXhsFKlt7Y%3D
    • Aeschlimann A, von Stockar U. The effect of yeast extract supplementation on the production of lactic acid from whey permeate by Lactobacillus helueticus. Appl Microbiol Biotechnol. 1990;32:398-402.
    • (1990) Appl Microbiol Biotechnol , vol.32 , pp. 398-402
    • Aeschlimann, A.1    Von Stockar, U.2
  • 24
    • 0025181301 scopus 로고
    • Relationship between utilization of proline and proline-containing peptides and growth of Lactococcus lactis
    • 1:CAS:528:DyaK3cXlvVOkurY%3D
    • Smid EJ, Konings WN. Relationship between utilization of proline and proline-containing peptides and growth of Lactococcus lactis. J Bacteriol. 1990;172:5286-92.
    • (1990) J Bacteriol , vol.172 , pp. 5286-5292
    • Smid, E.J.1    Konings, W.N.2
  • 27
    • 0033031823 scopus 로고    scopus 로고
    • Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering
    • 1:CAS:528:DyaK1MXjs1Kms78%3D
    • Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol. 1999;17:588-92.
    • (1999) Nat Biotechnol , vol.17 , pp. 588-592
    • Hols, P.1    Kleerebezem, M.2    Schanck, A.N.3    Ferain, T.4    Hugenholtz, J.5    Delcour, J.6    De Vos, W.M.7
  • 28
    • 27744506402 scopus 로고    scopus 로고
    • Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources
    • 1:CAS:528:DC%2BD2MXhtlehtbvI
    • Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol. 2005;71:8587-96.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 8587-8596
    • Becker, J.1    Klopprogge, C.2    Zelder, O.3    Heinzle, E.4    Wittmann, C.5
  • 29
    • 84932194766 scopus 로고    scopus 로고
    • Metabolic control of respiratory levels in coenzyme Q biosynthesis-deficient Escherichia coli strains leading to fine-tune aerobic lactate fermentation
    • 1:CAS:528:DC%2BC2MXotFejsLc%3D
    • Wu H, Bennett GN, San KY. Metabolic control of respiratory levels in coenzyme Q biosynthesis-deficient Escherichia coli strains leading to fine-tune aerobic lactate fermentation. Biotechnol Bioeng. 2015;112:1720-6.
    • (2015) Biotechnol Bioeng , vol.112 , pp. 1720-1726
    • Wu, H.1    Bennett, G.N.2    San, K.Y.3
  • 30
    • 0020664749 scopus 로고
    • Woodward a., Bailey RB: Lipid-enhanced ethanol production by Kluyveromyces fragilis
    • 1:CAS:528:DyaL3sXhtVGlurs%3D
    • Janssens JH, Burris N. Woodward a., Bailey RB: Lipid-enhanced ethanol production by Kluyveromyces fragilis. Appl Environ Microbiol. 1983;45:598-602.
    • (1983) Appl Environ Microbiol , vol.45 , pp. 598-602
    • Janssens, J.H.1    Burris, N.2
  • 31
    • 51249162794 scopus 로고
    • Effect of Nutrient Supplements Addition on Ethanol Production from Cheese Whey Using Candida pseudotropicalis under Batch Condition
    • 1:CAS:528:DyaK2MXlvFaqtb4%3D
    • Ghaly AE, El-Taweel AA. Effect of Nutrient Supplements Addition on Ethanol Production from Cheese Whey Using Candida pseudotropicalis Under Batch Condition. Appl Biochem Biotechnol. 1995;53:107-31.
    • (1995) Appl Biochem Biotechnol , vol.53 , pp. 107-131
    • Ghaly, A.E.1    El-Taweel, A.A.2
  • 32
    • 34548775763 scopus 로고    scopus 로고
    • Process engineering economics of bioethanol production
    • 1:CAS:528:DC%2BD1cXhtVKqtbc%3D
    • Galbe M, Sassner P, Wingren A, Zacchi G. Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol. 2007;108:303-27.
    • (2007) Adv Biochem Eng Biotechnol , vol.108 , pp. 303-327
    • Galbe, M.1    Sassner, P.2    Wingren, A.3    Zacchi, G.4
  • 33
    • 77449146038 scopus 로고    scopus 로고
    • Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor
    • 1:CAS:528:DC%2BC3cXhtVKjtL4%3D
    • Zhang J, Chu D, Huang J, Yu Z, Dai G, Bao J. Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnol Bioeng. 2010;105:718-28.
