-
2
-
-
42449100481
-
Bright ideas for chemical biology
-
Lavis LD, Raines RT. 2008. Bright ideas for chemical biology. ACS Chem. Biol. 3(3):142-55
-
(2008)
ACS Chem. Biol.
, vol.3
, Issue.3
, pp. 142-155
-
-
Lavis, L.D.1
Raines, R.T.2
-
3
-
-
84899081128
-
Bright building blocks for chemical biology
-
Lavis LD, Raines RT. 2014. Bright building blocks for chemical biology. ACS Chem. Biol. 9(4):855-66
-
(2014)
ACS Chem. Biol.
, vol.9
, Issue.4
, pp. 855-866
-
-
Lavis, L.D.1
Raines, R.T.2
-
4
-
-
83055180575
-
Advances in the chemistry of small molecule fluorescent probes
-
Wysocki LM, Lavis LD. 2011. Advances in the chemistry of small molecule fluorescent probes. Curr. Opin. Chem. Biol. 15(6):752-59
-
(2011)
Curr. Opin. Chem. Biol.
, vol.15
, Issue.6
, pp. 752-759
-
-
Wysocki, L.M.1
Lavis, L.D.2
-
5
-
-
84923803017
-
A general method to improve fluorophores for live-cell and single-molecule microscopy
-
Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, et al. 2015. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12(3):244-50
-
(2015)
Nat. Methods
, vol.12
, Issue.3
, pp. 244-250
-
-
Grimm, J.B.1
English, B.P.2
Chen, J.3
Slaughter, J.P.4
Zhang, Z.5
-
6
-
-
84873819714
-
A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins
-
LukinavičiusG, Umezawa K,Olivier N,Honigmann A, Yang G, et al. 2013. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5(2):132-39
-
(2013)
Nat. Chem.
, vol.5
, Issue.2
, pp. 132-139
-
-
Lukinavičius, G.1
Umezawa, K.2
Olivier, N.3
Honigmann, A.4
Yang, G.5
-
7
-
-
84943139292
-
SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy
-
Lukinavičius G, Blaukopf C, Pershagen E, Schena A, Reymond L, et al. 2015. SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy. Nat. Commun. 6:8497
-
(2015)
Nat. Commun
, vol.6
, pp. 8497
-
-
Lukinavičius, G.1
Blaukopf, C.2
Pershagen, E.3
Schena, A.4
Reymond, L.5
-
8
-
-
84903601874
-
Fluorogenic probes for live-cell imaging of the cytoskeleton
-
Lukinavičius G, Reymond L, D'Este E, Masharina A, Göttfert F, et al. 2014. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11(7):731-33
-
(2014)
Nat. Methods
, vol.11
, Issue.7
, pp. 731-733
-
-
Lukinavičius, G.1
Reymond, L.2
D'Este, E.3
Masharina, A.4
Göttfert, F.5
-
9
-
-
84879769881
-
Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes
-
Grimm JB, Sung AJ, Legant WR,Hulamm P,Matlosz SM, et al. 2013. Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes. ACS Chem. Biol. 8(6):1303-10
-
(2013)
ACS Chem. Biol.
, vol.8
, Issue.6
, pp. 1303-1310
-
-
Grimm, J.B.1
Sung, A.J.2
Legant, W.R.3
Hulamm, P.4
Matlosz, S.M.5
-
10
-
-
33645798851
-
The fluorescent toolbox for assessing protein location and function
-
Giepmans BNG, Adams SR, Ellisman MH, Tsien RY. 2006. The fluorescent toolbox for assessing protein location and function. Science 312:217-24
-
(2006)
Science
, vol.312
, pp. 217-224
-
-
Giepmans, B.N.G.1
Adams, S.R.2
Ellisman, M.H.3
Tsien, R.Y.4
-
11
-
-
70350337095
-
Fluorescent proteins: A cell biologist's user guide
-
Snapp EL. 2009. Fluorescent proteins: a cell biologist's user guide. Trends Cell Biol. 19(11):649-55
-
(2009)
Trends Cell Biol.
, vol.19
, Issue.11
, pp. 649-655
-
-
Snapp, E.L.1
-
12
-
-
77955640606
-
Fluorescent proteins and their applications in imaging living cells and tissues
-
ChudakovDM, Matz MV, Lukyanov S, Lukyanov KA. 2010. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90(3):1103-63
-
(2010)
Physiol. Rev
, vol.90
, Issue.3
, pp. 1103-1163
-
-
Chudakov, D.M.1
Matz, M.V.2
Lukyanov, S.3
Lukyanov, K.A.4
-
13
-
-
84877578867
-
A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum
-
Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, et al. 2013. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10(5):407-9
-
(2013)
Nat. Methods
, vol.10
, Issue.5
, pp. 407-409
-
-
Shaner, N.C.1
Lambert, G.G.2
Chammas, A.3
Ni, Y.4
Cranfill, P.J.5
-
14
-
-
84958267656
-
Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting
-
Bajar BT, Wang ES, Lam AJ, Kim BB, Jacobs CL, et al. 2016. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Sci. Rep. 6:20889
-
(2016)
Sci. Rep.
, vol.6
, pp. 20889
-
-
Bajar, B.T.1
Wang, E.S.2
Lam, A.J.3
Kim, B.B.4
Jacobs, C.L.5
-
15
-
-
84870812948
-
Amonomeric red fluorescent protein with low cytotoxicity
-
Shemiakina II, Ermakova GV,Cranfill PJ, BairdMA, Evans RA, et al. 2012. Amonomeric red fluorescent protein with low cytotoxicity. Nat. Commun. 3:1204
-
(2012)
Nat. Commun
, vol.3
, pp. 1204
-
-
Shemiakina, I.I.1
Ermakova, G.V.2
Cranfill, P.J.3
Baird, M.A.4
Evans, R.A.5
-
16
-
-
84949575385
-
Monomeric garnet, a far-red fluorescent protein for live-cell STED imaging
-
Hense A, Prunsche B, Gao P, Ishitsuka Y, Nienhaus K, Nienhaus GU. 2015. Monomeric garnet, a far-red fluorescent protein for live-cell STED imaging. Sci. Rep. 5:18006
-
(2015)
Sci. Rep.
, vol.5
, pp. 18006
-
-
Hense, A.1
Prunsche, B.2
Gao, P.3
Ishitsuka, Y.4
Nienhaus, K.5
Nienhaus, G.U.6
-
17
-
-
84935506373
-
A palette of fluorescent proteins optimized for diverse cellular environments
-
Costantini LM, Baloban M, Markwardt ML, Rizzo M, Guo F, et al. 2015. A palette of fluorescent proteins optimized for diverse cellular environments. Nat. Commun. 6:7670
-
(2015)
Nat. Commun
, vol.6
, pp. 7670
-
-
Costantini, L.M.1
Baloban, M.2
Markwardt, M.L.3
Rizzo, M.4
Guo, F.5
-
18
-
-
84973140926
-
Quantitative assessment of fluorescent proteins
-
Cranfill PJ, Sell BR, BairdMA, Allen JR, Lavagnino Z, et al. 2016. Quantitative assessment of fluorescent proteins. Nat. Methods 13:557-62
-
(2016)
Nat. Methods
, vol.13
, pp. 557-562
-
-
Cranfill, P.J.1
Sell, B.R.2
Baird, M.A.3
Allen, J.R.4
Lavagnino, Z.5
-
19
-
-
84875701652
-
Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells
-
Stadler C, Rexhepaj E, Singan VR, Murphy RF, Pepperkok R, et al. 2013. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat. Methods 10(4):315-23
-
(2013)
Nat. Methods
, vol.10
, Issue.4
, pp. 315-323
-
-
Stadler, C.1
Rexhepaj, E.2
Singan, V.R.3
Murphy, R.F.4
Pepperkok, R.5
-
20
-
-
27644451882
-
Generation of functional fluorescentBKchannels by random insertion of GFP variants
-
Giraldez T, Hughes TE, Sigworth FJ. 2005. Generation of functional fluorescentBKchannels by random insertion of GFP variants. J. Gen. Physiol. 126(5):429-38
-
(2005)
J. Gen. Physiol
, vol.126
, Issue.5
, pp. 429-438
-
-
Giraldez, T.1
Hughes, T.E.2
Sigworth, F.J.3
-
21
-
-
84881018686
-
Fusion protein linkers: Property, design and functionality
-
Chen X, Zaro JL, Shen W-C. 2013. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65(10):1357-69
-
(2013)
Adv. Drug Deliv. Rev
, vol.65
, Issue.10
, pp. 1357-1369
-
-
Chen, X.1
Zaro, J.L.2
Shen, W.-C.3
-
22
-
-
84886077330
-
Fluorescent proteins in cellular organelles: Serious pitfalls and some solutions
-
Costantini LM, Snapp EL. 2013. Fluorescent proteins in cellular organelles: serious pitfalls and some solutions. DNA Cell Biol. 32(11):622-27
-
(2013)
DNA Cell Biol.
