메뉴 건너뛰기




Volumn 19, Issue 5, 2014, Pages 628-639

Multiparametric analysis of screening data: Growing beyond the single dimension to infinity and beyond

Author keywords

Cell based screening; High content screening; Machine learning; Multiparametric data analysis; Multiparametric visualization

Indexed keywords

PROTEIN; RNA;

EID: 84902203637     PISSN: 10870571     EISSN: 1552454X     Source Type: Journal    
DOI: 10.1177/1087057114524987     Document Type: Review
Times cited : (30)

References (86)
  • 1
    • 84867557326 scopus 로고    scopus 로고
    • Differential mitochondrial toxicity screening and multi-Parametric data analysis
    • Tsiper, M. V.; Sturgis, J.; Avramova, L. V.; et al. Differential Mitochondrial Toxicity Screening and Multi-Parametric Data Analysis. PloS One 2012, 7 (10), e45226.
    • (2012) PloS One , vol.7 , Issue.10
    • Tsiper, M.V.1    Sturgis, J.2    Avramova, L.V.3
  • 2
    • 77954303361 scopus 로고    scopus 로고
    • Optimized multiparametric immunophenotyping of umbilical cord blood cells by flow cytometry
    • Basford, C.; Forraz, N.; McGuckin, C. Optimized Multiparametric Immunophenotyping of Umbilical Cord Blood Cells by Flow Cytometry. Nat. Protoc. 2010, 5 (7), 1337-1346.
    • (2010) Nat. Protoc. , vol.5 , Issue.7 , pp. 1337-1346
    • Basford, C.1    Forraz, N.2    McGuckin, C.3
  • 3
    • 84878201483 scopus 로고    scopus 로고
    • Character comparison of abdomen-Derived and eyelid-Derived mesenchymal stem cells
    • Kim, S. H.; Bang, S. H.; Park, S. A.; et al. Character Comparison of Abdomen-Derived and Eyelid-Derived Mesenchymal Stem Cells. Cell Prolif. 2013, 46 (3), 291-299.
    • (2013) Cell Prolif , vol.46 , Issue.3 , pp. 291-299
    • Kim, S.H.1    Bang, S.H.2    Park, S.A.3
  • 4
    • 79955750055 scopus 로고    scopus 로고
    • Single-Cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
    • Bendall, S. C.; Simonds, E. F.; Qiu, P.; et al. Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum. Science 2011, 332 (6030), 687-696.
    • (2011) Science , vol.332 , Issue.6030 , pp. 687-696
    • Bendall, S.C.1    Simonds, E.F.2    Qiu, P.3
  • 5
    • 79954592084 scopus 로고    scopus 로고
    • An anti-Inflammatory selective glucocorticoid receptor modulator preserves osteoblast differentiation
    • Rauch, A.; Gossye, V.; Bracke, D.; et al. An Anti- Inflammatory Selective Glucocorticoid Receptor Modulator Preserves Osteoblast Differentiation. FASEB J. 2011, 25 (4), 1323-1332.
    • (2011) FASEB J. , vol.25 , Issue.4 , pp. 1323-1332
    • Rauch, A.1    Gossye, V.2    Bracke, D.3
  • 6
    • 0032402905 scopus 로고    scopus 로고
    • The integration of microarray information in the drug development process
    • Braxton, S.; Bedilion, T. The Integration of Microarray Information in the Drug Development Process. Curr. Opin Biotech. 1998, 9 (6), 643-649.
    • (1998) Curr. Opin Biotech. , vol.9 , Issue.6 , pp. 643-649
    • Braxton, S.1    Bedilion, T.2
  • 7
    • 84874035558 scopus 로고    scopus 로고
    • Comparative transcriptomics of early dipteran development
    • Jimenez-Guri, E.; Huerta-Cepas, J.; Cozzuto, L.; et al. Comparative Transcriptomics of Early Dipteran Development. BMC Genom. 2013, 14, 123.
    • (2013) BMC Genom. , Issue.14 , pp. 123
    • Jimenez-Guri, E.1    Huerta-Cepas, J.2    Cozzuto, L.3
  • 8
    • 84880156267 scopus 로고    scopus 로고
    • Impact of experimental noise and annotation imprecision on data quality in microarray experiments
    • Scherer, A.; Dai, M.; Meng, F. Impact of Experimental Noise and Annotation Imprecision on Data Quality in MicroarrayExperiments. Methods Mol. Biol. 2013, 972, 155-176.
