메뉴 건너뛰기




Volumn 33, Issue 4, 2017, Pages 244-255

Genomics of Islet (Dys)function and Type 2 Diabetes

Author keywords

epigenomics; genomics; pancreatic islets; single cell; transcriptomics; Type 2 diabetes (T2D)

Indexed keywords

TRANSCRIPTOME;

EID: 85013785118     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2017.01.010     Document Type: Review
Times cited : (53)

References (101)
  • 1
    • 84943785470 scopus 로고    scopus 로고
    • Recent advances in understanding the genetic architecture of type 2 diabetes
    • 1 Mohlke, K.L., Boehnke, M., Recent advances in understanding the genetic architecture of type 2 diabetes. Hum. Mol. Genet. 24 (2015), R85–R92.
    • (2015) Hum. Mol. Genet. , vol.24 , pp. R85-R92
    • Mohlke, K.L.1    Boehnke, M.2
  • 2
    • 84887072795 scopus 로고    scopus 로고
    • Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants
    • 2 Parker, S.C.J., et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 17921–17926.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 17921-17926
    • Parker, S.C.J.1
  • 3
    • 84895806401 scopus 로고    scopus 로고
    • Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants
    • 3 Pasquali, L., et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46 (2014), 136–143.
    • (2014) Nat. Genet. , vol.46 , pp. 136-143
    • Pasquali, L.1
  • 4
    • 84923362619 scopus 로고    scopus 로고
    • Integrative analysis of 111 reference human epigenomes
    • 4 Roadmap Epigenomics Consortium, et al. Integrative analysis of 111 reference human epigenomes. Nature 518 (2015), 317–330.
    • (2015) Nature , vol.518 , pp. 317-330
    • Roadmap Epigenomics Consortium1
  • 5
    • 84937033679 scopus 로고    scopus 로고
    • Motif signatures in stretch enhancers are enriched for disease-associated genetic variants
    • 5 Quang, D.X., et al. Motif signatures in stretch enhancers are enriched for disease-associated genetic variants. Epigenetics Chromatin, 8, 2015, 23.
    • (2015) Epigenetics Chromatin , vol.8 , pp. 23
    • Quang, D.X.1
  • 6
    • 84873086126 scopus 로고    scopus 로고
    • Chromatin marks identify critical cell types for fine mapping complex trait variants
    • 6 Trynka, G., et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45 (2013), 124–130.
    • (2013) Nat. Genet. , vol.45 , pp. 124-130
    • Trynka, G.1
  • 7
    • 85000443086 scopus 로고    scopus 로고
    • Partitioning heritability by functional annotation using genome-wide association summary statistics
    • 7 Finucane, H.K., et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47 (2015), 1228–1235.
    • (2015) Nat. Genet. , vol.47 , pp. 1228-1235
    • Finucane, H.K.1
  • 8
    • 84939157781 scopus 로고    scopus 로고
    • Transcriptional regulation of the pancreatic islet: implications for islet function
    • 8 Stitzel, M.L., et al. Transcriptional regulation of the pancreatic islet: implications for islet function. Curr. Diab. Rep., 15, 2015, 66.
    • (2015) Curr. Diab. Rep. , vol.15 , pp. 66
    • Stitzel, M.L.1
  • 9
    • 84893763903 scopus 로고    scopus 로고
    • A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell
    • 9 Kulzer, J.R., et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am. J. Hum. Genet. 94 (2014), 186–197.
    • (2014) Am. J. Hum. Genet. , vol.94 , pp. 186-197
    • Kulzer, J.R.1
  • 10
    • 84907584433 scopus 로고    scopus 로고
    • Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus
    • 10 Fogarty, M.P., et al. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. PLOS Genet., 10, 2014, e1004633.
    • (2014) PLOS Genet. , vol.10 , pp. e1004633
    • Fogarty, M.P.1
  • 11
    • 84953234597 scopus 로고    scopus 로고
    • Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors
    • 11 van de Bunt, M., et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet., 11, 2015, e1005694.
    • (2015) PLoS Genet. , vol.11 , pp. e1005694
    • van de Bunt, M.1
  • 12
    • 84895868553 scopus 로고    scopus 로고
    • Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility
    • 12 DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46 (2014), 234–244.