, vol.32
, Issue.11
, pp. 622-627
-
-
Costantini, L.M.1
Snapp, E.L.2
-
23
-
-
84928141099
-
CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells
-
Ratz M, Testa I, Hell SW, Jakobs S. 2015. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Sci. Rep. 5:9592
-
(2015)
Sci. Rep.
, vol.5
, pp. 9592
-
-
Ratz, M.1
Testa, I.2
Hell, S.W.3
Jakobs, S.4
-
24
-
-
84959137041
-
Dynamics of CDKN1A in single cells defined by an endogenous fluorescent tagging toolkit
-
Stewart-Ornstein J, Lahav G. 2016. Dynamics of CDKN1A in single cells defined by an endogenous fluorescent tagging toolkit. Cell Rep. 14(7):1800-11
-
(2016)
Cell Rep.
, vol.14
, Issue.7
, pp. 1800-1811
-
-
Stewart-Ornstein, J.1
Lahav, G.2
-
25
-
-
13244296604
-
Protein tagging and detection with engineered selfassembling fragments of green fluorescent protein
-
Cabantous S, Terwilliger TC, Waldo GS. 2005. Protein tagging and detection with engineered selfassembling fragments of green fluorescent protein. Nat. Biotechnol. 23(1):102-7
-
(2005)
Nat. Biotechnol
, vol.23
, Issue.1
, pp. 102-107
-
-
Cabantous, S.1
Terwilliger, T.C.2
Waldo, G.S.3
-
26
-
-
84961654781
-
Versatile protein tagging in cells with split fluorescent protein
-
Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B, et al. 2016. Versatile protein tagging in cells with split fluorescent protein. Nat. Commun. 7:11046
-
(2016)
Nat. Commun
, vol.7
, pp. 11046
-
-
Kamiyama, D.1
Sekine, S.2
Barsi-Rhyne, B.3
Hu, J.4
Chen, B.5
-
27
-
-
33745946445
-
A genetically encoded fluorescent amino acid
-
Wang J, Xie J, Schultz PG. 2006. A genetically encoded fluorescent amino acid. J. Am. Chem. Soc. 128(27):8738-39
-
(2006)
J. Am. Chem. Soc
, vol.128
, Issue.27
, pp. 8738-8739
-
-
Wang, J.1
Xie, J.2
Schultz, P.G.3
-
28
-
-
33745633570
-
A genetically encoded fluorescent amino acid
-
Summerer D, Chen S,WuN, Deiters A, Chin JW, Schultz PG. 2006. A genetically encoded fluorescent amino acid. PNAS 103(26):9785-89
-
(2006)
PNAS
, vol.103
, Issue.26
, pp. 9785-9789
-
-
Summerer, D.1
Chen, S.2
Wu, N.3
Deiters, A.4
Chin, J.W.5
Schultz, P.G.6
-
29
-
-
70349158729
-
Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae
-
LeeHS, Guo J, Lemke EA, Dimla RD, Schultz PG. 2009. Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J. Am.Chem. Soc. 131(36):12921-23
-
(2009)
J. Am.Chem. Soc
, vol.131
, Issue.36
, pp. 12921-12923
-
-
Lee, H.S.1
Guo, J.2
Lemke, E.A.3
Dimla, R.D.4
Schultz, P.G.5
-
30
-
-
79952772142
-
Biosynthesis of a fluorescent protein with extreme pseudo-Stokes shift by introducing a genetically encoded non-natural amino acid outside the fluorophore
-
Kuhn SM, Rubini M, Müller MA, Skerra A. 2011. Biosynthesis of a fluorescent protein with extreme pseudo-Stokes shift by introducing a genetically encoded non-natural amino acid outside the fluorophore. J. Am. Chem. Soc. 133(11):3708-11
-
(2011)
J. Am. Chem. Soc
, vol.133
, Issue.11
, pp. 3708-3711
-
-
Kuhn, S.M.1
Rubini, M.2
Müller, M.A.3
Skerra, A.4
-
31
-
-
84899077284
-
Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins
-
Lang K, Chin JW. 2014. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114(9):4764-806
-
(2014)
Chem. Rev
, vol.114
, Issue.9
, pp. 4764-4806
-
-
Lang, K.1
Chin, J.W.2
-
32
-
-
79961107526
-
Subcellular protein localization by using a genetically encoded fluorescent amino acid
-
Charbon G, Brustad E, Scott KA,Wang J, Løbner-Olesen A, et al. 2011. Subcellular protein localization by using a genetically encoded fluorescent amino acid. ChemBioChem 12(12):1818-21
-
(2011)
ChemBioChem
, vol.12
, Issue.12
, pp. 1818-1821
-
-
Charbon, G.1
Brustad, E.2
Scott, K.A.3
Wang, J.4
Løbner-Olesen, A.5
-
33
-
-
77953123601
-
Incorporation of fluorescent non-natural amino acids into N-terminal tag of proteins in cell-free translation and its dependence on position and neighboring codons
-
Abe R, Shiraga K, Ebisu S, Takagi H, Hohsaka T. 2010. Incorporation of fluorescent non-natural amino acids into N-terminal tag of proteins in cell-free translation and its dependence on position and neighboring codons. J. Biosci. Bioeng. 110(1):32-38
-
(2010)
J. Biosci. Bioeng
, vol.110
, Issue.1
, pp. 32-38
-
-
Abe, R.1
Shiraga, K.2
Ebisu, S.3
Takagi, H.4
Hohsaka, T.5
-
34
-
-
84902773575
-
Advances in fluorescence labeling strategies for dynamic cellular imaging
-
Dean KM, Palmer AE. 2014. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10(7):512-23
-
(2014)
Nat. Chem. Biol.
, vol.10
, Issue.7
, pp. 512-523
-
-
Dean, K.M.1
Palmer, A.E.2
-
35
-
-
84976578095
-
Bioorthogonal fluorescent labels: A review on combined forces
-
Cserép GB, Herner A, Kele P. 2015. Bioorthogonal fluorescent labels: a review on combined forces. Methods Appl. Fluoresc. 3(4):042001
-
(2015)
Methods Appl. Fluoresc
, vol.3
, Issue.4
, pp. 042001
-
-
Cserép, G.B.1
Herner, A.2
Kele, P.3
-
36
-
-
0037225952
-
A general method for the covalent labeling of fusion proteins with small molecules in vivo
-
Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. 2003. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21(1):86-89
-
(2003)
Nat. Biotechnol
, vol.21
, Issue.1
, pp. 86-89
-
-
Keppler, A.1
Gendreizig, S.2
Gronemeyer, T.3
Pick, H.4
Vogel, H.5
Johnsson, K.6
-
37
-
-
39149145486
-
An engineered protein tag for multiprotein labeling in living cells
-
Gautier A, Juillerat A, Heinis C, Correa IR, Kindermann M, et al. 2008. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15(2):128-36
-
(2008)
Chem. Biol.
, vol.15
, Issue.2
, pp. 128-136
-
-
Gautier, A.1
Juillerat, A.2
Heinis, C.3
Correa, I.R.4
Kindermann, M.5
-
38
-
-
48049092838
-
Halotag: A novel protein labeling technology for cell imaging and protein analysis
-
Los G V, Encell LP, McDougall MG, Hartzell DD, Karassina N, et al. 2008. Halotag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3(6):373-82
-
(2008)
ACS Chem. Biol.