    • (2013) Methods Mol. Biol. , vol.972 , pp. 155-176
    • Scherer, A.1    Dai, M.2    Meng, F.3
  • 9
    • 33747657739 scopus 로고    scopus 로고
    • A method for high-Throughput gene expression signature analysis
    • Peck, D.; Crawford, E. D.; Ross, K. N.; et al. A Method for High-Throughput gene Expression Signature Analysis. Genome Biol. 2006, 7 (7), R61.
    • (2006) Genome Biol. , vol.7 , Issue.7
    • Peck, D.1    Crawford, E.D.2    Ross, K.N.3
  • 10
    • 84868549948 scopus 로고    scopus 로고
    • Multiplexed detection of mRNA Using Porosity-Tuned hydrogel microparticles
    • Choi, N. W.; Kim, J.; Chapin, S. C.; et al. Multiplexed Detection of mRNA Using Porosity-Tuned Hydrogel Microparticles. Anal. Chm. 2012, 84 (21), 9370-9378.
    • (2012) Anal. Chm. , vol.84 , Issue.21 , pp. 9370-9378
    • Choi, N.W.1    Kim, J.2    Chapin, S.C.3
  • 11
    • 33646021021 scopus 로고    scopus 로고
    • A multiplex branched DNA assay for parallel quantitative gene expression profiling
    • Flagella, M.; Bui, S.; Zheng, Z.; et al. A Multiplex Branched DNA Assay for Parallel Quantitative gene Expression Profiling. Anal. Biochem. 2006, 352 (1), 50-60.
    • (2006) Anal. Biochem. , vol.352 , Issue.1 , pp. 50-60
    • Flagella, M.1    Bui, S.2    Zheng, Z.3
  • 12
    • 84878663868 scopus 로고    scopus 로고
    • Development of a multiplex gene expression assay for components of the endocrine growth axis in coho salmon
    • Metzger, D. C.; Luckenbach, J. A.; Dickey, J. T.; et al. Development of a Multiplex gene Expression Assay for Components of the Endocrine Growth Axis in Coho Salmon. Gen. Comp. Endocrin. 2013, 189, 134-140.
    • (2013) Gen. Comp. Endocrin. , Issue.189 , pp. 134-140
    • Metzger, D.C.1    Luckenbach, J.A.2    Dickey, J.T.3
  • 13
    • 84865464330 scopus 로고    scopus 로고
    • Determination of minimal transcriptional signatures of compounds for target prediction
    • Nigsch, F.; Hutz, J.; Cornett, B.; et al. Determination of Minimal Transcriptional Signatures of Compounds for Target Prediction. EURASIP J. 2012, 2012 (1), 2.
    • (2012) EURASIP J. , vol.2012 , Issue.1 , pp. 2
    • Nigsch, F.1    Hutz, J.2    Cornett, B.3
  • 14
    • 84858439862 scopus 로고    scopus 로고
    • Insights into the regulation of protein abundance from proteomic and transcriptomic analyses
    • Vogel, C.; Marcotte, E. M. Insights into the Regulation of Protein Abundance from Proteomic and Transcriptomic Analyses. Nature Rev. Genetics 2012, 13 (4), 227-232.
    • (2012) Nature Rev. Genetics , vol.13 , Issue.4 , pp. 227-232
    • Vogel, C.1    Marcotte, E.M.2
  • 15
    • 84934436152 scopus 로고    scopus 로고
    • Mass spectrometry-Based proteomics: Basic principles and emerging technologies and directions
    • Van Riper, S. K.; de Jong, E. P.; Carlis, J. V.; et al. Mass Spectrometry-Based Proteomics: Basic Principles and Emerging Technologies and Directions. Adv. Exper. Med. Biol. 2013, 990, 1-35.
    • (2013) Adv. Exper. Med. Biol. , vol.990 , pp. 1-35
    • Van Riper, S.K.1    De Jong, E.P.2    Carlis, J.V.3
  • 16
    • 65549088630 scopus 로고    scopus 로고
    • Tracing pathway activities with kinase inhibitors and reverse phase protein arrays
    • van Oostrum, J.; Calonder, C.; Rechsteiner, D.; et al. Tracing Pathway Activities with Kinase Inhibitors and Reverse Phase Protein Arrays. Proteom. Clin. Appl. 2009, 3 (4), 412-422.
