메뉴 건너뛰기




Volumn 113, Issue 28, 2016, Pages 7816-7821

Structure of the human 26S proteasome at a resolution of 3.9 Å

Author keywords

AAA ATPase; Cryo electron microscopy; Integrative modeling; Proteostasis

Indexed keywords

26S PROTEASOME; ADENOSINE DIPHOSPHATE; ADENOSINE TRIPHOSPHATASE; ADENOSINE TRIPHOSPHATE; PROTEASOME; PROTEIN RPN1; PROTEIN RPN2; PROTEIN RPN3; PROTEIN RPT6; UNCLASSIFIED DRUG; ATP DEPENDENT 26S PROTEASE;

EID: 84978042613     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1608050113     Document Type: Article
Times cited : (168)

References (69)
  • 1
    • 0032867676 scopus 로고    scopus 로고
    • The 26S proteasome: A molecular machine designed for controlled proteolysis
    • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015-1068.
    • (1999) Annu Rev Biochem , vol.68 , pp. 1015-1068
    • Voges, D.1    Zwickl, P.2    Baumeister, W.3
  • 2
    • 84952639230 scopus 로고    scopus 로고
    • Gates, channels, and switches: Elements of the proteasome machine
    • Finley D, Chen X, Walters KJ (2016) Gates, channels, and switches: Elements of the proteasome machine. Trends Biochem Sci 41(1):77-93.
    • (2016) Trends Biochem Sci , vol.41 , Issue.1 , pp. 77-93
    • Finley, D.1    Chen, X.2    Walters, K.J.3
  • 3
    • 84954168039 scopus 로고    scopus 로고
    • Structure-driven developments of 26S proteasome inhibitors
    • Śledź P, Baumeister W (2016) Structure-driven developments of 26S proteasome inhibitors. Annu Rev Pharmacol Toxicol 56:191-209.
    • (2016) Annu Rev Pharmacol Toxicol , vol.56 , pp. 191-209
    • Śledź, P.1    Baumeister, W.2
  • 4
    • 84921752079 scopus 로고    scopus 로고
    • Proteasomes: A molecular census of 26S proteasomes in intact neurons
    • Asano S, et al. (2015) Proteasomes: A molecular census of 26S proteasomes in intact neurons. Science 347(6220):439-442.
    • (2015) Science , vol.347 , Issue.6220 , pp. 439-442
    • Asano, S.1
  • 5
    • 0029042511 scopus 로고
    • Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution
    • Löwe J, et al. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268(5210):533-539.
    • (1995) Science , vol.268 , Issue.5210 , pp. 533-539
    • Löwe, J.1
  • 6
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2.4 A resolution
    • Groll M, et al. (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463-471.
    • (1997) Nature , vol.386 , Issue.6624 , pp. 463-471
    • Groll, M.1
  • 7
    • 0036103598 scopus 로고    scopus 로고
    • The structure of the mammalian 20S proteasome at 2.75 A resolution
    • Unno M, et al. (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 10(5):609-618.
    • (2002) Structure , vol.10 , Issue.5 , pp. 609-618
    • Unno, M.1
  • 8
    • 84883472009 scopus 로고    scopus 로고
    • Unveiling the long-held secrets of the 26S proteasome
    • Förster F, Unverdorben P, Sledz P, Baumeister W (2013) Unveiling the long-held secrets of the 26S proteasome. Structure 21(9):1551-1562.
    • (2013) Structure , vol.21 , Issue.9 , pp. 1551-1562
    • Förster, F.1    Unverdorben, P.2    Sledz, P.3    Baumeister, W.4
  • 9
    • 84960934506 scopus 로고    scopus 로고
    • Structure of an endogenous yeast 26S proteasome reveals two major conformational states
    • Luan B, et al. (2016) Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA 113(10):2642-2647.
    • (2016) Proc Natl Acad Sci USA , vol.113 , Issue.10 , pp. 2642-2647
    • Luan, B.1
  • 10
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • Lander GC, et al. (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186-191.
    • (2012) Nature , vol.482 , Issue.7384 , pp. 186-191
    • Lander, G.C.1
  • 11
    • 84898807479 scopus 로고    scopus 로고
    • Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
    • Unverdorben P, et al. (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 111(15):5544-5549.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.15 , pp. 5544-5549
    • Unverdorben, P.1
  • 12
    • 84857134729 scopus 로고    scopus 로고
    • Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
    • Lasker K, et al. (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 109(5):1380-1387.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.5 , pp. 1380-1387
    • Lasker, K.1
  • 13
    • 84866269021 scopus 로고    scopus 로고
    • Near-atomic resolution structural model of the yeast 26S proteasome
    • Beck F, et al. (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA 109(37):14870-14875.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.37 , pp. 14870-14875
    • Beck, F.1
  • 14
    • 84960914544 scopus 로고    scopus 로고
    • Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
    • Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC (2016) Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 5:e13027.
