-
1
-
-
0032867676
-
The 26S proteasome: A molecular machine designed for controlled proteolysis
-
Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015-1068.
-
(1999)
Annu Rev Biochem
, vol.68
, pp. 1015-1068
-
-
Voges, D.1
Zwickl, P.2
Baumeister, W.3
-
2
-
-
84952639230
-
Gates, channels, and switches: Elements of the proteasome machine
-
Finley D, Chen X, Walters KJ (2016) Gates, channels, and switches: Elements of the proteasome machine. Trends Biochem Sci 41(1):77-93.
-
(2016)
Trends Biochem Sci
, vol.41
, Issue.1
, pp. 77-93
-
-
Finley, D.1
Chen, X.2
Walters, K.J.3
-
3
-
-
84954168039
-
Structure-driven developments of 26S proteasome inhibitors
-
Śledź P, Baumeister W (2016) Structure-driven developments of 26S proteasome inhibitors. Annu Rev Pharmacol Toxicol 56:191-209.
-
(2016)
Annu Rev Pharmacol Toxicol
, vol.56
, pp. 191-209
-
-
Śledź, P.1
Baumeister, W.2
-
4
-
-
84921752079
-
Proteasomes: A molecular census of 26S proteasomes in intact neurons
-
Asano S, et al. (2015) Proteasomes: A molecular census of 26S proteasomes in intact neurons. Science 347(6220):439-442.
-
(2015)
Science
, vol.347
, Issue.6220
, pp. 439-442
-
-
Asano, S.1
-
5
-
-
0029042511
-
Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution
-
Löwe J, et al. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268(5210):533-539.
-
(1995)
Science
, vol.268
, Issue.5210
, pp. 533-539
-
-
Löwe, J.1
-
6
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4 A resolution
-
Groll M, et al. (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463-471.
-
(1997)
Nature
, vol.386
, Issue.6624
, pp. 463-471
-
-
Groll, M.1
-
7
-
-
0036103598
-
The structure of the mammalian 20S proteasome at 2.75 A resolution
-
Unno M, et al. (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure 10(5):609-618.
-
(2002)
Structure
, vol.10
, Issue.5
, pp. 609-618
-
-
Unno, M.1
-
8
-
-
84883472009
-
Unveiling the long-held secrets of the 26S proteasome
-
Förster F, Unverdorben P, Sledz P, Baumeister W (2013) Unveiling the long-held secrets of the 26S proteasome. Structure 21(9):1551-1562.
-
(2013)
Structure
, vol.21
, Issue.9
, pp. 1551-1562
-
-
Förster, F.1
Unverdorben, P.2
Sledz, P.3
Baumeister, W.4
-
9
-
-
84960934506
-
Structure of an endogenous yeast 26S proteasome reveals two major conformational states
-
Luan B, et al. (2016) Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA 113(10):2642-2647.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, Issue.10
, pp. 2642-2647
-
-
Luan, B.1
-
10
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander GC, et al. (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482(7384):186-191.
-
(2012)
Nature
, vol.482
, Issue.7384
, pp. 186-191
-
-
Lander, G.C.1
-
11
-
-
84898807479
-
Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
-
Unverdorben P, et al. (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 111(15):5544-5549.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.15
, pp. 5544-5549
-
-
Unverdorben, P.1
-
12
-
-
84857134729
-
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
-
Lasker K, et al. (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 109(5):1380-1387.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.5
, pp. 1380-1387
-
-
Lasker, K.1
-
13
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck F, et al. (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA 109(37):14870-14875.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.37
, pp. 14870-14875
-
-
Beck, F.1
-
14
-
-
84960914544
-
Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
-
Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC (2016) Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 5:e13027.
-
(2016)
eLife
, vol.5
-
-
Dambacher, C.M.1
Worden, E.J.2
Herzik, M.A.3
Martin, A.4
Lander, G.C.5
-
15
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela ME, Lander GC, Martin A (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 20(7):781-788.
-
(2013)
Nat Struct Mol Biol
, vol.20
, Issue.7
, pp. 781-788
-
-
Matyskiela, M.E.1
Lander, G.C.2
Martin, A.3
-
16
-
-
84876909425
-
Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
-
Śledź P, et al. (2013) Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA 110(18):7264-7269.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.18
, pp. 7264-7269
-
-
Śledź, P.1
-
17
-
-
84959019581
-
Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
-
Shi Y, et al. (2016) Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 351(6275):831.