    • (2014) Nat. Genet. , vol.46 , pp. 234-244
    • DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium1
  • 13
    • 84868337361 scopus 로고    scopus 로고
    • Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
    • 13 Morris, A.P., et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44 (2012), 981–990.
    • (2012) Nat. Genet. , vol.44 , pp. 981-990
    • Morris, A.P.1
  • 14
    • 84978128486 scopus 로고    scopus 로고
    • The genetic architecture of type 2 diabetes
    • 14 Fuchsberger, C., et al. The genetic architecture of type 2 diabetes. Nature 536 (2016), 41–47.
    • (2016) Nature , vol.536 , pp. 41-47
    • Fuchsberger, C.1
  • 15
    • 84948984088 scopus 로고    scopus 로고
    • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci
    • 15 Gaulton, K.J., et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47 (2015), 1415–1425.
    • (2015) Nat. Genet. , vol.47 , pp. 1415-1425
    • Gaulton, K.J.1
  • 16
    • 84888389414 scopus 로고    scopus 로고
    • Evaluating empirical bounds on complex disease genetic architecture
    • 16 Agarwala, V., et al. Evaluating empirical bounds on complex disease genetic architecture. Nat. Genet. 45 (2013), 1418–1427.
    • (2013) Nat. Genet. , vol.45 , pp. 1418-1427
    • Agarwala, V.1
  • 17
    • 80053405321 scopus 로고    scopus 로고
    • Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes
    • 17 Strawbridge, R.J., Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60 (2011), 2624–2634.
    • (2011) Diabetes , vol.60 , pp. 2624-2634
    • Strawbridge, R.J.1
  • 18
    • 84895858002 scopus 로고    scopus 로고
    • Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes
    • 18 Steinthorsdottir, V., Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat. Genet. 46 (2014), 294–298.
    • (2014) Nat. Genet. , vol.46 , pp. 294-298
    • Steinthorsdottir, V.1
  • 19
    • 84890397941 scopus 로고    scopus 로고
    • Genome-wide association study identifies three novel loci for type 2 diabetes
    • 19 Hara, K., et al. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum. Mol. Genet. 23 (2014), 239–246.
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 239-246
    • Hara, K.1
  • 20
    • 84921354808 scopus 로고    scopus 로고
    • The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus
    • 20 Aouacheri, O., et al. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can. J. Diabetes 39 (2015), 44–49.
    • (2015) Can. J. Diabetes , vol.39 , pp. 44-49
    • Aouacheri, O.1
  • 21
    • 84905190172 scopus 로고    scopus 로고
    • A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress
    • 21 Chaudhari, N., et al. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front. Cell. Neurosci., 8, 2014, 213.
    • (2014) Front. Cell. Neurosci. , vol.8 , pp. 213
    • Chaudhari, N.1
  • 22
    • 84922680373 scopus 로고    scopus 로고
    • Pancreatic beta cells are highly susceptible to oxidative and ER stresses during the development of diabetes
    • 22 Gorasia, D.G., et al. Pancreatic beta cells are highly susceptible to oxidative and ER stresses during the development of diabetes. J. Proteome Res. 14 (2015), 688–699.
    • (2015) J. Proteome Res. , vol.14 , pp. 688-699
    • Gorasia, D.G.1
  • 23
    • 84925857675 scopus 로고    scopus 로고
    • I'm eating for two: parental dietary effects on offspring metabolism
    • 23 Rando, O.J., Simmons, R.A., I'm eating for two: parental dietary effects on offspring metabolism. Cell 161 (2015), 93–105.
    • (2015) Cell , vol.161 , pp. 93-105
    • Rando, O.J.1    Simmons, R.A.2
  • 24
    • 84929026549 scopus 로고    scopus 로고
    • Type 2 diabetes mellitus: role of melatonin and oxidative stress
    • 24 Zephy, D., Ahmad, J., Type 2 diabetes mellitus: role of melatonin and oxidative stress. Diabetes Metab. Syndr. Clin. Res. Rev. 9 (2015), 127–131.
    • (2015) Diabetes Metab. Syndr. Clin. Res. Rev. , vol.9 , pp. 127-131
    • Zephy, D.1    Ahmad, J.2
  • 25
    • 33847677975 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes
    • 25 Laybutt, D.R., et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50 (2007), 752–763.