    • (2009) Proteom. Clin. Appl. , vol.3 , Issue.4 , pp. 412-422
    • Van Oostrum, J.1    Calonder, C.2    Rechsteiner, D.3
  • 17
    • 84857992908 scopus 로고    scopus 로고
    • Combining imaging pathway profiling: An alternative approach to cancer drug discovery
    • Carragher, N. O.; Brunton, V. G.; Frame, M. C. Combining Imaging and Pathway Profiling: An Alternative Approach to Cancer Drug Discovery. Drug Disc. Today 2012, 17 (5-6), 203-214.
    • (2012) Drug Disc. Today , vol.17 , Issue.5-6 , pp. 203-214
    • Carragher, N.O.1    Brunton, V.G.2    Frame, M.C.3
  • 18
    • 83455163474 scopus 로고    scopus 로고
    • Multiplexed fluorometric immunoassay testing methodology and troubleshooting
    • 10.3791/3715
    • Wunderlich, M. L.; Dodge, M. E.; Dhawan, R. K.; et al. Multiplexed Fluorometric Immunoassay Testing Methodology and Troubleshooting. J. Visual. Exper. 2011, 10.3791/3715 (58).
    • (2011) J. Visual. Exper. , Issue.58
    • Wunderlich, M.L.1    Dodge, M.E.2    Dhawan, R.K.3
  • 19
    • 0035028041 scopus 로고    scopus 로고
    • HTPS flow cytometry: A novel platform for automated high throughput drug discovery and characterization
    • Edwards, B. S.; Kuckuck, F. W.; Prossnitz, E. R.; et al. HTPS Flow Cytometry: A Novel Platform for Automated High Throughput Drug Discovery and Characterization. J. Biomolec. Screen. 2001, 6 (2), 83-90.
    • (2001) J. Biomolec. Screen. , vol.6 , Issue.2 , pp. 83-90
    • Edwards, B.S.1    Kuckuck, F.W.2    Prossnitz, E.R.3
  • 20
    • 84875755371 scopus 로고    scopus 로고
    • Flow cytometry enables a high-Throughput homogeneous fluorescent antibody-Binding assay for cytotoxic t cell lytic granule exocytosis
    • Florian, A. E.; Lepensky, C. K.; Kwon, O.; et al. Flow Cytometry Enables a High-Throughput Homogeneous Fluorescent Antibody-Binding Assay for Cytotoxic T Cell Lytic Granule Exocytosis. J. Biomolec. Screen. 2013, 18 (4), 420-429.
    • (2013) J. Biomolec. Screen. , vol.18 , Issue.4 , pp. 420-429
    • Florian, A.E.1    Lepensky, C.K.2    Kwon, O.3
  • 21
    • 83855162855 scopus 로고    scopus 로고
    • Hyperspectral cytometry at the single-Cell level using a 32-Channel photodetector
    • Gregori, G.; Patsekin, V.; Rajwa, B.; et al. Hyperspectral Cytometry at the Single-Cell Level Using a 32-Channel Photodetector. Cytometry Pt. A 2012, 81 (1), 35-44.
    • (2012) Cytometry Pt. A , vol.81 , Issue.1 , pp. 35-44
    • Gregori, G.1    Patsekin, V.2    Rajwa, B.3
  • 22
    • 84866096861 scopus 로고    scopus 로고
    • Multiplexed mass cytometry profiling of cellular states perturbed by small-Molecule regulators
    • Bodenmiller, B.; Zunder, E. R.; Finck, R.; et al. Multiplexed Mass Cytometry Profiling of Cellular States Perturbed by Small-Molecule Regulators. Nature Biotech. 2012, 30 (9), 858-867.
    • (2012) Nature Biotech. , vol.30 , Issue.9 , pp. 858-867
    • Bodenmiller, B.1    Zunder, E.R.2    Finck, R.3
  • 23
    • 84871784703 scopus 로고    scopus 로고
    • Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment
    • Zhang, A.; Sun, H.; Wang, X. Saliva Metabolomics Opens Door to Biomarker Discovery, Disease Diagnosis, and Treatment. App. Biochem. Biotech. 2012, 168 (6), 1718-1727.
    • (2012) App. Biochem. Biotech. , vol.168 , Issue.6 , pp. 1718-1727
    • Zhang, A.1    Sun, H.2    Wang, X.3
  • 24
    • 84881356804 scopus 로고    scopus 로고
    • Ultraperformance liquid chromatography-Mass Spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets
    • Zhang, A. H.; Sun, H.; Han, Y.; et al. Ultraperformance Liquid Chromatography-Mass Spectrometry Based Comprehensive Metabolomics Combined with Pattern Recognition and Network Analysis Methods for Characterization of Metabolites and Metabolic Pathways from Biological Data Sets. Anal. Chem. 2013, 85 (15), 7606-7612.