-
(2016)
Science
, vol.351
, Issue.6275
, pp. 831
-
-
Shi, Y.1
-
18
-
-
0029806477
-
The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
-
van Nocker S, et al. (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16(11):6020-6028.
-
(1996)
Mol Cell Biol
, vol.16
, Issue.11
, pp. 6020-6028
-
-
Van Nocker, S.1
-
19
-
-
44349116590
-
Proteasome subunit Rpn13 is a novel ubiquitin receptor
-
Husnjak K, et al. (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453(7194):481-488.
-
(2008)
Nature
, vol.453
, Issue.7194
, pp. 481-488
-
-
Husnjak, K.1
-
20
-
-
0037179694
-
A cryptic protease couples deubiquitination and degradation by the proteasome
-
Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419(6905):403-407.
-
(2002)
Nature
, vol.419
, Issue.6905
, pp. 403-407
-
-
Yao, T.1
Cohen, R.E.2
-
21
-
-
0037131243
-
Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
-
Verma R, et al. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298(5593):611-615.
-
(2002)
Science
, vol.298
, Issue.5593
, pp. 611-615
-
-
Verma, R.1
-
22
-
-
84859702750
-
Molecular model of the human 26S proteasome
-
da Fonseca PC, He J, Morris EP (2012) Molecular model of the human 26S proteasome. Mol Cell 46(1):54-66.
-
(2012)
Mol Cell
, vol.46
, Issue.1
, pp. 54-66
-
-
Da Fonseca, P.C.1
He, J.2
Morris, E.P.3
-
23
-
-
33749069075
-
ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome
-
Liu CW, et al. (2006) ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell 24(1):39-50.
-
(2006)
Mol Cell
, vol.24
, Issue.1
, pp. 39-50
-
-
Liu, C.W.1
-
24
-
-
79956322553
-
Global quantification of mammalian gene expression control
-
Schwanhäusser B, et al. (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337-342.
-
(2011)
Nature
, vol.473
, Issue.7347
, pp. 337-342
-
-
Schwanhäusser, B.1
-
25
-
-
77951972141
-
Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2
-
Chen X, Lee BH, Finley D, Walters KJ (2010) Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol Cell 38(3):404-415.
-
(2010)
Mol Cell
, vol.38
, Issue.3
, pp. 404-415
-
-
Chen, X.1
Lee, B.H.2
Finley, D.3
Walters, K.J.4
-
26
-
-
84878551013
-
The proteasome under the microscope: The regulatory particle in focus
-
Lander GC, Martin A, Nogales E (2013) The proteasome under the microscope: The regulatory particle in focus. Curr Opin Struct Biol 23(2):243-251.
-
(2013)
Curr Opin Struct Biol
, vol.23
, Issue.2
, pp. 243-251
-
-
Lander, G.C.1
Martin, A.2
Nogales, E.3
-
27
-
-
84978399515
-
Computational methodologies for real-space structural refinement of large macromolecular complexes
-
Goh BC, et al. (2016) Computational methodologies for real-space structural refinement of large macromolecular complexes. Annu Rev Biophys 45:253-278.
-
(2016)
Annu Rev Biophys
, vol.45
, pp. 253-278
-
-
Goh, B.C.1
-
28
-
-
84926161673
-
Molecular dynamics simulations of large macromolecular complexes
-
Perilla JR, et al. (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64-74.
-
(2015)
Curr Opin Struct Biol
, vol.31
, pp. 64-74
-
-
Perilla, J.R.1
-
29
-
-
53149123284
-
Structure of the human 26S proteasome: Subunit radial displacements open the gate into the proteolytic core
-
da Fonseca PC, Morris EP (2008) Structure of the human 26S proteasome: Subunit radial displacements open the gate into the proteolytic core. J Biol Chem 283(34):23305-23314.
-
(2008)
J Biol Chem
, vol.283
, Issue.34
, pp. 23305-23314
-
-
Da Fonseca, P.C.1
Morris, E.P.2
-
30
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
-
Smith DM, et al. (2007) Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol Cell 27(5):731-744.