    • (2007) Diabetologia , vol.50 , pp. 752-763
    • Laybutt, D.R.1
  • 26
    • 34249885875 scopus 로고    scopus 로고
    • A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants
    • 26 Scott, L.J., et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316 (2007), 1341–1345.
    • (2007) Science , vol.316 , pp. 1341-1345
    • Scott, L.J.1
  • 27
    • 33847176604 scopus 로고    scopus 로고
    • A genome-wide association study identifies novel risk loci for type 2 diabetes
    • 27 Sladek, R., et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445 (2007), 881–885.
    • (2007) Nature , vol.445 , pp. 881-885
    • Sladek, R.1
  • 28
    • 84969213492 scopus 로고    scopus 로고
    • Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
    • 28 Burton, P.R., et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447 (2007), 661–678.
    • (2007) Nature , vol.447 , pp. 661-678
    • Burton, P.R.1
  • 29
    • 34249888775 scopus 로고    scopus 로고
    • Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels
    • 29 Diabetes Genetics Initiative of the Broad Institute of Harvard, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316 (2007), 1331–1336.
    • (2007) Science , vol.316 , pp. 1331-1336
    • Diabetes Genetics Initiative of the Broad Institute of Harvard1
  • 30
    • 84989888965 scopus 로고    scopus 로고
    • Trans-ethnic meta-analysis and functional annotation illuminates the genetic architecture of fasting glucose and insulin
    • 30 Liu, C.-T., et al. Trans-ethnic meta-analysis and functional annotation illuminates the genetic architecture of fasting glucose and insulin. Am. J. Hum. Genet. 99 (2016), 56–75.
    • (2016) Am. J. Hum. Genet. , vol.99 , pp. 56-75
    • Liu, C.-T.1
  • 31
    • 84907222786 scopus 로고    scopus 로고
    • Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism
    • 31 Fadista, J., et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 13924–13929.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 13924-13929
    • Fadista, J.1
  • 32
    • 78049446282 scopus 로고    scopus 로고
    • Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci
    • 32 Stitzel, M.L., et al. Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab. 12 (2010), 443–455.
    • (2010) Cell Metab. , vol.12 , pp. 443-455
    • Stitzel, M.L.1
  • 33
    • 84959177319 scopus 로고    scopus 로고
    • Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes
    • 33 Ackermann, A.M., et al. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol. Metab. 5 (2016), 233–244.
    • (2016) Mol. Metab. , vol.5 , pp. 233-244
    • Ackermann, A.M.1
  • 34
    • 84888015137 scopus 로고    scopus 로고
    • Super-enhancers in the control of cell identity and disease
    • 34 Hnisz, D., et al. Super-enhancers in the control of cell identity and disease. Cell 155 (2013), 934–947.
    • (2013) Cell , vol.155 , pp. 934-947
    • Hnisz, D.1
  • 35
    • 84960334782 scopus 로고    scopus 로고
    • The 3D genome as moderator of chromosomal communication
    • 35 Dekker, J., Mirny, L., The 3D genome as moderator of chromosomal communication. Cell 164 (2016), 1110–1121.
    • (2016) Cell , vol.164 , pp. 1110-1121
    • Dekker, J.1    Mirny, L.2
  • 36
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • 36 Lieberman-Aiden, E., Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326 (2009), 289–293.
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 37
    • 77953191060 scopus 로고    scopus 로고
    • ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing
    • 37 Li, G., et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol., 11, 2010, R22.
    • (2010) Genome Biol. , vol.11 , pp. R22
    • Li, G.1
  • 38
    • 84988336216 scopus 로고    scopus 로고
    • HiChIP: efficient and sensitive analysis of protein-directed genome architecture
    • 38 Mumbach, M.R., et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13 (2016), 919–922.
    • (2016) Nat. Methods , vol.13 , pp. 919-922
    • Mumbach, M.R.1
  • 39
    • 85007524451 scopus 로고    scopus 로고
    • The transcription factor Nfatc2 regulates β-cell proliferation and genes associated with type 2 diabetes in mouse and human islets
    • 39 Keller, M.P., et al. The transcription factor Nfatc2 regulates β-cell proliferation and genes associated with type 2 diabetes in mouse and human islets. PLOS Genet., 12, 2016, e1006466.