    • (2016) eLife , vol.5
    • Dambacher, C.M.1    Worden, E.J.2    Herzik, M.A.3    Martin, A.4    Lander, G.C.5
  • 15
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela ME, Lander GC, Martin A (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 20(7):781-788.
    • (2013) Nat Struct Mol Biol , vol.20 , Issue.7 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 16
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • Śledź P, et al. (2013) Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA 110(18):7264-7269.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.18 , pp. 7264-7269
    • Śledź, P.1
  • 17
    • 84959019581 scopus 로고    scopus 로고
    • Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
    • Shi Y, et al. (2016) Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 351(6275):831.
    • (2016) Science , vol.351 , Issue.6275 , pp. 831
    • Shi, Y.1
  • 18
    • 0029806477 scopus 로고    scopus 로고
    • The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
    • van Nocker S, et al. (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16(11):6020-6028.
    • (1996) Mol Cell Biol , vol.16 , Issue.11 , pp. 6020-6028
    • Van Nocker, S.1
  • 19
    • 44349116590 scopus 로고    scopus 로고
    • Proteasome subunit Rpn13 is a novel ubiquitin receptor
    • Husnjak K, et al. (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453(7194):481-488.
    • (2008) Nature , vol.453 , Issue.7194 , pp. 481-488
    • Husnjak, K.1
  • 20
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419(6905):403-407.
    • (2002) Nature , vol.419 , Issue.6905 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 21
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma R, et al. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593):611-615.
    • (2002) Science , vol.298 , Issue.5593 , pp. 611-615
    • Verma, R.1
  • 22
    • 84859702750 scopus 로고    scopus 로고
    • Molecular model of the human 26S proteasome
    • da Fonseca PC, He J, Morris EP (2012) Molecular model of the human 26S proteasome. Mol Cell 46(1):54-66.
    • (2012) Mol Cell , vol.46 , Issue.1 , pp. 54-66
    • Da Fonseca, P.C.1    He, J.2    Morris, E.P.3
  • 23
    • 33749069075 scopus 로고    scopus 로고
    • ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome
    • Liu CW, et al. (2006) ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell 24(1):39-50.
    • (2006) Mol Cell , vol.24 , Issue.1 , pp. 39-50
    • Liu, C.W.1
  • 24
    • 79956322553 scopus 로고    scopus 로고
    • Global quantification of mammalian gene expression control
    • Schwanhäusser B, et al. (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337-342.
    • (2011) Nature , vol.473 , Issue.7347 , pp. 337-342
    • Schwanhäusser, B.1
  • 25
    • 77951972141 scopus 로고    scopus 로고
    • Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2
    • Chen X, Lee BH, Finley D, Walters KJ (2010) Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol Cell 38(3):404-415.
    • (2010) Mol Cell , vol.38 , Issue.3 , pp. 404-415
    • Chen, X.1    Lee, B.H.2    Finley, D.3    Walters, K.J.4
  • 26
    • 84878551013 scopus 로고    scopus 로고
    • The proteasome under the microscope: The regulatory particle in focus
    • Lander GC, Martin A, Nogales E (2013) The proteasome under the microscope: The regulatory particle in focus. Curr Opin Struct Biol 23(2):243-251.
    • (2013) Curr Opin Struct Biol , vol.23 , Issue.2 , pp. 243-251
    • Lander, G.C.1    Martin, A.2    Nogales, E.3
  • 27
    • 84978399515 scopus 로고    scopus 로고
    • Computational methodologies for real-space structural refinement of large macromolecular complexes
    • Goh BC, et al. (2016) Computational methodologies for real-space structural refinement of large macromolecular complexes. Annu Rev Biophys 45:253-278.
    • (2016) Annu Rev Biophys , vol.45 , pp. 253-278
    • Goh, B.C.1
  • 28
    • 84926161673 scopus 로고    scopus 로고
    • Molecular dynamics simulations of large macromolecular complexes
    • Perilla JR, et al. (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64-74.
    • (2015) Curr Opin Struct Biol , vol.31 , pp. 64-74
    • Perilla, J.R.1
  • 29
    • 53149123284 scopus 로고    scopus 로고
    • Structure of the human 26S proteasome: Subunit radial displacements open the gate into the proteolytic core
    • da Fonseca PC, Morris EP (2008) Structure of the human 26S proteasome: Subunit radial displacements open the gate into the proteolytic core. J Biol Chem 283(34):23305-23314.