    • (2010) Biotechnol Bioeng , vol.105 , pp. 718-728
    • Zhang, J.1    Chu, D.2    Huang, J.3    Yu, Z.4    Dai, G.5    Bao, J.6
  • 34
    • 0001763944 scopus 로고
    • Bioenergetics of lactic acid bacteria: Citoplasmic pH and osmotolerance
    • Kasjet ER. Bioenergetics of lactic acid bacteria: Citoplasmic pH and osmotolerance. FEMS Microbiol Rev. 1987;46:233-44.
    • (1987) FEMS Microbiol Rev , vol.46 , pp. 233-244
    • Kasjet, E.R.1
  • 35
    • 20444387958 scopus 로고    scopus 로고
    • Batch kinetics and modelling of ethanolic fermentation of whey
    • 1:CAS:528:DC%2BD2MXltVamtbY%3D
    • Zafar S, Owais M, Saleemuddin M, Husain S. Batch kinetics and modelling of ethanolic fermentation of whey. Int J Food Sci Technol. 2005;40:597-604.
    • (2005) Int J Food Sci Technol , vol.40 , pp. 597-604
    • Zafar, S.1    Owais, M.2    Saleemuddin, M.3    Husain, S.4
  • 36
    • 0036727253 scopus 로고    scopus 로고
    • Expression of Genes Encoding F1 -ATPase Results in Uncoupling of Glycolysis from Biomass Production in Lactococus lactis
    • 1:CAS:528:DC%2BD38XmvVequro%3D
    • Koebmann BJ, Solem C, Pedersen MB, Nilsson D, Jensen PR. Expression of Genes Encoding F1 -ATPase Results in Uncoupling of Glycolysis from Biomass Production in Lactococus lactis. Appl Environ Microbiol. 2002;68:4274-82.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 4274-4282
    • Koebmann, B.J.1    Solem, C.2    Pedersen, M.B.3    Nilsson, D.4    Jensen, P.R.5
  • 37
    • 84940467061 scopus 로고    scopus 로고
    • Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli
    • Hädicke O, Bettenbrock K, Klamt S. Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli. Biotechnol Bioeng. 2015;112:2195-9.
    • (2015) Biotechnol Bioeng , vol.112 , pp. 2195-2199
    • Hädicke, O.1    Bettenbrock, K.2    Klamt, S.3
  • 38
    • 0020593886 scopus 로고
    • Simple and Rapid Method for Isolating Large Plasmid DNA from Lactic Strepococci
    • 1:CAS:528:DyaL3sXlsFCktbo%3D
    • Anderson D. Simple and Rapid Method for Isolating Large Plasmid Dna From Lactic Strepococci. Appl Environ Microbiol. 1983;46:549-52.
    • (1983) Appl Environ Microbiol , vol.46 , pp. 549-552
    • Anderson, D.1
  • 40
    • 77950603940 scopus 로고    scopus 로고
    • A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering
    • Nørholm MHH. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol. 2010;10:21.
    • (2010) BMC Biotechnol , vol.10 , pp. 21
    • Nørholm, M.H.H.1
  • 41
    • 0024345189 scopus 로고
    • High-frequency transformation, by electroporation, of Lactococcus lactis subsp. Cremoris grown with glycine in osmotically stabilized media
    • 1:CAS:528:DyaK3cXjtlaiug%3D%3D
    • Holo H, Nes I. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. Cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol. 1989;55:3119-23.
    • (1989) Appl Environ Microbiol , vol.55 , pp. 3119-3123
    • Holo, H.1    Nes, I.2
  • 42
    • 0024509811 scopus 로고
    • Amino acid analysis: Determination of cysteine plus half-cystine in proteins after hydrochloric acid hydrolysis with a disulfide compound as additive
    • 1:CAS:528:DyaL1MXktVenu78%3D
    • Barkholt V, Jensen AL. Amino acid analysis: Determination of cysteine plus half-cystine in proteins after hydrochloric acid hydrolysis with a disulfide compound as additive. Anal Biochem. 1989;177:318-22.
    • (1989) Anal Biochem , vol.177 , pp. 318-322
    • Barkholt, V.1    Jensen, A.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.