    • (2016) PLOS Genet. , vol.12 , pp. e1006466
    • Keller, M.P.1
  • 40
    • 84976612077 scopus 로고    scopus 로고
    • The genetic regulatory signature of type 2 diabetes in human skeletal muscle
    • 40 Scott, L.J., et al. The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat. Commun., 7, 2016, 11764.
    • (2016) Nat. Commun. , vol.7 , pp. 11764
    • Scott, L.J.1
  • 41
    • 79957607662 scopus 로고    scopus 로고
    • Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes
    • 41 Small, K.S., et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat. Genet. 43 (2011), 561–564.
    • (2011) Nat. Genet. , vol.43 , pp. 561-564
    • Small, K.S.1
  • 42
    • 84867070330 scopus 로고    scopus 로고
    • Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes
    • 42 Morán, I., et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 16 (2012), 435–448.
    • (2012) Cell Metab. , vol.16 , pp. 435-448
    • Morán, I.1
  • 43
    • 84930485203 scopus 로고    scopus 로고
    • Epigenetic modifications and long noncoding RNAs influence pancreas development and function
    • 43 Arnes, L., Sussel, L., Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends Genet. 31 (2015), 290–299.
    • (2015) Trends Genet. , vol.31 , pp. 290-299
    • Arnes, L.1    Sussel, L.2
  • 44
    • 77954143522 scopus 로고    scopus 로고
    • Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
    • 44 Voight, B.F., et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 42 (2010), 579–589.
    • (2010) Nat. Genet. , vol.42 , pp. 579-589
    • Voight, B.F.1
  • 45
    • 73349115848 scopus 로고    scopus 로고
    • The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes
    • 45 Wallace, C., et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat. Genet. 42 (2010), 68–71.
    • (2010) Nat. Genet. , vol.42 , pp. 68-71
    • Wallace, C.1
  • 46
    • 84897452599 scopus 로고    scopus 로고
    • Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion
    • 46 Dayeh, T., et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet., 10, 2014, e1004160.
    • (2014) PLoS Genet. , vol.10 , pp. e1004160
    • Dayeh, T.1
  • 47
    • 84858800629 scopus 로고    scopus 로고
    • DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients
    • 47 Volkmar, M., et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 31 (2012), 1405–1426.
    • (2012) EMBO J. , vol.31 , pp. 1405-1426
    • Volkmar, M.1
  • 48
    • 84964576011 scopus 로고    scopus 로고
    • Age-dependent pancreatic gene regulation reveals mechanisms governing human β cell function
    • 48 Arda, H.E., et al. Age-dependent pancreatic gene regulation reveals mechanisms governing human β cell function. Cell Metab. 23 (2016), 909–920.
    • (2016) Cell Metab. , vol.23 , pp. 909-920
    • Arda, H.E.1
  • 49
    • 84943451551 scopus 로고    scopus 로고
    • Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved β cell function
    • 49 Avrahami, D., et al. Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved β cell function. Cell Metab. 22 (2015), 619–632.
    • (2015) Cell Metab. , vol.22 , pp. 619-632
    • Avrahami, D.1
  • 50
    • 84947437372 scopus 로고    scopus 로고
    • Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion
    • 50 Perelis, M., et al. Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science, 350, 2015, aac4250.
    • (2015) Science , vol.350 , pp. aac4250
    • Perelis, M.1
  • 51
    • 84911895975 scopus 로고    scopus 로고
    • Differential transcriptome analysis of diabetes-resistant and -sensitive mouse islets reveals significant overlap with human diabetes susceptibility genes
    • 51 Kluth, O., et al. Differential transcriptome analysis of diabetes-resistant and -sensitive mouse islets reveals significant overlap with human diabetes susceptibility genes. Diabetes 63 (2014), 4230–4238.
    • (2014) Diabetes , vol.63 , pp. 4230-4238
    • Kluth, O.1
  • 52
    • 84988391914 scopus 로고    scopus 로고
    • A wake-up call for type 2 diabetes?