, vol.3
, Issue.6
, pp. 373-382
-
-
Los, G.V.1
Encell, L.P.2
McDougall, M.G.3
Hartzell, D.D.4
Karassina, N.5
-
39
-
-
18744406025
-
In vivo protein labelingwith trimethoprim conjugates: A flexible chemical tag
-
MillerLW,Cai Y, SheetzMP, CornishVW.2005. In vivo protein labelingwith trimethoprim conjugates: a flexible chemical tag. Nat. Methods 2(4):255-57
-
(2005)
Nat. Methods
, vol.2
, Issue.4
, pp. 255-257
-
-
Miller, L.W.1
Cai, Y.2
Sheetz, M.P.3
Cornish, V.W.4
-
40
-
-
80052781568
-
Development of snap-tag fluorogenic probes for wash-free fluorescence imaging
-
Sun X, Zhang A, Baker B, Sun L, Howard A, et al. 2011. Development of snap-tag fluorogenic probes for wash-free fluorescence imaging. ChemBioChem 12(14):2217-26
-
(2011)
ChemBioChem
, vol.12
, Issue.14
, pp. 2217-2226
-
-
Sun, X.1
Zhang, A.2
Baker, B.3
Sun, L.4
Howard, A.5
-
41
-
-
51649104138
-
Preparation of the membrane-permeant biarsenicals FlAsH-EDT2 and ReAsH-EDT2 for fluorescent labeling of tetracysteine-tagged proteins
-
Adams SR, Tsien RY. 2008. Preparation of the membrane-permeant biarsenicals FlAsH-EDT2 and ReAsH-EDT2 for fluorescent labeling of tetracysteine-tagged proteins. Nat. Protoc. 3(9):1527-34
-
(2008)
Nat. Protoc
, vol.3
, Issue.9
, pp. 1527-1534
-
-
Adams, S.R.1
Tsien, R.Y.2
-
42
-
-
0037140742
-
New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications
-
Adams SR, Campbell RE, Gross LA, Martin BR,Walkup GK, et al. 2002. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124(21):6063-76
-
(2002)
J. Am. Chem. Soc
, vol.124
, Issue.21
, pp. 6063-6076
-
-
Adams, S.R.1
Campbell, R.E.2
Gross, L.A.3
Martin, B.R.4
Walkup, G.K.5
-
43
-
-
62849090710
-
Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid
-
Halo TL, Appelbaum J, Hobert EM, Balkin DM, Schepartz A. 2009. Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid. J. Am. Chem. Soc. 131(2):438-39
-
(2009)
J. Am. Chem. Soc
, vol.131
, Issue.2
, pp. 438-439
-
-
Halo, T.L.1
Appelbaum, J.2
Hobert, E.M.3
Balkin, D.M.4
Schepartz, A.5
-
44
-
-
19644391139
-
Targeting quantum dots to surface proteins in living cells with biotin ligase
-
Howarth M, Takao K, Hayashi Y, Ting AY. 2005. Targeting quantum dots to surface proteins in living cells with biotin ligase. PNAS 102(21):7583-88
-
(2005)
PNAS
, vol.102
, Issue.21
, pp. 7583-7588
-
-
Howarth, M.1
Takao, K.2
Hayashi, Y.3
Ting, A.Y.4
-
45
-
-
38649113240
-
Expanding the substrate tolerance of biotin ligase through exploration of enzymes from diverse species
-
Slavoff SA, Chen I, Choi Y-A, Ting AY. 2008. Expanding the substrate tolerance of biotin ligase through exploration of enzymes from diverse species. J. Am. Chem. Soc. 130(4):1160-62
-
(2008)
J. Am. Chem. Soc
, vol.130
, Issue.4
, pp. 1160-1162
-
-
Slavoff, S.A.1
Chen, I.2
Choi, Y.-A.3
Ting, A.Y.4
-
46
-
-
36749028242
-
Copper-free click chemistry for dynamic in vivo imaging
-
Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, et al. 2007. Copper-free click chemistry for dynamic in vivo imaging. PNAS 104(43):16793-97
-
(2007)
PNAS
, vol.104
, Issue.43
, pp. 16793-16797
-
-
Baskin, J.M.1
Prescher, J.A.2
Laughlin, S.T.3
Agard, N.J.4
Chang, P.V.5
-
47
-
-
77954633083
-
A fluorophore ligase for site-specific protein labeling inside living cells
-
Uttamapinant C, White KA, Baruah H, Thompson S, Fernández-Suárez M, et al. 2010. A fluorophore ligase for site-specific protein labeling inside living cells. PNAS 107(24):10914-19
-
(2010)
PNAS
, vol.107
, Issue.24
, pp. 10914-10919
-
-
Uttamapinant, C.1
White, K.A.2
Baruah, H.3
Thompson, S.4
Fernández-Suárez, M.5
-
48
-
-
80053028232
-
Structure-guided engineering of a Pacific Blue fluorophore ligase for specific protein imaging in living cells
-
Cohen JD, Thompson S, Ting AY. 2011. Structure-guided engineering of a Pacific Blue fluorophore ligase for specific protein imaging in living cells. Biochemistry 50(38):8221-25
-
(2011)
Biochemistry
, vol.50
, Issue.38
, pp. 8221-8225
-
-
Cohen, J.D.1
Thompson, S.2
Ting, A.Y.3
-
49
-
-
84899473717
-
Nanobody-based products as research and diagnostic tools
-
De Meyer T, Muyldermans S, Depicker A. 2014. Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 32(5):263-70
-
(2014)
Trends Biotechnol
, vol.32
, Issue.5
, pp. 263-270
-
-
De Meyer, T.1
Muyldermans, S.2
Depicker, A.3
-
50
-
-
84907931054
-
Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells
-
Kaiser PD,Maier J,Traenkle B, Emele F, RothbauerU. 2014. Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells. Biochim. Biophys. Acta 1844(11):1933-42
-
(2014)
Biochim. Biophys. Acta
, vol.1844
, Issue.11
, pp. 1933-1942
-
-
Kaiser, P.D.1
Maier, J.2
Traenkle, B.3
Emele, F.4
Rothbauer, U.5
-
51
-
-
84938419484
-
Visualizing posttranslational and epigenetic modifications of endogenous proteins in vivo
-
KimuraH,Hayashi-Takanaka Y, Stasevich TJ, Sato Y. 2015. Visualizing posttranslational and epigenetic modifications of endogenous proteins in vivo. Histochem. Cell Biol. 144(2):101-9
-
(2015)
Histochem. Cell Biol.
, vol.144
, Issue.2
, pp. 101-109
-
-
Kimura, H.1
Hayashi-Takanaka, Y.2
Stasevich, T.J.3
Sato, Y.4
-
52
-
-
33845673605
-
Identification of single-domain,Baxspecific intrabodies that confer resistance to mammalian cells against oxidative-stress-induced apoptosis
-
Gueorguieva D, Li S, WalshN,Mukerji A, Tanha J, Pandey S. 2006. Identification of single-domain,Baxspecific intrabodies that confer resistance to mammalian cells against oxidative-stress-induced apoptosis. FASEB J. 20(14):2636-38
-
(2006)
FASEB J
, vol.20
, Issue.14
, pp. 2636-2638
-
-
Gueorguieva, D.1
Li, S.2
Walsh, N.3
Mukerji, A.4
Tanha, J.5
Pandey, S.6
-
53
-
-
0023856424
-
Glass beads load macromolecules into living cells
-
McNeil PL, Warder E. 1987. Glass beads load macromolecules into living cells. J. Cell Sci. 88(Pt. 5):669-78
-
(1987)
J. Cell Sci.
, vol.88
, pp. 669-678
-
-
McNeil, P.L.1
Warder, E.2
-
54
-
-
80055088176
-
Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling
-
Hayashi-Takanaka Y, Yamagata K, Wakayama T, Stasevich TJ, Kainuma T, et al. 2011. Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res. 39(15):6475-88
-
(2011)
Nucleic Acids Res.
, vol.39
, Issue.15
, pp. 6475-6488
-
-
Hayashi-Takanaka, Y.1
Yamagata, K.2
Wakayama, T.3
Stasevich, T.J.4
Kainuma, T.5
-
55
-
-
84882761820
-
Genetically encoded system to track histone modification in vivo
-
Sato Y, Mukai M, Ueda J, Muraki M, Stasevich TJ, et al. 2013. Genetically encoded system to track histone modification in vivo. Sci. Rep. 3:2436
-
(2013)
Sci. Rep.