    • (2013) Anal. Chem. , vol.85 , Issue.15 , pp. 7606-7612
    • Zhang, A.H.1    Sun, H.2    Han, Y.3
  • 25
    • 84858183787 scopus 로고    scopus 로고
    • Diet creates metabolic niches in the "inmature Gut" that shape microbial communities
    • Poroyko, V.; Morowitz, M.; Bell, T.; et al. Diet Creates Metabolic Niches in the "Inmature Gut" That Shape Microbial Communities. Nutr. Hosp. 2011, 26 (6), 1283-1295.
    • (2011) Nutr. Hosp. , vol.26 , Issue.6 , pp. 1283-1295
    • Poroyko, V.1    Morowitz, M.2    Bell, T.3
  • 26
    • 8444223104 scopus 로고    scopus 로고
    • Multidimensional drug profiling by automated microscopy
    • Perlman, Z. E.; Slack, M. D.; Feng, Y.; et al. Multidimensional Drug Profiling by Automated Microscopy. Science 2004, 306 (5699), 1194-1198.
    • (2004) Science , vol.306 , Issue.5699 , pp. 1194-1198
    • Perlman, Z.E.1    Slack, M.D.2    Feng, Y.3
  • 27
    • 67650070045 scopus 로고    scopus 로고
    • Multi-Parameter phenotypic profiling: Using cellular effects to characterize small-Molecule compounds
    • Feng, Y.; Mitchison, T. J.; Bender, A.; et al. Multi-Parameter Phenotypic Profiling: Using Cellular Effects to Characterize Small-Molecule Compounds. Nat. Rev. Drug Discov. 2009, 8 (7), 567-578.
    • (2009) Nat. Rev. Drug Discov. , vol.8 , Issue.7 , pp. 567-578
    • Feng, Y.1    Mitchison, T.J.2    Bender, A.3
  • 28
    • 84860187343 scopus 로고    scopus 로고
    • Single-Cell analysis of population context advances RNAi screening at multiple levels
    • Snijder, B.; Sacher, R.; Ramo, P.; et al. Single-Cell Analysis of Population Context Advances RNAi Screening at Multiple Levels. Molec. Sys. Biol. 2012, 8, 579.
    • (2012) Molec. Sys. Biol. , Issue.8 , pp. 579
    • Snijder, B.1    Sacher, R.2    Ramo, P.3
  • 29
    • 84885676950 scopus 로고    scopus 로고
    • A Multi-Center study to standardize reporting and analyses of fluorescence-Activated cell sorted murine intestinal epithelial cells
    • 10.1152/ajpgi.00481.2012
    • Magness, S. T.; Puthoff, B. J.; Crissey, M. A.; et al. A Multi-Center Study to Standardize Reporting and Analyses of Fluorescence-Activated Cell Sorted Murine Intestinal Epithelial Cells. Am. J. Physiol. 2013, 10.1152/ajpgi.00481.2012.
    • (2013) Am. J. Physiol.
    • Magness, S.T.1    Puthoff, B.J.2    Crissey, M.A.3
  • 30
    • 65949097067 scopus 로고    scopus 로고
    • FlowCore: A bioconductor package for high throughput flow cytometry
    • Hahne, F.; LeMeur, N.; Brinkman, R. R.; et al. flowCore: A Bioconductor Package for High Throughput Flow Cytometry. BMC Bioinformatics 2009, 10.
    • (2009) BMC Bioinformatics , vol.10
    • Hahne, F.1    Lemeur, N.2    Brinkman, R.R.3
  • 31
    • 67649488081 scopus 로고    scopus 로고
    • Flow Clust: A bioconductor package for automated gating of flow cytometry data
    • Lo, K.; Hahne, F.; Brinkman, R. R.; et al. flowClust: A Bioconductor Package for Automated Gating of Flow Cytometry Data. BMC Bioinformatics 2009, 10, 145.