    • 52 Persaud, S.J., Jones, P.M., A wake-up call for type 2 diabetes?. N. Engl. J. Med. 375 (2016), 1090–1092.
    • (2016) N. Engl. J. Med. , vol.375 , pp. 1090-1092
    • Persaud, S.J.1    Jones, P.M.2
  • 53
    • 84901445280 scopus 로고    scopus 로고
    • β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment
    • 53 Halban, P.A., et al. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37 (2014), 1751–1758.
    • (2014) Diabetes Care , vol.37 , pp. 1751-1758
    • Halban, P.A.1
  • 54
    • 78049318886 scopus 로고    scopus 로고
    • The Dutch Hunger Winter and the developmental origins of health and disease
    • 54 Schulz, L.C., The Dutch Hunger Winter and the developmental origins of health and disease. Proc. Natl. Acad. Sci. 107 (2010), 16757–16758.
    • (2010) Proc. Natl. Acad. Sci. , vol.107 , pp. 16757-16758
    • Schulz, L.C.1
  • 55
    • 85008474523 scopus 로고    scopus 로고
    • Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: a population-based cohort study of families in Suihua, China
    • 55 Li, J., et al. Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: a population-based cohort study of families in Suihua, China. Am. J. Clin. Nutr. 105 (2017), 221–227.
    • (2017) Am. J. Clin. Nutr. , vol.105 , pp. 221-227
    • Li, J.1
  • 56
    • 79960556965 scopus 로고    scopus 로고
    • Epigenome-wide association studies for common human diseases
    • 56 Rakyan, V.K., et al. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 12 (2011), 529–541.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 529-541
    • Rakyan, V.K.1
  • 57
    • 84987819908 scopus 로고    scopus 로고
    • Stress-impaired transcription factor expression and insulin secretion in transplanted human islets
    • 57 Dai, C., et al. Stress-impaired transcription factor expression and insulin secretion in transplanted human islets. J. Clin. Invest. 126 (2016), 1857–1870.
    • (2016) J. Clin. Invest. , vol.126 , pp. 1857-1870
    • Dai, C.1
  • 58
    • 84856689283 scopus 로고    scopus 로고
    • Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets
    • 58 Dai, C., et al. Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia 55 (2012), 707–718.
    • (2012) Diabetologia , vol.55 , pp. 707-718
    • Dai, C.1
  • 59
    • 84881218353 scopus 로고    scopus 로고
    • Inactivation of specific β cell transcription factors in type 2 diabetes
    • 59 Guo, S., et al. Inactivation of specific β cell transcription factors in type 2 diabetes. J. Clin. Invest. 123 (2013), 3305–3316.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3305-3316
    • Guo, S.1
  • 60
    • 84896759364 scopus 로고    scopus 로고
    • Common genetic variants modulate pathogen-sensing responses in human dendritic cells
    • 60 Lee, M.N., et al. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science, 343, 2014, 1246980.
    • (2014) Science , vol.343 , pp. 1246980
    • Lee, M.N.1
  • 61
    • 84942346225 scopus 로고    scopus 로고
    • Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets
    • 61 Blodgett, D.M., et al. Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64 (2015), 3172–3181.
    • (2015) Diabetes , vol.64 , pp. 3172-3181
    • Blodgett, D.M.1
  • 62
    • 24344459011 scopus 로고    scopus 로고
    • Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy
    • 62 Brissova, M., et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J. Histochem. Cytochem. 53 (2005), 1087–1097.
    • (2005) J. Histochem. Cytochem. , vol.53 , pp. 1087-1097
    • Brissova, M.1
  • 63
    • 33144467088 scopus 로고    scopus 로고
    • The unique cytoarchitecture of human pancreatic islets has implications for islet cell function
    • 63 Cabrera, O., et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 2334–2339.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 2334-2339
    • Cabrera, O.1
  • 64
    • 84942770602 scopus 로고    scopus 로고
    • A 3D map of the islet routes throughout the healthy human pancreas
    • 64 Ionescu-Tirgoviste, C., A 3D map of the islet routes throughout the healthy human pancreas. Sci. Rep., 5, 2015, 14634.