, vol.3
, pp. 2436
-
-
Sato, Y.1
Mukai, M.2
Ueda, J.3
Muraki, M.4
Stasevich, T.J.5
-
56
-
-
84906959809
-
Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging
-
Hayashi-Takanaka Y, Stasevich TJ, Kurumizaka H, Nozaki N, Kimura H. 2014. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging. PLOS ONE 9(9):e106271
-
(2014)
PLOS ONE
, vol.9
, Issue.9
, pp. e106271
-
-
Hayashi-Takanaka, Y.1
Stasevich, T.J.2
Kurumizaka, H.3
Nozaki, N.4
Kimura, H.5
-
57
-
-
38949155234
-
Fluorogen-activating single-chain antibodies for imaging cell surface proteins
-
Szent-Gyorgyi C, Schmidt BF, Schmidt BA, Creeger Y, Fisher GW, et al. 2008. Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat. Biotechnol. 26(2):235-40
-
(2008)
Nat. Biotechnol
, vol.26
, Issue.2
, pp. 235-240
-
-
Szent-Gyorgyi, C.1
Schmidt, B.F.2
Schmidt, B.A.3
Creeger, Y.4
Fisher, G.W.5
-
58
-
-
52449109981
-
A rainbow of fluoromodules: A promiscuous scFv protein binds to and activates a diverse set of fluorogenic cyanine dyes
-
Ozhalici-Unal H, Pow CL, Marks SA, Jesper LD, Silva GL, et al. 2008. A rainbow of fluoromodules: a promiscuous scFv protein binds to and activates a diverse set of fluorogenic cyanine dyes. J. Am. Chem. Soc. 130(38):12620-21
-
(2008)
J. Am. Chem. Soc
, vol.130
, Issue.38
, pp. 12620-12621
-
-
Ozhalici-Unal, H.1
Pow, C.L.2
Marks, S.A.3
Jesper, L.D.4
Silva, G.L.5
-
59
-
-
84882894834
-
Directed evolution of a fluorogen-activating single chain antibody for function and enhanced brightness in the cytoplasm
-
Yates BP, Peck MA, Berget PB. 2013. Directed evolution of a fluorogen-activating single chain antibody for function and enhanced brightness in the cytoplasm. Mol. Biotechnol. 54(3):829-41
-
(2013)
Mol. Biotechnol
, vol.54
, Issue.3
, pp. 829-841
-
-
Yates, B.P.1
Peck, M.A.2
Berget, P.B.3
-
60
-
-
77955570231
-
Fluorogenic dendrons with multiple donor chromophores as bright genetically targeted and activated probes
-
Szent-Gyorgyi C, Schmidt BF, Fitzpatrick JAJ, Bruchez MP. 2010. Fluorogenic dendrons with multiple donor chromophores as bright genetically targeted and activated probes. J. Am. Chem. Soc. 132(32):11103-9
-
(2010)
J. Am. Chem. Soc
, vol.132
, Issue.32
, pp. 11103-11109
-
-
Szent-Gyorgyi, C.1
Schmidt, B.F.2
Fitzpatrick, J.A.J.3
Bruchez, M.P.4
-
61
-
-
84908328232
-
A protein-tagging system for signal amplification in gene expression and fluorescence imaging
-
TanenbaumME, Gilbert LA, Qi LS,Weissman JS, Vale RD. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635-46
-
(2014)
Cell
, vol.159
, Issue.3
, pp. 635-646
-
-
Tanenbaum, M.E.1
Gilbert, L.A.2
Qi, L.S.3
Weissman, J.S.4
Vale, R.D.5
-
62
-
-
84930178369
-
High-performance probes for light and electron microscopy
-
Viswanathan S, WilliamsME, Bloss EB, Stasevich TJ, Speer CM, et al. 2015. High-performance probes for light and electron microscopy. Nat. Methods 12(6):568-76
-
(2015)
Nat. Methods
, vol.12
, Issue.6
, pp. 568-576
-
-
Viswanathan, S.1
Williams, M.E.2
Bloss, E.B.3
Stasevich, T.J.4
Speer, C.M.5
-
63
-
-
0142184341
-
Global analysis of protein localization in budding yeast
-
Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, et al. 2003. Global analysis of protein localization in budding yeast. Nature 425:686-91
-
(2003)
Nature
, vol.425
, pp. 686-691
-
-
Huh, W.-K.1
Falvo, J.V.2
Gerke, L.C.3
Carroll, A.S.4
Howson, R.W.5
-
64
-
-
0034280113
-
Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing
-
Simpson JC, Wellenreuther R, Poustka A, Pepperkok R, Wiemann S. 2000. Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. 1(3):287-92
-
(2000)
EMBO Rep
, vol.1
, Issue.3
, pp. 287-292
-
-
Simpson, J.C.1
Wellenreuther, R.2
Poustka, A.3
Pepperkok, R.4
Wiemann, S.5
-
66
-
-
84893356584
-
How to switch a fluorophore: From undesired blinking to controlled photoswitching
-
van Linde S, Sauer M. 2014. How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chem. Soc. Rev. 43(4):1076-87
-
(2014)
Chem. Soc. Rev
, vol.43
, Issue.4
, pp. 1076-1087
-
-
Van Linde, S.1
Sauer, M.2
-
67
-
-
84901049611
-
Tracking protein turnover and degradation by microscopy: Photo-switchable versus time-encoded fluorescent proteins
-
Knop M, Edgar BA. 2014. Tracking protein turnover and degradation by microscopy: photo-switchable versus time-encoded fluorescent proteins. Open Biol. 4(4):140002
-
(2014)
Open Biol.
, vol.4
, Issue.4
, pp. 140002
-
-
Knop, M.1
Edgar, B.A.2
-
68
-
-
77749242846
-
Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores
-
Pletnev S, Subach FV,Dauter Z,Wlodawer A,Verkhusha VV. 2010. Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores. J. Am. Chem. Soc. 132(7):2243-53
-
(2010)
J. Am. Chem. Soc
, vol.132
, Issue.7
, pp. 2243-2253
-
-
Pletnev, S.1
Subach, F.V.2
Dauter, Z.3
Wlodawer, A.4
Verkhusha, V.V.5
-
69
-
-
84863677658
-
Tandem fluorescent protein timers for in vivo analysis of protein dynamics
-
Khmelinskii A, Keller PJ, Bartosik A, Meurer M, Barry JD, et al. 2012. Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nat. Biotechnol. 30(7):708-14
-
(2012)
Nat. Biotechnol
, vol.30
, Issue.7
, pp. 708-714
-
-
Khmelinskii, A.1
Keller, P.J.2
Bartosik, A.3
Meurer, M.4
Barry, J.D.5
-
70
-
-
84954508205
-
Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers
-
Khmelinskii A, Meurer M, Ho C-T, Besenbeck B, Füller J, et al. 2016. Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers. Mol. Biol. Cell 27(2):360-70
-
(2016)
Mol. Biol. Cell
, vol.27
, Issue.2
, pp. 360-370
-
-
Khmelinskii, A.1
Meurer, M.2
Ho, C.-T.3
Besenbeck, B.4
Füller, J.5
-
71
-
-
84964647459
-
High-content screening for quantitative cell biology
-
Mattiazzi UsajM, Styles EB, Verster AJ, FriesenH, BooneC, Andrews BJ. 2016. High-content screening for quantitative cell biology. Trends Cell Biol. 26(8):598-611
-
(2016)
Trends Cell Biol.
, vol.26
, Issue.8
, pp. 598-611
-
-
Mattiazzi Usaj, M.1
Styles, E.B.2
Verster, A.J.3
Friesen, H.4
Boone, C.5
Andrews, B.J.6
-
72
-
-
33745220278
-
Single-cell proteomic analysis of S cerevisiae reveals the architecture of biological noise
-
Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, et al. 2006. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840-46
-
(2006)
Nature
, vol.441
, pp. 840-846
-
-
Newman, J.R.S.1
Ghaemmaghami, S.2
Ihmels, J.3
Breslow, D.K.4
Noble, M.5
-
73
-
-
84930684870
-
Yeast proteome dynamics from single cell imaging and automated analysis
-
Chong YT, Koh JLY, Friesen H, Duffy K, Cox MJ, et al. 2015. Yeast proteome dynamics from single cell imaging and automated analysis. Cell 161(6):1413-24
-
(2015)
Cell
, vol.161
, Issue.6
, pp. 1413-1424
-
-
Chong, Y.T.1
Koh, J.L.Y.2
Friesen, H.3
Duffy, K.4
Cox, M.J.5
-
74
-
-
84890057335
-
Genome-wide single-cell-level screen for protein abundance and localization changes in response to DNA damage in S cerevisiae
-
Mazumder A, Pesudo LQ,McRee S, BatheM, Samson LD. 2013. Genome-wide single-cell-level screen for protein abundance and localization changes in response to DNA damage in S. cerevisiae. Nucleic Acids Res. 41(20):9310-24
-
(2013)
Nucleic Acids Res.