    • (2009) BMC Bioinformatics , vol.10 , pp. 145
    • Lo, K.1    Hahne, F.2    Brinkman, R.R.3
  • 32
    • 79951717913 scopus 로고    scopus 로고
    • High-Content screening to distinguish between attachment and post-Attachment steps of human cytomegalovirus entry into fibroblasts and epithelial cells
    • Ibig-Rehm, Y.; Gotte, M.; Gabriel, D.; et al. High-Content Screening to Distinguish between Attachment and Post- Attachment Steps of Human Cytomegalovirus Entry into Fibroblasts and Epithelial Cells. Antiviral Res. 2011, 89 (3), 246-256.
    • (2011) Antiviral Res. , vol.89 , Issue.3 , pp. 246-256
    • Ibig-Rehm, Y.1    Gotte, M.2    Gabriel, D.3
  • 34
    • 77953276042 scopus 로고    scopus 로고
    • Clustering phenotype populations by genome-Wide RNAi and multiparametric imaging
    • Fuchs, F.; Pau, G.; Kranz, D.; et al. Clustering Phenotype Populations by Genome-Wide RNAi and Multiparametric Imaging. Molec. Sys. Biol. 2010, 6, 370.
    • (2010) Molec. Sys. Biol. , Issue.6 , pp. 370
    • Fuchs, F.1    Pau, G.2    Kranz, D.3
  • 35
    • 84866453621 scopus 로고    scopus 로고
    • CytoSPADE: High-Performance analysis and visualization of high-Dimensional cytometry data
    • Linderman, M. D.; Bjornson, Z.; Simonds, E. F.; et al. CytoSPADE: High-Performance Analysis and Visualization of High-Dimensional Cytometry Data. Bioinformatics 2012, 28 (18), 2400-2401.
    • (2012) Bioinformatics , vol.28 , Issue.18 , pp. 2400-2401
    • Linderman, M.D.1    Bjornson, Z.2    Simonds, E.F.3
  • 36
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Saeys, Y.; Inza, I.; Larranaga, P. A Review of Feature Selection Techniques in Bioinformatics. Bioinformatics 2007, 23 (19), 2507-2517. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 37
    • 84872256757 scopus 로고    scopus 로고
    • Machine learning and its applications to biology
    • Tarca, A. L.; Carey, V. J.; Chen, X. W.; et al. Machine Learning and Its Applications to Biology. Plos Comput. Biol. 2007, 3 (6), 953-963.
    • (2007) Plos Comput. Biol. , vol.3 , Issue.6 , pp. 953-963
    • Tarca, A.L.1    Carey, V.J.2    Chen, X.W.3
  • 38
    • 21744448078 scopus 로고    scopus 로고
    • An unbiased cell morphology-Based screen for new biologically active small molecules
    • Tanaka, M.; Bateman, R.; Rauh, D.; et al. An Unbiased Cell Morphology-Based Screen for New, Biologically Active Small Molecules. PLoS Biol. 2005, 3 (5), e128.
    • (2005) PLoS Biol. , vol.3 , Issue.5
    • Tanaka, M.1    Bateman, R.2    Rauh, D.3
  • 39
    • 37249026328 scopus 로고    scopus 로고
    • Integrating high-Content screening and ligand-Target prediction to identify mechanism of action
    • Young, D. W.; Bender, A.; Hoyt, J.; et al. Integrating High- Content Screening and Ligand-Target Prediction to Identify Mechanism of Action. Nature Chem. Biol. 2008, 4 (1), 59-68.
    • (2008) Nature Chem. Biol. , vol.4 , Issue.1 , pp. 59-68
    • Young, D.W.1    Bender, A.2    Hoyt, J.3
  • 40
    • 34250216344 scopus 로고    scopus 로고
    • Image-Based multivariate profiling of drug responses from single cells
    • DOI 10.1038/nmeth1032, PII NMETH1032
    • Loo, L. H.; Wu, L. F.; Altschuler, S. J. Image-Based Multivariate Profiling of Drug Responses from Single Cells. Nature Meth. 2007, 4 (5), 445-453. (Pubitemid 46901279)
    • (2007) Nature Methods , vol.4 , Issue.5 , pp. 445-453
    • Loo, L.-H.1    Wu, L.F.2    Altschuler, S.J.3
  • 41
    • 36549084622 scopus 로고    scopus 로고
    • Robust hit identification by quality assurance and multivariate data analysis of a high-Content, cell-Based assay
    • Durr, O.; Duval, F.; Nichols, A.; et al. Robust Hit Identification by Quality Assurance and Multivariate Data Analysis of a High-Content, Cell-Based Assay. J. Biomolec. Screen. 2007, 12 (8), 1042-1049.