    • (2015) Sci. Rep. , vol.5 , pp. 14634
    • Ionescu-Tirgoviste, C.1
  • 66
    • 82355163655 scopus 로고    scopus 로고
    • Hyperglucagonemia precedes a decline in insulin secretion and causes hyperglycemia in chronically glucose-infused rats
    • 66 Jamison, R.A., et al. Hyperglucagonemia precedes a decline in insulin secretion and causes hyperglycemia in chronically glucose-infused rats. Am. J. Physiol. Endocrinol. Metab. 301 (2011), E1174–E1183.
    • (2011) Am. J. Physiol. Endocrinol. Metab. , vol.301 , pp. E1174-E1183
    • Jamison, R.A.1
  • 67
    • 79960129197 scopus 로고    scopus 로고
    • Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans
    • 67 Rodriguez-Diaz, R., Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat. Med. 17 (2011), 888–892.
    • (2011) Nat. Med. , vol.17 , pp. 888-892
    • Rodriguez-Diaz, R.1
  • 68
    • 63249127193 scopus 로고    scopus 로고
    • Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function
    • 68 Hauge-Evans, A.C., Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 58 (2009), 403–411.
    • (2009) Diabetes , vol.58 , pp. 403-411
    • Hauge-Evans, A.C.1
  • 69
    • 84936891662 scopus 로고    scopus 로고
    • Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion
    • 69 van der Meulen, T., Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21 (2015), 769–776.
    • (2015) Nat. Med. , vol.21 , pp. 769-776
    • van der Meulen, T.1
  • 70
    • 84966703629 scopus 로고    scopus 로고
    • Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets
    • 70 DiGruccio, M.R., et al. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol. Metab. 5 (2016), 449–458.
    • (2016) Mol. Metab. , vol.5 , pp. 449-458
    • DiGruccio, M.R.1
  • 71
    • 84905040917 scopus 로고    scopus 로고
    • Control of insulin secretion by cholinergic signaling in the human pancreatic islet
    • 71 Molina, J., et al. Control of insulin secretion by cholinergic signaling in the human pancreatic islet. Diabetes 63 (2014), 2714–2726.
    • (2014) Diabetes , vol.63 , pp. 2714-2726
    • Molina, J.1
  • 72
    • 84874626174 scopus 로고    scopus 로고
    • Epigenomic plasticity enables human pancreatic α to β cell reprogramming
    • 72 Bramswig, N.C., et al. Epigenomic plasticity enables human pancreatic α to β cell reprogramming. J. Clin. Invest. 123 (2013), 1275–1284.
    • (2013) J. Clin. Invest. , vol.123 , pp. 1275-1284
    • Bramswig, N.C.1
  • 73
    • 80054682732 scopus 로고    scopus 로고
    • Transcriptomes of the major human pancreatic cell types
    • 73 Dorrell, C., et al. Transcriptomes of the major human pancreatic cell types. Diabetologia 54 (2011), 2832–2844.
    • (2011) Diabetologia , vol.54 , pp. 2832-2844
    • Dorrell, C.1
  • 74
    • 84883706987 scopus 로고    scopus 로고
    • Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome
    • 74 Nica, A.C., et al. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res. 23 (2013), 1554–1562.
    • (2013) Genome Res. , vol.23 , pp. 1554-1562
    • Nica, A.C.1
  • 75
    • 85012994420 scopus 로고    scopus 로고
    • Single cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes
    • 75 Lawlor, N., et al. Single cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 27 (2017), 208–222.
    • (2017) Genome Res. , vol.27 , pp. 208-222
    • Lawlor, N.1
  • 76
    • 84994641696 scopus 로고    scopus 로고
    • A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure
    • 76 Baron, M., et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3 (2016), 346–360.
    • (2016) Cell Syst. , vol.3 , pp. 346-360
    • Baron, M.1
  • 77
    • 84990895380 scopus 로고    scopus 로고
    • De novo prediction of stem cell identity using single-cell transcriptome data
    • 77 Grün, D., et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19 (2016), 266–277.
    • (2016) Cell Stem Cell , vol.19 , pp. 266-277
    • Grün, D.1
  • 78
    • 84957432156 scopus 로고    scopus 로고
    • Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types
    • 78 Li, J., et al. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Rep. 17 (2016), 178–187.