, vol.41
, Issue.20
, pp. 9310-9324
-
-
Mazumder, A.1
Pesudo, L.Q.2
McRee, S.3
Bathe, M.4
Samson, L.D.5
-
75
-
-
84869824905
-
Imaging flow cytometry: Coping with heterogeneity in biological systems
-
Barteneva NS, Fasler-Kan E, Vorobjev IA. 2012. Imaging flow cytometry: coping with heterogeneity in biological systems. J. Histochem. Cytochem. 60(10):723-33
-
(2012)
J. Histochem. Cytochem
, vol.60
, Issue.10
, pp. 723-733
-
-
Barteneva, N.S.1
Fasler-Kan, E.2
Vorobjev, I.A.3
-
77
-
-
84958753131
-
High-throughput fluorescence microscopic analysis of protein abundance and localization in budding yeast
-
Torres NP, Ho B, Brown GW. 2016. High-throughput fluorescence microscopic analysis of protein abundance and localization in budding yeast. Crit. Rev. Biochem. Mol. Biol. 51(2):110-19
-
(2016)
Crit. Rev. Biochem. Mol. Biol.
, vol.51
, Issue.2
, pp. 110-119
-
-
Torres, N.P.1
Ho, B.2
Brown, G.W.3
-
78
-
-
84926665080
-
High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells
-
Wachsmuth M, Conrad C, Bulkescher J, Koch B, Mahen R, et al. 2015. High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells. Nat. Biotechnol. 33(4):384-89
-
(2015)
Nat. Biotechnol
, vol.33
, Issue.4
, pp. 384-389
-
-
Wachsmuth, M.1
Conrad, C.2
Bulkescher, J.3
Koch, B.4
Mahen, R.5
-
79
-
-
70349466529
-
Population context determines cell-to-cell variability in endocytosis and virus infection
-
Snijder B, Sacher R, Rämö P,Damm E-M, Liberali P, Pelkmans L. 2009. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461:520-23
-
(2009)
Nature
, vol.461
, pp. 520-523
-
-
Snijder, B.1
Sacher, R.2
Rämö, P.3
Damm, E.-M.4
Liberali, P.5
Pelkmans, L.6
-
80
-
-
84907853623
-
In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair
-
Stracy M, Uphoff S, Garza Leon F, Kapanidis AN. 2014. In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair. FEBS Lett. 588(19):3585-94
-
(2014)
FEBS Lett
, vol.588
, Issue.19
, pp. 3585-3594
-
-
Stracy, M.1
Uphoff, S.2
Garza Leon, F.3
Kapanidis, A.N.4
-
82
-
-
84904762540
-
Studying the organization of DNA repair by single-cell and singlemolecule imaging
-
Uphoff S, Kapanidis AN. 2014. Studying the organization of DNA repair by single-cell and singlemolecule imaging. DNA Repair 20:32-40
-
(2014)
DNA Repair
, vol.20
, pp. 32-40
-
-
Uphoff, S.1
Kapanidis, A.N.2
-
83
-
-
0032562720
-
Visualization of single RNA transcripts in situ
-
Femino AM. 1998. Visualization of single RNA transcripts in situ. Science 280:585-90
-
(1998)
Science
, vol.280
, pp. 585-590
-
-
Femino, A.M.1
-
84
-
-
53349161901
-
Imaging individual mRNA molecules using multiple singly labeled probes
-
Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. 2008. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5(10):877-79
-
(2008)
Nat. Methods
, vol.5
, Issue.10
, pp. 877-879
-
-
Raj, A.1
Vanden Bogaard, P.2
Rifkin, S.A.3
Van Oudenaarden, A.4
Tyagi, S.5
-
85
-
-
84940206552
-
Multiplexed single-cell in situ RNA analysis by reiterative hybridization
-
Xiao L, Guo J. 2015. Multiplexed single-cell in situ RNA analysis by reiterative hybridization. Anal. Methods 7(17):7290-95
-
(2015)
Anal. Methods
, vol.7
, Issue.17
, pp. 7290-7295
-
-
Xiao, L.1
Guo, J.2
-
86
-
-
84928395184
-
Spatially resolved, highly multiplexed RNA profiling in single cells
-
Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090
-
(2015)
Science
, vol.348
, pp. aaa6090
-
-
Chen, K.H.1
Boettiger, A.N.2
Moffitt, J.R.3
Wang, S.4
Zhuang, X.5
-
87
-
-
84961226910
-
Programmable RNA tracking in live cells with CRISPR/Cas9
-
Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ, et al. 2016. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165(2):488-96
-
(2016)
Cell
, vol.165
, Issue.2
, pp. 488-496
-
-
Nelles, D.A.1
Fang, M.Y.2
O'Connell, M.R.3
Xu, J.L.4
Markmiller, S.J.5
-
88
-
-
65449131152
-
Imaging intracellularRNAdistribution and dynamics in living cells
-
Tyagi S. 2009. Imaging intracellularRNAdistribution and dynamics in living cells. Nat.Methods 6(5):331-38
-
(2009)
Nat.Methods
, vol.6
, Issue.5
, pp. 331-338
-
-
Tyagi, S.1
-
89
-
-
37849040758
-
Nano-flares: Probes for transfection and mRNA detection in living cells
-
Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA. 2007. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 129(50):15477-79
-
(2007)
J. Am. Chem. Soc
, vol.129
, Issue.50
, pp. 15477-15479
-
-
Seferos, D.S.1
Giljohann, D.A.2
Hill, H.D.3
Prigodich, A.E.4
Mirkin, C.A.5
-
90
-
-
0344430112
-
Aptamers switch on fluorescence of triphenylmethane dyes
-
Babendure JR, Adams SR, Tsien RY. 2003. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 125(48):14716-17
-
(2003)
J. Am. Chem. Soc
, vol.125
, Issue.48
, pp. 14716-14717
-
-
Babendure, J.R.1
Adams, S.R.2
Tsien, R.Y.3
-
91
-
-
44449122485
-
Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules
-
Constantin TP, Silva GL, Robertson KL, Hamilton TP, Fague K, et al. 2008. Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules. Org. Lett. 10(8):1561-64
-
(2008)
Org. Lett
, vol.10
, Issue.8
, pp. 1561-1564
-
-
Constantin, T.P.1
Silva, G.L.2
Robertson, K.L.3
Hamilton, T.P.4
Fague, K.5
-
92
-
-
79960959180
-
RNA mimics of green fluorescent protein
-
Paige JS, Wu KY, Jaffrey SR. 2011. RNA mimics of green fluorescent protein. Science 333:642-46
-
(2011)
Science
, vol.333
, pp. 642-646
-
-
Paige, J.S.1
Wu, K.Y.2
Jaffrey, S.R.3
-
93
-
-
84913570361
-
Broccoli: Rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution
-
Filonov GS, Moon JD, Svensen N, Jaffrey SR. 2014. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136(46):16299-308
-
(2014)
J. Am. Chem. Soc
, vol.136
, Issue.46
, pp. 16299-16308
-
-
Filonov, G.S.1
Moon, J.D.2
Svensen, N.3
Jaffrey, S.R.4
-
94
-
-
84963904990
-
ISpinach: A fluorogenic RNA aptamer optimized for in vitro applications
-
Autour A, Westhof E, RyckelynckM. 2016. ISpinach: a fluorogenic RNA aptamer optimized for in vitro applications. Nucleic Acids Res. 44(6):gkw083
-
(2016)
Nucleic Acids Res.
, vol.44
, Issue.6
, pp. gkw083
-
-
Autour, A.1
Westhof, E.2
Ryckelynck, M.3
-
95
-
-
84937393115
-
Structure and mechanism of RNA mimics of green fluorescent protein
-
You M, Jaffrey SR. 2015. Structure and mechanism of RNA mimics of green fluorescent protein. Annu. Rev. Biophys. 44:187-206
-
(2015)
Annu. Rev. Biophys
, vol.44
, pp. 187-206
-
-
You, M.1
Jaffrey, S.R.2
-
96
-
-
84923198503
-
In the right place at the right time: Visualizing and understanding mRNA localization
-
Buxbaum AR, Haimovich G, Singer RH. 2014. In the right place at the right time: visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. 16(2):95-109
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.16
, Issue.2
, pp. 95-109
-
-
Buxbaum, A.R.1
Haimovich, G.2
Singer, R.H.3
-
97
-
-
84937925237
-
MS2 coat proteins bound to yeast mRNAs block 5 to 3 degradation and trap mRNA decay products: Implications for the localization of mRNAs by MS2-MCP system
-
Garcia JF, Parker R. 2015. MS2 coat proteins bound to yeast mRNAs block 5 to 3 degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system. RNA 21(8):1393-95
-
(2015)
RNA
, vol.21
, Issue.8
, pp. 1393-1395
-
-
Garcia, J.F.1
Parker, R.2
-
98
-
-
84891933783
-
Background free imaging of single mRNAs in live cells using split fluorescent proteins
-
Wu B, Chen J, Singer RH. 2014. Background free imaging of single mRNAs in live cells using split fluorescent proteins. Sci. Rep. 4:3615
-
(2014)
Sci. Rep.