-
(2007)
Mol Cell
, vol.27
, Issue.5
, pp. 731-744
-
-
Smith, D.M.1
-
31
-
-
80555130924
-
An asymmetric interface between the regulatory and core particles of the proteasome
-
Tian G, et al. (2011) An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18(11):1259-1267.
-
(2011)
Nat Struct Mol Biol
, vol.18
, Issue.11
, pp. 1259-1267
-
-
Tian, G.1
-
32
-
-
84892882219
-
Marching to the beat of the ring: Polypeptide translocation by AAA+ proteases
-
Nyquist K, Martin A (2014) Marching to the beat of the ring: Polypeptide translocation by AAA+ proteases. Trends Biochem Sci 39(2):53-60.
-
(2014)
Trends Biochem Sci
, vol.39
, Issue.2
, pp. 53-60
-
-
Nyquist, K.1
Martin, A.2
-
33
-
-
84855198520
-
Structure and function of the AAA+ nucleotide binding pocket
-
Wendler P, Ciniawsky S, Kock M, Kube S (2012) Structure and function of the AAA+ nucleotide binding pocket. Biochim Biophys Acta 1823(1):2-14.
-
(2012)
Biochim Biophys Acta
, vol.1823
, Issue.1
, pp. 2-14
-
-
Wendler, P.1
Ciniawsky, S.2
Kock, M.3
Kube, S.4
-
34
-
-
79959389010
-
AAA+ proteases: ATP-fueled machines of protein destruction
-
Sauer RT, Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587-612.
-
(2011)
Annu Rev Biochem
, vol.80
, pp. 587-612
-
-
Sauer, R.T.1
Baker, T.A.2
-
35
-
-
79951707743
-
ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
-
Smith DM, Fraga H, Reis C, Kafri G, Goldberg AL (2011) ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144(4):526-538.
-
(2011)
Cell
, vol.144
, Issue.4
, pp. 526-538
-
-
Smith, D.M.1
Fraga, H.2
Reis, C.3
Kafri, G.4
Goldberg, A.L.5
-
36
-
-
65649091692
-
Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F, et al. (2009) Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34(4):473-484.
-
(2009)
Mol Cell
, vol.34
, Issue.4
, pp. 473-484
-
-
Zhang, F.1
-
37
-
-
0032483546
-
A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
-
Glickman MH, et al. (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94(5):615-623.
-
(1998)
Cell
, vol.94
, Issue.5
, pp. 615-623
-
-
Glickman, M.H.1
-
38
-
-
84922539969
-
Dss1 is a 26S proteasome ubiquitin receptor
-
Paraskevopoulos K, et al. (2014) Dss1 is a 26S proteasome ubiquitin receptor. Mol Cell 56(3):453-461.
-
(2014)
Mol Cell
, vol.56
, Issue.3
, pp. 453-461
-
-
Paraskevopoulos, K.1
-
39
-
-
84878438614
-
Localization of the regulatory particle subunit Sem1 in the 26S proteasome
-
Bohn S, et al. (2013) Localization of the regulatory particle subunit Sem1 in the 26S proteasome. Biochem Biophys Res Commun 435(2):250-254.
-
(2013)
Biochem Biophys Res Commun
, vol.435
, Issue.2
, pp. 250-254
-
-
Bohn, S.1
-
40
-
-
84896856969
-
Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
-
Pathare GR, et al. (2014) Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc Natl Acad Sci USA 111(8):2984-2989.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.8
, pp. 2984-2989
-
-
Pathare, G.R.1
-
41
-
-
84895868714
-
Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
-
Worden EJ, Padovani C, Martin A (2014) Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol 21(3):220-227.
-
(2014)
Nat Struct Mol Biol
, vol.21
, Issue.3
, pp. 220-227
-
-
Worden, E.J.1
Padovani, C.2
Martin, A.3
-
42
-
-
84958883175
-
2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition
-
Banerjee S, et al. (2016) 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351(6275):871-875.
-
(2016)
Science
, vol.351
, Issue.6275
, pp. 871-875
-
-
Banerjee, S.1
-
43
-
-
13844264476
-
TOM software toolbox: Acquisition and analysis for electron tomography
-
Nickell S, et al. (2005) TOM software toolbox: Acquisition and analysis for electron tomography. J Struct Biol 149(3):227-234.