    • (2016) EMBO Rep. , vol.17 , pp. 178-187
    • Li, J.1
  • 79
    • 84994589771 scopus 로고    scopus 로고
    • A single-cell transcriptome atlas of the human pancreas
    • 79 Muraro, M.J., et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3 (2016), 385–394.
    • (2016) Cell Syst. , vol.3 , pp. 385-394
    • Muraro, M.J.1
  • 80
    • 84992364302 scopus 로고    scopus 로고
    • Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes
    • 80 Segerstolpe, Å., et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24 (2016), 593–607.
    • (2016) Cell Metab. , vol.24 , pp. 593-607
    • Segerstolpe, Å.1
  • 81
    • 84989205113 scopus 로고    scopus 로고
    • Single cell transcriptomics of the human endocrine pancreas
    • 81 Wang, Y.J., et al. Single cell transcriptomics of the human endocrine pancreas. Diabetes 65 (2016), 3028–3038.
    • (2016) Diabetes , vol.65 , pp. 3028-3038
    • Wang, Y.J.1
  • 82
    • 84962319166 scopus 로고    scopus 로고
    • Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells
    • 82 Xin, Y., et al. Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 3293–3298.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. 3293-3298
    • Xin, Y.1
  • 83
    • 84992427889 scopus 로고    scopus 로고
    • RNA sequencing of single human islet cells reveals type 2 diabetes genes
    • 83 Xin, Y., et al. RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab. 24 (2016), 608–615.
    • (2016) Cell Metab. , vol.24 , pp. 608-615
    • Xin, Y.1
  • 84
    • 84978804568 scopus 로고    scopus 로고
    • Human islets contain four distinct subtypes of β cells
    • 84 Dorrell, C., et al. Human islets contain four distinct subtypes of β cells. Nat. Commun., 7, 2016, 11756.
    • (2016) Nat. Commun. , vol.7 , pp. 11756
    • Dorrell, C.1
  • 85
    • 84978114110 scopus 로고    scopus 로고
    • Identification of proliferative and mature β-cells in the islets of Langerhans
    • 85 Bader, E., et al. Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 535 (2016), 430–434.
    • (2016) Nature , vol.535 , pp. 430-434
    • Bader, E.1
  • 86
    • 84992397313 scopus 로고    scopus 로고
    • Single-cell mass cytometry analysis of the human endocrine pancreas
    • 86 Wang, Y.J., et al. Single-cell mass cytometry analysis of the human endocrine pancreas. Cell Metab. 24 (2016), 616–626.
    • (2016) Cell Metab. , vol.24 , pp. 616-626
    • Wang, Y.J.1
  • 87
    • 84964545059 scopus 로고    scopus 로고
    • Single-cell transcriptome sequencing: recent advances and remaining challenges
    • 87 Liu, S., Trapnell, C., Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Research, 5, 2016, 182.
    • (2016) F1000Research , vol.5 , pp. 182
    • Liu, S.1    Trapnell, C.2
  • 88
    • 84960841640 scopus 로고    scopus 로고
    • Evidence of β-cell dedifferentiation in human type 2 diabetes
    • 88 Cinti, F., et al. Evidence of β-cell dedifferentiation in human type 2 diabetes. J. Clin. Endocrinol. Metab. 101 (2016), 1044–1054.
    • (2016) J. Clin. Endocrinol. Metab. , vol.101 , pp. 1044-1054
    • Cinti, F.1
  • 89
    • 85047287066 scopus 로고    scopus 로고
    • Transdifferentiation of pancreatic α-cells into insulin-secreting cells: from experimental models to underlying mechanisms
    • 89 Lu, J., et al. Transdifferentiation of pancreatic α-cells into insulin-secreting cells: from experimental models to underlying mechanisms. World J. Diabetes 5 (2014), 847–853.
    • (2014) World J. Diabetes , vol.5 , pp. 847-853
    • Lu, J.1
  • 90
    • 84866389264 scopus 로고    scopus 로고
    • Pancreatic β-cell dedifferentiation as mechanism of diabetic β-cell failure
    • 90 Talchai, C., et al. Pancreatic β-cell dedifferentiation as mechanism of diabetic β-cell failure. Cell 150 (2012), 1223–1234.