, vol.4
, pp. 3615
-
-
Wu, B.1
Chen, J.2
Singer, R.H.3
-
99
-
-
34250210525
-
Imaging dynamics of endogenous mitochondrial RNA in single living cells
-
Ozawa T, Natori Y, Sato M, Umezawa Y. 2007. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat. Methods 4(5):413-19
-
(2007)
Nat. Methods
, vol.4
, Issue.5
, pp. 413-419
-
-
Ozawa, T.1
Natori, Y.2
Sato, M.3
Umezawa, Y.4
-
100
-
-
84913568580
-
Programmable RNA recognition and cleavage by CRISPR/Cas9
-
O'Connell MR,Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516(7530):263-66
-
(2014)
Nature
, vol.516
, Issue.7530
, pp. 263-266
-
-
O'Connell, M.R.1
Oakes, B.L.2
Sternberg, S.H.3
East-Seletsky, A.4
Kaplan, M.5
Doudna, J.A.6
-
101
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
-
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155(7):1479-91
-
(2013)
Cell
, vol.155
, Issue.7
, pp. 1479-1491
-
-
Chen, B.1
Gilbert, L.A.2
Cimini, B.A.3
Schnitzbauer, J.4
Zhang, W.5
-
102
-
-
8544283254
-
The comet assay forDNAdamage and repair: Principles, applications, and limitations
-
Collins AR. 2004. The comet assay forDNAdamage and repair: principles, applications, and limitations. Mol. Biotechnol. 26(3):249-61
-
(2004)
Mol. Biotechnol
, vol.26
, Issue.3
, pp. 249-261
-
-
Collins, A.R.1
-
103
-
-
62149093577
-
Use of Comet-FISH in the study of DNA damage and repair: Review
-
Glei M, Hovhannisyan G, Pool-Zobel BL. 2009. Use of Comet-FISH in the study of DNA damage and repair: Review. Mutat. Res. 681(1):33-43
-
(2009)
Mutat. Res.
, vol.681
, Issue.1
, pp. 33-43
-
-
Glei, M.1
Hovhannisyan, G.2
Pool-Zobel, B.L.3
-
104
-
-
84943328920
-
A fluorescent probe to measureDNA damage and repair
-
Condie AG, Yan Y,Gerson SL, Wang Y. 2015. A fluorescent probe to measureDNA damage and repair. PLOS ONE 10(8):e0131330
-
(2015)
PLOS ONE
, vol.10
, Issue.8
, pp. e0131330
-
-
Condie, A.G.1
Yan, Y.2
Gerson, S.L.3
Wang, Y.4
-
105
-
-
84904015405
-
Fluorescence detection of cellular nucleotide excision repair of damaged DNA
-
Toga T, Kuraoka I,Watanabe S, Nakano E, Takeuchi S, et al. 2014. Fluorescence detection of cellular nucleotide excision repair of damaged DNA. Sci. Rep. 4:5578
-
(2014)
Sci. Rep.
, vol.4
, pp. 5578
-
-
Toga, T.1
Kuraoka, I.2
Watanabe, S.3
Nakano, E.4
Takeuchi, S.5
-
106
-
-
84865715286
-
Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress
-
Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, et al. 2012. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat. Cell Biol. 14(9):966-76
-
(2012)
Nat. Cell Biol.
, vol.14
, Issue.9
, pp. 966-976
-
-
Tkach, J.M.1
Yimit, A.2
Lee, A.Y.3
Riffle, M.4
Costanzo, M.5
-
107
-
-
84870168520
-
Reaction-based small-molecule fluorescent probes for chemoselective bioimaging
-
Chan J, Dodani SC, Chang CJ. 2012. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 4(12):973-84
-
(2012)
Nat. Chem.
, vol.4
, Issue.12
, pp. 973-984
-
-
Chan, J.1
Dodani, S.C.2
Chang, C.J.3
-
108
-
-
84874765320
-
Encoding and decoding cellular information through signaling dynamics
-
Purvis JE, Lahav G. 2013. Encoding and decoding cellular information through signaling dynamics. Cell 152(5):945-56
-
(2013)
Cell
, vol.152
, Issue.5
, pp. 945-956
-
-
Purvis, J.E.1
Lahav, G.2
-
109
-
-
79955894911
-
Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells
-
Newman RH, Fosbrink MD, Zhang J. 2011. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem. Rev. 111(5):3614-66
-
(2011)
Chem. Rev
, vol.111
, Issue.5
, pp. 3614-3666
-
-
Newman, R.H.1
Fosbrink, M.D.2
Zhang, J.3
-
111
-
-
84899572376
-
Fluorescent sensors for measuringmetal ions in living systems
-
Carter KP, Young AM, Palmer AE. 2014. Fluorescent sensors for measuringmetal ions in living systems. Chem. Rev. 114(8):4564-601
-
(2014)
Chem. Rev
, vol.114
, Issue.8
, pp. 4564-4601
-
-
Carter, K.P.1
Young, A.M.2
Palmer, A.E.3
-
112
-
-
84881219054
-
New approaches for sensing metabolites and proteins in live cells using RNA
-
Strack RL, Jaffrey SR. 2013. New approaches for sensing metabolites and proteins in live cells using RNA. Curr. Opin. Chem. Biol. 17(4):651-55
-
(2013)
Curr. Opin. Chem. Biol.
, vol.17
, Issue.4
, pp. 651-655
-
-
Strack, R.L.1
Jaffrey, S.R.2
-
114
-
-
84947766434
-
A comparison of fluorescent Ca2+ indicators for imaging local Ca2+ signals in cultured cells
-
Lock JT, Parker I, Smith IF. 2015. A comparison of fluorescent Ca2+ indicators for imaging local Ca2+ signals in cultured cells. Cell Calcium 58(6):638-48
-
(2015)
Cell Calcium
, vol.58
, Issue.6
, pp. 638-648
-
-
Lock, J.T.1
Parker, I.2
Smith, I.F.3
-
115
-
-
84935417451
-
Monitoring activity in neural circuits with genetically encoded indicators
-
Broussard GJ, Liang R, Tian L. 2014. Monitoring activity in neural circuits with genetically encoded indicators. Front. Mol. Neurosci. 7:97
-
(2014)
Front. Mol. Neurosci
, vol.7
, pp. 97
-
-
Broussard, G.J.1
Liang, R.2
Tian, L.3
-
116
-
-
79951671135
-
Design and application of genetically encoded biosensors
-
Palmer AE, Qin Y, Park JG, McCombs JE. 2011. Design and application of genetically encoded biosensors. Trends Biotechnol. 29(3):144-52
-
(2011)
Trends Biotechnol
, vol.29
, Issue.3
, pp. 144-152
-
-
Palmer, A.E.1
Qin, Y.2
Park, J.G.3
McCombs, J.E.4
-
117
-
-
65249106110
-
Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design
-
Akerboom J, Rivera JDV, Guilbe MMR,Malavé ECA,Hernandez HH, et al. 2009. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J. Biol. Chem. 284(10):6455-64
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.10
, pp. 6455-6464
-
-
Akerboom, J.1
Rivera, J.D.V.2
Guilbe, M.M.R.3
Malavé, E.C.A.4
Hernandez, H.H.5
-
118
-
-
57049134088
-
Structural basis for calcium sensing by GCaMP2
-
Wang Q, Shui B, KotlikoffMI, Sondermann H. 2008. Structural basis for calcium sensing by GCaMP2. Structure 16(12):1817-27
-
(2008)
Structure
, vol.16
, Issue.12
, pp. 1817-1827
-
-
Wang, Q.1
Shui, B.2
Kotlikoff, M.I.3
Sondermann, H.4
-
119
-
-
84885398693
-
A neuron-based screening platform for optimizing genetically-encoded calcium indicators
-
Wardill TJ, Chen T-W, Schreiter ER, Hasseman JP, Tsegaye G, et al. 2013. A neuron-based screening platform for optimizing genetically-encoded calcium indicators. PLOS ONE 8(10):e77728
-
(2013)
PLOS ONE
, vol.8
, Issue.10
, pp. e77728
-
-