    • (2007) J. Biomolec. Screen. , vol.12 , Issue.8 , pp. 1042-1049
    • Durr, O.1    Duval, F.2    Nichols, A.3
  • 42
    • 77953445258 scopus 로고    scopus 로고
    • High-Content phenotypic profiling of drug response signatures across distinct cancer cells
    • Caie, P. D.; Walls, R. E.; Ingleston-Orme, A.; et al. High- Content Phenotypic Profiling of Drug Response Signatures across Distinct Cancer Cells. Molec. Cancer Ther. 2010, 9 (6), 1913-1926.
    • (2010) Molec. Cancer Ther. , vol.9 , Issue.6 , pp. 1913-1926
    • Caie, P.D.1    Walls, R.E.2    Ingleston-Orme, A.3
  • 43
    • 33845760114 scopus 로고    scopus 로고
    • Automated subcellular location determination high-Throughput microscopy
    • Glory, E.; Murphy, R. F. Automated Subcellular Location Determination and High-Throughput Microscopy. Devel. Cell 2007, 12 (1), 7-16.
    • (2007) Devel. Cell , vol.12 , Issue.1 , pp. 7-16
    • Glory, E.1    Murphy, R.F.2
  • 44
    • 84875747495 scopus 로고    scopus 로고
    • The multidimensional perturbation value: A single metric to measure similarity and activity of treatments in high-Throughput multidimensional screens
    • Hutz, J. E.; Nelson, T.; Wu, H.; et al. The Multidimensional Perturbation Value: A Single Metric to Measure Similarity and Activity of Treatments in High-Throughput Multidimensional Screens. J. Biomolec. Screen. 2013, 18 (4), 367-377.
    • (2013) J. Biomolec. Screen. , vol.18 , Issue.4 , pp. 367-377
    • Hutz, J.E.1    Nelson, T.2    Wu, H.3
  • 45
    • 33750823778 scopus 로고    scopus 로고
    • Compound classification using image-Based cellular phenotypes
    • Adams, C. L.; Kutsyy, V.; Coleman, D. A.; et al. Compound Classification Using Image-Based Cellular Phenotypes. Meth. Enzym. 2006, 414, 440-468.
    • (2006) Meth. Enzym. , vol.414 , pp. 440-468
    • Adams, C.L.1    Kutsyy, V.2    Coleman, D.A.3
  • 46
    • 84865227014 scopus 로고    scopus 로고
    • Rethinking molecular similarity: Comparing compounds on the basis of biological activity
    • Petrone, P. M.; Simms, B.; Nigsch, F.; et al. Rethinking Molecular Similarity: Comparing Compounds on the Basis of Biological Activity. ACS Chem. Biol. 2012, 7 (8), 1399-1409.
    • (2012) ACS Chem. Biol. , vol.7 , Issue.8 , pp. 1399-1409
    • Petrone, P.M.1    Simms, B.2    Nigsch, F.3
  • 47
    • 83755163018 scopus 로고    scopus 로고
    • Detecting novel associations in large data sets
    • Reshef, D. N.; Reshef, Y. A.; Finucane, H. K.; et al. DetectingNovel Associations in Large Data Sets. Science 2011, 334 (6062), 1518-1524.
    • (2011) Science , vol.334 , Issue.6062 , pp. 1518-1524
    • Reshef, D.N.1    Reshef, Y.A.2    Finucane, H.K.3
  • 48
    • 50849124115 scopus 로고    scopus 로고
    • Measuring and testing dependence by correlation of distances
    • Szekely, G. J.; Rizzo, M. L.; Bakirov, N. K. Measuring and Testing Dependence by Correlation of Distances. Ann. Stat. 2007, 35 (6), 2769-2794.
    • (2007) Ann. Stat. , vol.35 , Issue.6 , pp. 2769-2794
    • Szekely, G.J.1    Rizzo, M.L.2    Bakirov, N.K.3
  • 49
    • 84887928920 scopus 로고    scopus 로고
    • Benchmarking of multivariate similarity measures for high-content screening fingerprints in phenotypic drug discovery
    • Reisen, F.; Zhang, X.; Gabriel, D.; et al. Benchmarking of Multivariate Similarity Measures for High-content screening Fingerprints in Phenotypic Drug Discovery. J. Biomolec. Screen. 2013, 18 (10), 1284-1297.