    • (2008) J Biol Chem , vol.283 , Issue.34 , pp. 23305-23314
    • Da Fonseca, P.C.1    Morris, E.P.2
  • 30
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
    • Smith DM, et al. (2007) Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol Cell 27(5):731-744.
    • (2007) Mol Cell , vol.27 , Issue.5 , pp. 731-744
    • Smith, D.M.1
  • 31
    • 80555130924 scopus 로고    scopus 로고
    • An asymmetric interface between the regulatory and core particles of the proteasome
    • Tian G, et al. (2011) An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18(11):1259-1267.
    • (2011) Nat Struct Mol Biol , vol.18 , Issue.11 , pp. 1259-1267
    • Tian, G.1
  • 32
    • 84892882219 scopus 로고    scopus 로고
    • Marching to the beat of the ring: Polypeptide translocation by AAA+ proteases
    • Nyquist K, Martin A (2014) Marching to the beat of the ring: Polypeptide translocation by AAA+ proteases. Trends Biochem Sci 39(2):53-60.
    • (2014) Trends Biochem Sci , vol.39 , Issue.2 , pp. 53-60
    • Nyquist, K.1    Martin, A.2
  • 33
    • 84855198520 scopus 로고    scopus 로고
    • Structure and function of the AAA+ nucleotide binding pocket
    • Wendler P, Ciniawsky S, Kock M, Kube S (2012) Structure and function of the AAA+ nucleotide binding pocket. Biochim Biophys Acta 1823(1):2-14.
    • (2012) Biochim Biophys Acta , vol.1823 , Issue.1 , pp. 2-14
    • Wendler, P.1    Ciniawsky, S.2    Kock, M.3    Kube, S.4
  • 34
    • 79959389010 scopus 로고    scopus 로고
    • AAA+ proteases: ATP-fueled machines of protein destruction
    • Sauer RT, Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587-612.
    • (2011) Annu Rev Biochem , vol.80 , pp. 587-612
    • Sauer, R.T.1    Baker, T.A.2
  • 35
    • 79951707743 scopus 로고    scopus 로고
    • ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
    • Smith DM, Fraga H, Reis C, Kafri G, Goldberg AL (2011) ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144(4):526-538.
    • (2011) Cell , vol.144 , Issue.4 , pp. 526-538
    • Smith, D.M.1    Fraga, H.2    Reis, C.3    Kafri, G.4    Goldberg, A.L.5
  • 36
    • 65649091692 scopus 로고    scopus 로고
    • Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F, et al. (2009) Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34(4):473-484.
    • (2009) Mol Cell , vol.34 , Issue.4 , pp. 473-484
    • Zhang, F.1
  • 37
    • 0032483546 scopus 로고    scopus 로고
    • A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
    • Glickman MH, et al. (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94(5):615-623.
    • (1998) Cell , vol.94 , Issue.5 , pp. 615-623
    • Glickman, M.H.1
  • 38
    • 84922539969 scopus 로고    scopus 로고
    • Dss1 is a 26S proteasome ubiquitin receptor
    • Paraskevopoulos K, et al. (2014) Dss1 is a 26S proteasome ubiquitin receptor. Mol Cell 56(3):453-461.
    • (2014) Mol Cell , vol.56 , Issue.3 , pp. 453-461
    • Paraskevopoulos, K.1
  • 39
    • 84878438614 scopus 로고    scopus 로고
    • Localization of the regulatory particle subunit Sem1 in the 26S proteasome
    • Bohn S, et al. (2013) Localization of the regulatory particle subunit Sem1 in the 26S proteasome. Biochem Biophys Res Commun 435(2):250-254.
    • (2013) Biochem Biophys Res Commun , vol.435 , Issue.2 , pp. 250-254
    • Bohn, S.1
  • 40
    • 84896856969 scopus 로고    scopus 로고
    • Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
    • Pathare GR, et al. (2014) Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc Natl Acad Sci USA 111(8):2984-2989.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.8 , pp. 2984-2989
    • Pathare, G.R.1
  • 41
    • 84895868714 scopus 로고    scopus 로고
    • Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
    • Worden EJ, Padovani C, Martin A (2014) Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol 21(3):220-227.
    • (2014) Nat Struct Mol Biol , vol.21 , Issue.3 , pp. 220-227
    • Worden, E.J.1    Padovani, C.2    Martin, A.3
  • 42
    • 84958883175 scopus 로고    scopus 로고
    • 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition
    • Banerjee S, et al. (2016) 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351(6275):871-875.