Wardill, T.J.1
Chen, T.-W.2
Schreiter, E.R.3
Hasseman, J.P.4
Tsegaye, G.5
-
120
-
-
84880427381
-
Ultrasensitive fluorescent proteins for imaging neuronal activity
-
Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, et al. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295-300
-
(2013)
Nature
, vol.499
, pp. 295-300
-
-
Chen, T.-W.1
Wardill, T.J.2
Sun, Y.3
Pulver, S.R.4
Renninger, S.L.5
-
121
-
-
84893256698
-
Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes
-
Thestrup T, Litzlbauer J, Bartholomäus I,MuesM, Russo L, et al. 2014. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11(2):175-82
-
(2014)
Nat. Methods
, vol.11
, Issue.2
, pp. 175-182
-
-
Thestrup, T.1
Litzlbauer, J.2
Bartholomäus, I.3
Mues, M.4
Russo, L.5
-
122
-
-
84964249583
-
Sensitive red protein calcium indicators for imaging neural activity
-
Dana H, Mohar B, Sun Y, Narayan S, Gordus A, et al. 2016. Sensitive red protein calcium indicators for imaging neural activity. eLife 5:e12727
-
(2016)
ELife
, vol.5
, pp. e12727
-
-
Dana, H.1
Mohar, B.2
Sun, Y.3
Narayan, S.4
Gordus, A.5
-
123
-
-
84858203893
-
Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling
-
LohseMJ, Nuber S, Hoffmann C. 2012. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol. Rev. 64(2):299-336
-
(2012)
Pharmacol. Rev
, vol.64
, Issue.2
, pp. 299-336
-
-
Lohse, M.J.1
Nuber, S.2
Hoffmann, C.3
-
124
-
-
84888374656
-
Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors
-
Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. 2014. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. Biochim. Biophys. Acta. 1838(1):15-33
-
(2014)
Biochim. Biophys. Acta
, vol.1838
, Issue.1
, pp. 15-33
-
-
Sridharan, R.1
Zuber, J.2
Connelly, S.M.3
Mathew, E.4
Dumont, M.E.5
-
125
-
-
84895074355
-
Fluorescent biosensors for high throughput screening of protein kinase inhibitors
-
Prével C, Pellerano M, Van TNN, Morris MC. 2014. Fluorescent biosensors for high throughput screening of protein kinase inhibitors. Biotechnol. J. 9(2):253-65
-
(2014)
Biotechnol. J
, vol.9
, Issue.2
, pp. 253-265
-
-
Prével, C.1
Pellerano, M.2
Van, T.N.N.3
Morris, M.C.4
-
126
-
-
84903217674
-
High-sensitivity measurements of multiple kinase activities in live single cells
-
Regot S,Hughey JJ, Bajar BT, Carrasco S,CovertMW.2014. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157(7):1724-34
-
(2014)
Cell
, vol.157
, Issue.7
, pp. 1724-1734
-
-
Regot, S.1
Hughey, J.J.2
Bajar, B.T.3
Carrasco, S.4
Covert, M.W.5
-
127
-
-
84872120615
-
Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization
-
Sakabe M, Asanuma D, KamiyaM, Iwatate RJ,Hanaoka K, et al. 2013. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. J. Am. Chem. Soc. 135(1):409-14
-
(2013)
J. Am. Chem. Soc
, vol.135
, Issue.1
, pp. 409-414
-
-
Sakabe, M.1
Asanuma, D.2
Kamiya, M.3
Iwatate, R.J.4
Hanaoka, K.5
-
128
-
-
84902181290
-
Activity-based profiling of proteases
-
Sanman LE, Bogyo M. 2014. Activity-based profiling of proteases. Annu. Rev. Biochem. 83:249-73
-
(2014)
Annu. Rev. Biochem
, vol.83
, pp. 249-273
-
-
Sanman, L.E.1
Bogyo, M.2
-
129
-
-
84888595838
-
Monitoring of post-translational modification dynamics with genetically encoded fluorescent reporters
-
Hertel F, Zhang J. 2014. Monitoring of post-translational modification dynamics with genetically encoded fluorescent reporters. Biopolymers 101(2):180-87
-
(2014)
Biopolymers
, vol.101
, Issue.2
, pp. 180-187
-
-
Hertel, F.1
Zhang, J.2
-
132
-
-
84964986271
-
Large-scale fluorescence calcium-imagingmethods for studies of long-term memory in behaving mammals
-
Jercog P, Rogerson T, Schnitzer MJ. 2016. Large-scale fluorescence calcium-imagingmethods for studies of long-term memory in behaving mammals. Cold Spring Harb. Perspect. Biol. 8:a021824
-
(2016)
Cold Spring Harb. Perspect. Biol.
, vol.8
, pp. a021824
-
-
Jercog, P.1
Rogerson, T.2
Schnitzer, M.J.3
-
133
-
-
84930959289
-
Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators
-
St-Pierre F, Chavarha M, Lin MZ. 2015. Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. Curr. Opin. Chem. Biol. 27:31-38
-
(2015)
Curr. Opin. Chem. Biol.
, vol.27
, pp. 31-38
-
-
St-Pierre, F.1
Chavarha, M.2
Lin, M.Z.3
-
134
-
-
84934764172
-
The evolving capabilities of rhodopsin-based genetically encoded voltage indicators
-
Gong Y. 2015. The evolving capabilities of rhodopsin-based genetically encoded voltage indicators. Curr. Opin. Chem. Biol. 27:84-89
-
(2015)
Curr. Opin. Chem. Biol.
, vol.27
, pp. 84-89
-
-
Gong, Y.1
-
135
-
-
84938649577
-
Linker length and fusion site composition improve the optical signal of genetically encoded fluorescent voltage sensors
-
Jung A, Garcia JE, Kim E, Yoon B-J, Baker BJ. 2015. Linker length and fusion site composition improve the optical signal of genetically encoded fluorescent voltage sensors. Neurophotonics 2(2):021012
-
(2015)
Neurophotonics
, vol.2
, Issue.2
, pp. 021012
-
-
Jung, A.1
Garcia, J.E.2
Kim, E.3
Yoon, B.-J.4
Baker, B.J.5
-
136
-
-
84930732185
-
Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools
-
Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV. 2015. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem. 84:519-50
-
(2015)
Annu. Rev. Biochem
, vol.84
, pp. 519-550
-
-
Shcherbakova, D.M.1
Shemetov, A.A.2
Kaberniuk, A.A.3
Verkhusha, V.V.4
-
137
-
-
38849199681
-
Visualizing spatiotemporal dynamics of multicellular cell-cycle progression
-
Sakaue-Sawano A,KurokawaH,MorimuraT,Hanyu A, Hama H, et al. 2008. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487-98
-
(2008)
Cell
, vol.132
, Issue.3
, pp. 487-498
-
-
Sakaue-Sawano, A.1
Kurokawa, H.2
Morimura, T.3
Hanyu, A.4
Hama, H.5
-
138
-
-
84885614963
-
The proliferationquiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit
-
Spencer SL, Cappell SD, Tsai F-C, Overton KW, Wang CL, Meyer T. 2013. The proliferationquiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155(2):369-83
-
(2013)
Cell
, vol.155
, Issue.2
, pp. 369-383
-
-
Spencer, S.L.1
Cappell, S.D.2
Tsai, F.-C.3
Overton, K.W.4
Wang, C.L.5
Meyer, T.6
-
139
-
-
84955453910
-
Reversible fluorescent probes for biological redox states
-
Kaur A, Kolanowski JL, New EJ. 2016. Reversible fluorescent probes for biological redox states. Angew. Chem. 55(5):1602-13
-
(2016)
Angew. Chem.