    • (2012) Cell , vol.150 , pp. 1223-1234
    • Talchai, C.1
  • 91
    • 84900330718 scopus 로고    scopus 로고
    • Pancreatic β-cell dedifferentiation in diabetes and re-differentiation following insulin therapy
    • 91 Wang, Z., et al. Pancreatic β-cell dedifferentiation in diabetes and re-differentiation following insulin therapy. Cell Metab. 19 (2014), 872–882.
    • (2014) Cell Metab. , vol.19 , pp. 872-882
    • Wang, Z.1
  • 92
    • 0037219411 scopus 로고    scopus 로고
    • Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes
    • 92 Butler, A.E., et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52 (2003), 102–110.
    • (2003) Diabetes , vol.52 , pp. 102-110
    • Butler, A.E.1
  • 93
    • 84959440522 scopus 로고    scopus 로고
    • β-cell deficit in obese type 2 diabetes, a minor role of β-cell dedifferentiation and degranulation
    • 93 Butler, A.E., et al. β-cell deficit in obese type 2 diabetes, a minor role of β-cell dedifferentiation and degranulation. J. Clin. Endocrinol. Metab. 101 (2016), 523–532.
    • (2016) J. Clin. Endocrinol. Metab. , vol.101 , pp. 523-532
    • Butler, A.E.1
  • 94
    • 84880777411 scopus 로고    scopus 로고
    • CD36 coordinates NLRP3 inflammasome activation by facilitating the intracellular nucleation from soluble to particulate ligands in sterile inflammation
    • 94 Sheedy, F.J., et al. CD36 coordinates NLRP3 inflammasome activation by facilitating the intracellular nucleation from soluble to particulate ligands in sterile inflammation. Nat. Immunol. 14 (2013), 812–820.
    • (2013) Nat. Immunol. , vol.14 , pp. 812-820
    • Sheedy, F.J.1
  • 95
    • 84956678036 scopus 로고    scopus 로고
    • Fine-mapping cellular QTLs with RASQUAL and ATAC-seq
    • 95 Kumasaka, N., et al. Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48 (2016), 206–213.
    • (2016) Nat. Genet. , vol.48 , pp. 206-213
    • Kumasaka, N.1
  • 96
    • 84857111200 scopus 로고    scopus 로고
    • DNase I sensitivity QTLs are a major determinant of human expression variation
    • 96 Degner, J.F., et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482 (2012), 390–394.
    • (2012) Nature , vol.482 , pp. 390-394
    • Degner, J.F.1
  • 97
    • 85000869994 scopus 로고    scopus 로고
    • Systematic functional characterization of candidate causal genes for type 2 diabetes risk variants
    • 97 Thomsen, S.K., et al. Systematic functional characterization of candidate causal genes for type 2 diabetes risk variants. Diabetes 65 (2016), 3805–3811.
    • (2016) Diabetes , vol.65 , pp. 3805-3811
    • Thomsen, S.K.1
  • 98
    • 84879459923 scopus 로고    scopus 로고
    • The pancreatic β cell and type 1 diabetes: innocent bystander or active participant?
    • 98 Soleimanpour, S.A., Stoffers, D.A., The pancreatic β cell and type 1 diabetes: innocent bystander or active participant?. Trends Endocrinol. Metab. 24 (2013), 324–331.
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 324-331
    • Soleimanpour, S.A.1    Stoffers, D.A.2
  • 99
    • 84870502629 scopus 로고    scopus 로고
    • Bayesian refinement of association signals for 14 loci in 3 common diseases
    • 99 Maller, J.B., et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44 (2012), 1294–1301.
    • (2012) Nat. Genet. , vol.44 , pp. 1294-1301
    • Maller, J.B.1
  • 100
    • 84884193035 scopus 로고    scopus 로고
    • Beta cell dysfunction and insulin resistance
    • 100 Cerf, M.E., Beta cell dysfunction and insulin resistance. Front. Endocrinol., 4, 2013, 37.
    • (2013) Front. Endocrinol. , vol.4 , pp. 37
    • Cerf, M.E.1
  • 101
    • 84901445280 scopus 로고    scopus 로고
    • β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment
    • 101 Halban, P.A., et al. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37 (2014), 1751–1758.
    • (2014) Diabetes Care , vol.37 , pp. 1751-1758
    • Halban, P.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.