    • (2016) Science , vol.351 , Issue.6275 , pp. 871-875
    • Banerjee, S.1
  • 43
    • 13844264476 scopus 로고    scopus 로고
    • TOM software toolbox: Acquisition and analysis for electron tomography
    • Nickell S, et al. (2005) TOM software toolbox: Acquisition and analysis for electron tomography. J Struct Biol 149(3):227-234.
    • (2005) J Struct Biol , vol.149 , Issue.3 , pp. 227-234
    • Nickell, S.1
  • 44
    • 84868444740 scopus 로고    scopus 로고
    • RELION: Implementation of a Bayesian approach to cryo-EM structure determination
    • Scheres SH (2012) RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180(3):519-530.
    • (2012) J Struct Biol , vol.180 , Issue.3 , pp. 519-530
    • Scheres, S.H.1
  • 45
    • 70349267547 scopus 로고    scopus 로고
    • Molecular dynamics flexible fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography
    • Trabuco LG, Villa E, Schreiner E, Harrison CB, Schulten K (2009) Molecular dynamics flexible fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49(2):174-180.
    • (2009) Methods , vol.49 , Issue.2 , pp. 174-180
    • Trabuco, L.G.1    Villa, E.2    Schreiner, E.3    Harrison, C.B.4    Schulten, K.5
  • 46
    • 84971222608 scopus 로고    scopus 로고
    • QwikMD-Integrative Molecular Dynamics Toolkit for novices and experts
    • Ribeiro JV, et al. (2016) QwikMD-Integrative Molecular Dynamics Toolkit for novices and experts. Sci Rep 6:26536-26540.
    • (2016) Sci Rep , vol.6 , pp. 26536-26540
    • Ribeiro, J.V.1
  • 48
    • 27344436659 scopus 로고    scopus 로고
    • Scalable molecular dynamics with NAMD
    • Phillips JC, et al. (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781-1802.
    • (2005) J Comput Chem , vol.26 , Issue.16 , pp. 1781-1802
    • Phillips, J.C.1
  • 49
    • 84907197082 scopus 로고    scopus 로고
    • Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
    • Cox J, et al. (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513-2526.
    • (2014) Mol Cell Proteomics , vol.13 , Issue.9 , pp. 2513-2526
    • Cox, J.1
  • 50
    • 4444335470 scopus 로고    scopus 로고
    • The ABC's (and XYZ's) of peptide sequencing
    • Steen H, Mann M (2004) The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell Biol 5(9):699-711.
    • (2004) Nat Rev Mol Cell Biol , vol.5 , Issue.9 , pp. 699-711
    • Steen, H.1    Mann, M.2
  • 51
    • 84937111175 scopus 로고    scopus 로고
    • Structural characterization of the interaction of Ubp6 with the 26S proteasome
    • Aufderheide A, et al. (2015) Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc Natl Acad Sci USA 112(28):8626-8631.
    • (2015) Proc Natl Acad Sci USA , vol.112 , Issue.28 , pp. 8626-8631
    • Aufderheide, A.1
  • 52
    • 84880848354 scopus 로고    scopus 로고
    • Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
    • Li X, et al. (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10(6):584-590.
    • (2013) Nat Methods , vol.10 , Issue.6 , pp. 584-590
    • Li, X.1
  • 53
    • 84946488108 scopus 로고    scopus 로고
    • CTFFIND4: Fast and accurate defocus estimation from electron micrographs
    • Rohou A, Grigorieff N (2015) CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192(2):216-221.
    • (2015) J Struct Biol , vol.192 , Issue.2 , pp. 216-221
    • Rohou, A.1    Grigorieff, N.2
  • 54
    • 84920942671 scopus 로고    scopus 로고
    • Beam-induced motion correction for sub-megadalton cryo-EM particles
    • Scheres SH (2014) Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3:e03665.
    • (2014) eLife , vol.3
    • Scheres, S.H.1
  • 55
    • 84887242753 scopus 로고    scopus 로고
    • One number does not fit all: Mapping local variations in resolution in cryo-EM reconstructions
    • Cardone G, Heymann JB, Steven AC (2013) One number does not fit all: Mapping local variations in resolution in cryo-EM reconstructions. J Struct Biol 184(2):226-236.
    • (2013) J Struct Biol , vol.184 , Issue.2 , pp. 226-236
    • Cardone, G.1    Heymann, J.B.2    Steven, A.C.3
  • 56
    • 33845345287 scopus 로고    scopus 로고
    • Visualizing density maps with UCSF Chimera
    • Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157(1):281-287.