, vol.55
, Issue.5
, pp. 1602-1613
-
-
Kaur, A.1
Kolanowski, J.L.2
New, E.J.3
-
140
-
-
84890114880
-
The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells
-
Winterbourn CC. 2014. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 1840(2):730-38
-
(2014)
Biochim. Biophys. Acta
, vol.1840
, Issue.2
, pp. 730-738
-
-
Winterbourn, C.C.1
-
141
-
-
84893470593
-
Genetically encoded reactive oxygen species (ROS) and redox indicators
-
Pouvreau S. 2014. Genetically encoded reactive oxygen species (ROS) and redox indicators. Biotechnol. J. 9(2):282-93
-
(2014)
Biotechnol. J
, vol.9
, Issue.2
, pp. 282-293
-
-
Pouvreau, S.1
-
142
-
-
84890120295
-
Genetically encoded fluorescent redox sensors
-
Lukyanov KA, Belousov V V. 2014. Genetically encoded fluorescent redox sensors. Biochim. Biophys. Acta 1840(2):745-56
-
(2014)
Biochim. Biophys. Acta
, vol.1840
, Issue.2
, pp. 745-756
-
-
Lukyanov, K.A.1
Belousov, V.V.2
-
143
-
-
84907709850
-
Profiling metabolic states with genetically encoded fluorescent biosensors for NADH
-
Zhao Y, Yang Y. 2015. Profiling metabolic states with genetically encoded fluorescent biosensors for NADH. Curr. Opin. Biotechnol. 31:86-92
-
(2015)
Curr. Opin. Biotechnol
, vol.31
, pp. 86-92
-
-
Zhao, Y.1
Yang, Y.2
-
144
-
-
84983551800
-
Sonar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents
-
Zhao Y, Hu Q, Cheng F, Su N,Wang A, et al. 2015. Sonar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metab. 21(5):777-89
-
(2015)
Cell Metab
, vol.21
, Issue.5
, pp. 777-789
-
-
Zhao, Y.1
Hu, Q.2
Cheng, F.3
Su, N.4
Wang, A.5
-
145
-
-
84960423066
-
Dependence of fluorescent protein brightness on protein concentration in solution and enhancement of it
-
Morikawa TJ, Fujita H, Kitamura A, Horio T, Yamamoto J, et al. 2016. Dependence of fluorescent protein brightness on protein concentration in solution and enhancement of it. Sci. Rep. 6:22342
-
(2016)
Sci. Rep.
, vol.6
, pp. 22342
-
-
Morikawa, T.J.1
Fujita, H.2
Kitamura, A.3
Horio, T.4
Yamamoto, J.5
-
146
-
-
77952474987
-
Cellular heterogeneity: Do differencesmake a difference?
-
Altschuler SJ,Wu LF. 2010. Cellular heterogeneity: do differencesmake a difference? Cell 141(4):559-63
-
(2010)
Cell
, vol.141
, Issue.4
, pp. 559-563
-
-
Altschuler, S.J.1
Wu, L.F.2
-
147
-
-
84953790713
-
Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines
-
Kang J, Hsu C-H, Wu Q, Liu S, Coster AD, et al. 2016. Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines. Nat. Biotechnol. 34(1):70-77
-
(2016)
Nat. Biotechnol
, vol.34
, Issue.1
, pp. 70-77
-
-
Kang, J.1
Hsu, C.-H.2
Wu, Q.3
Liu, S.4
Coster, A.D.5
-
148
-
-
84924086264
-
Computational analysis of signaling patterns in single cells
-
Davis DM, Purvis JE. 2015. Computational analysis of signaling patterns in single cells. Semin. Cell Dev. Biol. 37:35-43
-
(2015)
Semin. Cell Dev. Biol.
, vol.37
, pp. 35-43
-
-
Davis, D.M.1
Purvis, J.E.2
-
149
-
-
84892540025
-
Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data
-
Okada H, Ohnuki S, Roncero C, Konopka JB, Ohya Y. 2014. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data. Mol. Biol. Cell 25(2):222-33
-
(2014)
Mol. Biol. Cell
, vol.25
, Issue.2
, pp. 222-233
-
-
Okada, H.1
Ohnuki, S.2
Roncero, C.3
Konopka, J.B.4
Ohya, Y.5
-
150
-
-
84860187343
-
Single-cell analysis of population context advances RNAi screening at multiple levels
-
Snijder B, Sacher R, Rämö P, Liberali P, Mench K, et al. 2012. Single-cell analysis of population context advances RNAi screening at multiple levels. Mol. Syst. Biol. 8:579
-
(2012)
Mol. Syst. Biol.
, vol.8
, pp. 579
-
-
Snijder, B.1
Sacher, R.2
Rämö, P.3
Liberali, P.4
Mench, K.5
-
151
-
-
84926462180
-
Estimating cellular parameters through optimization procedures: Elementary principles and applications
-
Kimura A, Celani A,Nagao H, Stasevich T, Nakamura K. 2015. Estimating cellular parameters through optimization procedures: elementary principles and applications. Front. Physiol. 6:60
-
(2015)
Front. Physiol
, vol.6
, pp. 60
-
-
Kimura, A.1
Celani, A.2
Nagao, H.3
Stasevich, T.4
Nakamura, K.5
-
152
-
-
84895512107
-
Objective comparison of particle tracking methods
-
Chenouard N, Smal I, Chaumont F, Maška M, Sbalzarini IF, et al. 2014. Objective comparison of particle tracking methods. Nat. Methods 11(3):281-89
-
(2014)
Nat. Methods
, vol.11
, Issue.3
, pp. 281-289
-
-
Chenouard, N.1
Smal, I.2
Chaumont, F.3
Maška, M.4
Sbalzarini, I.F.5
-
153
-
-
84912567159
-
Review of free software tools for image analysis of fluorescence cell micrographs
-
Wiesmann V, Franz D, Held C, Münzenmayer C, Palmisano R, Wittenberg T. 2015. Review of free software tools for image analysis of fluorescence cell micrographs. J. Microsc. 257(1):39-53
-
(2015)
J. Microsc
, vol.257
, Issue.1
, pp. 39-53
-
-
Wiesmann, V.1
Franz, D.2
Held, C.3
Münzenmayer, C.4
Palmisano, R.5
Wittenberg, T.6
-
154
-
-
84908583870
-
Extracting meaning from biological imaging data
-
Cohen AR. 2014. Extracting meaning from biological imaging data. Mol. Biol. Cell 25(22):3470-73
-
(2014)
Mol. Biol. Cell
, vol.25
, Issue.22
, pp. 3470-3473
-
-
Cohen, A.R.1
-
155
-
-
84944442050
-
Computational image analysis reveals intrinsic multigenerational differences between anterior and posterior cerebral cortex neural progenitor cells
-
Winter MR, Liu M, Monteleone D, Melunis J, Hershberg U, et al. 2015. Computational image analysis reveals intrinsic multigenerational differences between anterior and posterior cerebral cortex neural progenitor cells. Stem Cell Rep. 5(4):609-20
-
(2015)
Stem Cell Rep.
, vol.5
, Issue.4
, pp. 609-620
-
-
Winter, M.R.1
Liu, M.2
Monteleone, D.3
Melunis, J.4
Hershberg, U.5
-
156
-
-
80053466067
-
Machine learning improves the precision and robustness of high-content screens: Using nonlinear multiparametric methods to analyze screening results
-
Horvath P,Wild T, KutayU, Csucs G. 2011. Machine learning improves the precision and robustness of high-content screens: using nonlinear multiparametric methods to analyze screening results. J. Biomol. Screen. 16(9):1059-67
-
(2011)
J. Biomol. Screen
, vol.16
, Issue.9
, pp. 1059-1067
-
-
Horvath, P.1
Wild, T.2
Kutay, U.3
Csucs, G.4
-
157
-
-
84890498817
-
Machine learning in cell biology-teaching computers to recognize phenotypes
-
Sommer C, Gerlich DW. 2013. Machine learning in cell biology-teaching computers to recognize phenotypes. J. Cell Sci. 126(24):5529-39
-
(2013)
J. Cell Sci.
, vol.126
, Issue.24
, pp. 5529-5539
-
-
Sommer, C.1
Gerlich, D.W.2
-
158
-
-
84902152908
-
Active learning strategies for phenotypic profiling of high-content screens
-
Smith K, Horvath P. 2014. Active learning strategies for phenotypic profiling of high-content screens. J. Biomol. Screen. 19(5):685-95
-
(2014)
J. Biomol. Screen
, vol.19
, Issue.5
, pp. 685-695
-
-
Smith, K.1
Horvath, P.2
-
159
-
-
84902203637
-
Multiparametric analysis of screening data: Growing beyond the single dimension to infinity and beyond
-
Abraham Y, Zhang X, Parker CN. 2014. Multiparametric analysis of screening data: growing beyond the single dimension to infinity and beyond. J. Biomol. Screen. 19(5):628-39
-
(2014)
J. Biomol. Screen
, vol.19
, Issue.5
, pp. 628-639
-
-
Abraham, Y.1
Zhang, X.2
Parker, C.N.3
-
160
-
-
84907959940
-
Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences
-
Wait E, Winter M, Bjornsson C, Kokovay E, Wang Y, et al. 2014. Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences. BMC Bioinform. 15(1):328
-
(2014)
BMC Bioinform
, vol.15
, Issue.1
, pp. 328
-
-
Wait, E.1
Winter, M.2
Bjornsson, C.3
Kokovay, E.4
Wang, Y.5
|