    • (2013) J. Biomolec. Screen. , vol.18 , Issue.10 , pp. 1284-1297
    • Reisen, F.1    Zhang, X.2    Gabriel, D.3
  • 50
    • 77950387346 scopus 로고    scopus 로고
    • Phenotypic profiling of the human genome by time-Lapse microscopy reveals cell division genes
    • Neumann, B.; Walter, T.; Heriche, J. K.; et al. Phenotypic Profiling of the Human Genome by Time-Lapse Microscopy Reveals Cell Division genes. Nature 2010, 464 (7289), 721-727.
    • (2010) Nature , vol.464 , Issue.7289 , pp. 721-727
    • Neumann, B.1    Walter, T.2    Heriche, J.K.3
  • 51
    • 22944478488 scopus 로고
    • Discriminatory analysis. Nonparametric discrimination: Consistency properties
    • Fix, E.; Hodges, J. L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. Intl. Stat. Rev.1989, 57 (3), 238-247.
    • (1989) Intl. Stat. Rev. , vol.57 , Issue.3 , pp. 238-247
    • Fix, E.1    Hodges, J.L.2
  • 52
    • 77949385899 scopus 로고    scopus 로고
    • Integration of multiple readouts into the z' factor for assay quality assessment
    • Kummel, A.; Gubler, H.; Gehin, P.; et al. Integration of Multiple Readouts into the Z' Factor for Assay Quality Assessment. J. Biomolec. Screen. 2010, 15 (1), 95-101.
    • (2010) J. Biomolec. Screen. , vol.15 , Issue.1 , pp. 95-101
    • Kummel, A.1    Gubler, H.2    Gehin, P.3
  • 53
    • 37749002713 scopus 로고    scopus 로고
    • Cellular phenotype recognition for high-Content RNA interference genome-Wide screening
    • Wang, J.; Zhou, X.; Bradley, P. L.; et al. Cellular Phenotype Recognition for High-Content RNA Interference Genome- Wide Screening. J. Biomolec. Screen. 2008, 13 (1), 29-39.
    • (2008) J. Biomolec. Screen. , vol.13 , Issue.1 , pp. 29-39
    • Wang, J.1    Zhou, X.2    Bradley, P.L.3
  • 54
    • 80053466067 scopus 로고    scopus 로고
    • Machine learning improves the precision and robustness of high-Content screens: Using nonlinear multiparametric methods to analyze screening results
    • Horvath, P.; Wild, T.; Kutay, U.; et al. Machine Learning Improves the Precision and Robustness of High-Content Screens: Using Nonlinear Multiparametric Methods to Analyze Screening Results. J. Biomolec. Screen. 2011, 16 (9), 1059-1067.
    • (2011) J. Biomolec. Screen. , vol.16 , Issue.9 , pp. 1059-1067
    • Horvath, P.1    Wild, T.2    Kutay, U.3
  • 55
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-Based cancer classification
    • Statnikov, A.; Wang, L.; Aliferis, C. F. A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-Based Cancer Classification. BMC Bioinformatics 2008, 9, 319.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 56
    • 33845369532 scopus 로고    scopus 로고
    • A supervised hidden markov model framework for efficiently segmenting tiling array data in transcriptional and chip-chip experiments: Systematically incorporating validated biological knowledge
    • Du, J.; Rozowsky, J. S.; Korbel, J. O.; et al. A Supervised Hidden Markov Model Framework for Efficiently Segmenting Tiling Array Data in Transcriptional and chIP- chip Experiments: Systematically Incorporating Validated Biological Knowledge. Bioinformatics 2006, 22 (24), 3016-3024.
    • (2006) Bioinformatics , vol.22 , Issue.24 , pp. 3016-3024
    • Du, J.1    Rozowsky, J.S.2    Korbel, J.O.3
  • 57
    • 83255194568 scopus 로고    scopus 로고
    • The rise and fall of supervised machine learning techniques
    • Jensen, L. J.; Bateman, A. The Rise and Fall of Supervised Machine Learning Techniques. Bioinformatics 2011, 27 (24), 3331-3332.
    • (2011) Bioinformatics , vol.27 , Issue.24 , pp. 3331-3332
    • Jensen, L.J.1    Bateman, A.2
  • 58
    • 0035396522 scopus 로고    scopus 로고
    • Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data
    • Wilkins, M. F.; Hardy, S. A.; Boddy, L.; et al. Comparison of Five Clustering Algorithms to Classify Phytoplankton from Flow Cytometry Data. Cytometry 2001, 44 (3), 210-217.