    • (2007) J Struct Biol , vol.157 , Issue.1 , pp. 281-287
    • Goddard, T.D.1    Huang, C.C.2    Ferrin, T.E.3
  • 57
    • 84930188528 scopus 로고    scopus 로고
    • Crystal structure of the human 20S proteasome in complex with carfilzomib
    • Harshbarger W, Miller C, Diedrich C, Sacchettini J (2015) Crystal structure of the human 20S proteasome in complex with carfilzomib. Structure 23(2):418-424.
    • (2015) Structure , vol.23 , Issue.2 , pp. 418-424
    • Harshbarger, W.1    Miller, C.2    Diedrich, C.3    Sacchettini, J.4
  • 58
    • 0027136282 scopus 로고
    • Comparative protein modelling by satisfaction of spatial restraints
    • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779-815.
    • (1993) J Mol Biol , vol.234 , Issue.3 , pp. 779-815
    • Sali, A.1    Blundell, T.L.2
  • 59
    • 84857935771 scopus 로고    scopus 로고
    • The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings
    • He J, et al. (2012) The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings. Structure 20(3):513-521.
    • (2012) Structure , vol.20 , Issue.3 , pp. 513-521
    • He, J.1
  • 60
    • 78650905964 scopus 로고    scopus 로고
    • ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules
    • Leaver-Fay A, et al. (2011) ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545-574.
    • (2011) Methods Enzymol , vol.487 , pp. 545-574
    • Leaver-Fay, A.1
  • 61
    • 77950673061 scopus 로고    scopus 로고
    • Practically useful: What the Rosetta protein modeling suite can do for you
    • Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J (2010) Practically useful: What the Rosetta protein modeling suite can do for you. Biochemistry 49(14):2987-2998.
    • (2010) Biochemistry , vol.49 , Issue.14 , pp. 2987-2998
    • Kaufmann, K.W.1    Lemmon, G.H.2    Deluca, S.L.3    Sheehan, J.H.4    Meiler, J.5
  • 62
    • 42949089487 scopus 로고    scopus 로고
    • Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics
    • Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16(5):673-683.
    • (2008) Structure , vol.16 , Issue.5 , pp. 673-683
    • Trabuco, L.G.1    Villa, E.2    Mitra, K.3    Frank, J.4    Schulten, K.5
  • 63
    • 3142714765 scopus 로고    scopus 로고
    • Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations
    • Mackerell AD, Jr, Feig M, Brooks CL, III (2004) Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400-1415.
    • (2004) J Comput Chem , vol.25 , Issue.11 , pp. 1400-1415
    • Mackerell, A.D.1    Feig, M.2    Brooks, C.L.3
  • 64
    • 84908089880 scopus 로고    scopus 로고
    • GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting
    • Stone JE, McGreevy R, Isralewitz B, Schulten K (2014) GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. Faraday Discuss 169:265-283.
    • (2014) Faraday Discuss , vol.169 , pp. 265-283
    • Stone, J.E.1    McGreevy, R.2    Isralewitz, B.3    Schulten, K.4
  • 65
    • 78650918983 scopus 로고    scopus 로고
    • Alternate states of proteins revealed by detailed energy landscape mapping
    • Tyka MD, et al. (2011) Alternate states of proteins revealed by detailed energy landscape mapping. J Mol Biol 405(2):607-618.
    • (2011) J Mol Biol , vol.405 , Issue.2 , pp. 607-618
    • Tyka, M.D.1
  • 66
    • 84924365508 scopus 로고    scopus 로고
    • Improved cryoEM-Guided Iterative Molecular Dynamics: Rosetta protein structure refinement protocol for high precision protein structure prediction
    • Lindert S, McCammon JA (2015) Improved cryoEM-Guided Iterative Molecular Dynamics: Rosetta protein structure refinement protocol for high precision protein structure prediction. J Chem Theory Comput 11(3):1337-1346.
    • (2015) J Chem Theory Comput , vol.11 , Issue.3 , pp. 1337-1346
    • Lindert, S.1    McCammon, J.A.2
  • 67
    • 84922065877 scopus 로고    scopus 로고
    • The complete structure of the large subunit of the mammalian mitochondrial ribosome
    • Greber BJ, et al. (2014) The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature 515(7526):283-286.
    • (2014) Nature , vol.515 , Issue.7526 , pp. 283-286
    • Greber, B.J.1
  • 68
    • 14244272868 scopus 로고    scopus 로고
    • PHENIX: Building new software for automated crystallographic structure determination
    • Adams PD, et al. (2002) PHENIX: Building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58(Pt 11):1948-1954.
    • (2002) Acta Crystallogr D Biol Crystallogr , vol.58 , pp. 1948-1954
    • Adams, P.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.