-
(2005)
J Struct Biol
, vol.149
, Issue.3
, pp. 227-234
-
-
Nickell, S.1
-
44
-
-
84868444740
-
RELION: Implementation of a Bayesian approach to cryo-EM structure determination
-
Scheres SH (2012) RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180(3):519-530.
-
(2012)
J Struct Biol
, vol.180
, Issue.3
, pp. 519-530
-
-
Scheres, S.H.1
-
45
-
-
70349267547
-
Molecular dynamics flexible fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography
-
Trabuco LG, Villa E, Schreiner E, Harrison CB, Schulten K (2009) Molecular dynamics flexible fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49(2):174-180.
-
(2009)
Methods
, vol.49
, Issue.2
, pp. 174-180
-
-
Trabuco, L.G.1
Villa, E.2
Schreiner, E.3
Harrison, C.B.4
Schulten, K.5
-
46
-
-
84971222608
-
QwikMD-Integrative Molecular Dynamics Toolkit for novices and experts
-
Ribeiro JV, et al. (2016) QwikMD-Integrative Molecular Dynamics Toolkit for novices and experts. Sci Rep 6:26536-26540.
-
(2016)
Sci Rep
, vol.6
, pp. 26536-26540
-
-
Ribeiro, J.V.1
-
48
-
-
27344436659
-
Scalable molecular dynamics with NAMD
-
Phillips JC, et al. (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781-1802.
-
(2005)
J Comput Chem
, vol.26
, Issue.16
, pp. 1781-1802
-
-
Phillips, J.C.1
-
49
-
-
84907197082
-
Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
-
Cox J, et al. (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513-2526.
-
(2014)
Mol Cell Proteomics
, vol.13
, Issue.9
, pp. 2513-2526
-
-
Cox, J.1
-
50
-
-
4444335470
-
The ABC's (and XYZ's) of peptide sequencing
-
Steen H, Mann M (2004) The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell Biol 5(9):699-711.
-
(2004)
Nat Rev Mol Cell Biol
, vol.5
, Issue.9
, pp. 699-711
-
-
Steen, H.1
Mann, M.2
-
51
-
-
84937111175
-
Structural characterization of the interaction of Ubp6 with the 26S proteasome
-
Aufderheide A, et al. (2015) Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc Natl Acad Sci USA 112(28):8626-8631.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.28
, pp. 8626-8631
-
-
Aufderheide, A.1
-
52
-
-
84880848354
-
Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
-
Li X, et al. (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10(6):584-590.
-
(2013)
Nat Methods
, vol.10
, Issue.6
, pp. 584-590
-
-
Li, X.1
-
53
-
-
84946488108
-
CTFFIND4: Fast and accurate defocus estimation from electron micrographs
-
Rohou A, Grigorieff N (2015) CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192(2):216-221.
-
(2015)
J Struct Biol
, vol.192
, Issue.2
, pp. 216-221
-
-
Rohou, A.1
Grigorieff, N.2
-
54
-
-
84920942671
-
Beam-induced motion correction for sub-megadalton cryo-EM particles
-
Scheres SH (2014) Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3:e03665.
-
(2014)
eLife
, vol.3
-
-
Scheres, S.H.1
-
55
-
-
84887242753
-
One number does not fit all: Mapping local variations in resolution in cryo-EM reconstructions
-
Cardone G, Heymann JB, Steven AC (2013) One number does not fit all: Mapping local variations in resolution in cryo-EM reconstructions. J Struct Biol 184(2):226-236.
-
(2013)
J Struct Biol
, vol.184
, Issue.2
, pp. 226-236
-
-
Cardone, G.1
Heymann, J.B.2
Steven, A.C.3
-
56
-
-
33845345287
-
Visualizing density maps with UCSF Chimera
-
Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157(1):281-287.
-
(2007)
J Struct Biol
, vol.157
, Issue.1
, pp. 281-287
-
-
Goddard, T.D.1
Huang, C.C.2
Ferrin, T.E.3
-
57
-
-
84930188528
-
Crystal structure of the human 20S proteasome in complex with carfilzomib
-
Harshbarger W, Miller C, Diedrich C, Sacchettini J (2015) Crystal structure of the human 20S proteasome in complex with carfilzomib. Structure 23(2):418-424.
-
(2015)
Structure
, vol.23
, Issue.2
, pp. 418-424
-
-
Harshbarger, W.1
Miller, C.2
Diedrich, C.3
Sacchettini, J.4
-
58
-
-
0027136282
-
Comparative protein modelling by satisfaction of spatial restraints
-
Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779-815.
-
(1993)
J Mol Biol
, vol.234
, Issue.3
, pp. 779-815
-
-
Sali, A.1
Blundell, T.L.2
-
59
-
-
84857935771
-
The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings
-
He J, et al. (2012) The structure of the 26S proteasome subunit Rpn2 reveals its PC repeat domain as a closed toroid of two concentric α-helical rings. Structure 20(3):513-521.
-
(2012)
Structure
, vol.20
, Issue.3
, pp. 513-521
-
-
He, J.1
-
60
-
-
78650905964
-
ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules
-
Leaver-Fay A, et al. (2011) ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545-574.
-
(2011)
Methods Enzymol
, vol.487
, pp. 545-574
-
-
Leaver-Fay, A.1
-
61
-
-
77950673061
-
Practically useful: What the Rosetta protein modeling suite can do for you
-
Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J (2010) Practically useful: What the Rosetta protein modeling suite can do for you. Biochemistry 49(14):2987-2998.
-
(2010)
Biochemistry
, vol.49
, Issue.14
, pp. 2987-2998
-
-
Kaufmann, K.W.1
Lemmon, G.H.2
Deluca, S.L.3
Sheehan, J.H.4
Meiler, J.5
-
62
-
-
42949089487
-
Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics
-
Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16(5):673-683.
-
(2008)
Structure
, vol.16
, Issue.5
, pp. 673-683
-
-
Trabuco, L.G.1
Villa, E.2
Mitra, K.3
Frank, J.4
Schulten, K.5
-
63
-
-
3142714765
-
Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations
-
Mackerell AD, Jr, Feig M, Brooks CL, III (2004) Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400-1415.
-
(2004)
J Comput Chem
, vol.25
, Issue.11
, pp. 1400-1415
-
-
Mackerell, A.D.1
Feig, M.2
Brooks, C.L.3
-
64
-
-
84908089880
-
GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting
-
Stone JE, McGreevy R, Isralewitz B, Schulten K (2014) GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. Faraday Discuss 169:265-283.
-
(2014)
Faraday Discuss
, vol.169
, pp. 265-283
-
-
Stone, J.E.1
McGreevy, R.2
Isralewitz, B.3
Schulten, K.4
-
65
-
-
78650918983
-
Alternate states of proteins revealed by detailed energy landscape mapping
-
Tyka MD, et al. (2011) Alternate states of proteins revealed by detailed energy landscape mapping. J Mol Biol 405(2):607-618.
-
(2011)
J Mol Biol
, vol.405
, Issue.2
, pp. 607-618
-
-
Tyka, M.D.1
-
66
-
-
84924365508
-
Improved cryoEM-Guided Iterative Molecular Dynamics: Rosetta protein structure refinement protocol for high precision protein structure prediction
-
Lindert S, McCammon JA (2015) Improved cryoEM-Guided Iterative Molecular Dynamics: Rosetta protein structure refinement protocol for high precision protein structure prediction. J Chem Theory Comput 11(3):1337-1346.
-
(2015)
J Chem Theory Comput
, vol.11
, Issue.3
, pp. 1337-1346
-
-
Lindert, S.1
McCammon, J.A.2
-
67
-
-
84922065877
-
The complete structure of the large subunit of the mammalian mitochondrial ribosome
-
Greber BJ, et al. (2014) The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature 515(7526):283-286.
-
(2014)
Nature
, vol.515
, Issue.7526
, pp. 283-286
-
-
Greber, B.J.1
-
68
-
-
14244272868
-
PHENIX: Building new software for automated crystallographic structure determination
-
Adams PD, et al. (2002) PHENIX: Building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58(Pt 11):1948-1954.
-
(2002)
Acta Crystallogr D Biol Crystallogr
, vol.58
, pp. 1948-1954
-
-
Adams, P.D.1
|