    • (2001) Cytometry , vol.44 , Issue.3 , pp. 210-217
    • Wilkins, M.F.1    Hardy, S.A.2    Boddy, L.3
  • 59
    • 84862188419 scopus 로고    scopus 로고
    • Differentiation and visualization of diverse cellular phenotypic responses in primary high-Content screening
    • Kummel, A.; Selzer, P.; Siebert, D.; et al. Differentiation and Visualization of Diverse Cellular Phenotypic Responses in Primary High-Content Screening. J. Biomolec. Screen. 2012, 17 (6), 843-849.
    • (2012) J. Biomolec. Screen. , vol.17 , Issue.6 , pp. 843-849
    • Kummel, A.1    Selzer, P.2    Siebert, D.3
  • 60
    • 78049416862 scopus 로고    scopus 로고
    • An overview of clustering applied to molecular biology
    • Nugent, R.; Meila, M. An Overview of Clustering Applied to Molecular Biology. Methods Molec. Biol. 2010, 620, 369-404.
    • (2010) Methods Molec. Biol. , Issue.620 , pp. 369-404
    • Nugent, R.1    Meila, M.2
  • 61
    • 0032098774 scopus 로고    scopus 로고
    • Some new indexes of cluster validity
    • Bezdek, J. C.; Pal, N. R. Some New Indexes of Cluster Validity. IEEE T. Syst. Man. Cy. B 1998, 28 (3), 301-315.
    • (1998) IEEE T. Syst. Man. Cy. B , vol.28 , Issue.3 , pp. 301-315
    • Bezdek, J.C.1    Pal, N.R.2
  • 62
    • 84887943419 scopus 로고    scopus 로고
    • Comparison of methods for image-Based profiling of cellular morphological responses to small-Molecule treatment
    • 10.1177/1087057113503553
    • Ljosa, V.; Caie, P. D.; Ter Horst, R.; et al. Comparison of Methods for Image-Based Profiling of Cellular Morphological Responses to Small-Molecule Treatment. J. Biomolec. Screen. 2013, 10.1177/1087057113503553.
    • (2013) J. Biomolec. Screen.
    • Ljosa, V.1    Caie, P.D.2    Ter Horst, R.3
  • 63
    • 0041347559 scopus 로고    scopus 로고
    • From visual data exploration to visual data mining: A Survey
    • de Oliveira, M. C. F.; Levkowitz, H. From Visual Data Exploration to Visual Data Mining: A Survey. IEEE T. Vis. Comput. Gr. 2003, 9 (3), 378-394.
    • (2003) IEEE T. Vis. Comput. Gr. , vol.9 , Issue.3 , pp. 378-394
    • De Oliveira, M.C.F.1    Levkowitz, H.2
  • 64
    • 0030383267 scopus 로고    scopus 로고
    • Visualization techniques for mining large databases: A comparison
    • Keim, D. A.; Kriegel, H. P. Visualization Techniques for Mining Large Databases: A Comparison. IEEE T. Knowl. Data En. 1996, 8 (6), 923-938.
    • (1996) IEEE T. Knowl. Data En. , vol.8 , Issue.6 , pp. 923-938
    • Keim, D.A.1    Kriegel, H.P.2
  • 65
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine 1901, 2 (11), 559-572.
    • (1901) Philosophical Magazine , vol.2 , Issue.11 , pp. 559-572
    • Pearson, K.1
  • 67
    • 84880280631 scopus 로고    scopus 로고
    • ViSNE enables visualization of high dimensional single-Cell data and reveals phenotypic heterogeneity of Leukemia
    • Amir el, A. D.; Davis, K. L.; Tadmor, M. D.; et al. viSNE Enables Visualization of High Dimensional Single-Cell Data and Reveals Phenotypic Heterogeneity of Leukemia. Nature Biotech. 2013, 31 (6), 545-552.
    • (2013) Nature Biotech. , vol.31 , Issue.6 , pp. 545-552
    • Amirel, A.D.1    Davis, K.L.2    Tadmor, M.D.3
  • 68
    • 84949331034 scopus 로고
    • Use of faces to represent points in K-Dimensional space graphically
    • Chernoff, H. Use of Faces to Represent Points in K-Dimensional Space Graphically. J. Am. Stat. Assoc. 1973, 68 (342), 361-368.
    • (1973) J. Am. Stat. Assoc. , vol.68 , Issue.342 , pp. 361-368
    • Chernoff, H.1
  • 70
    • 70449504158 scopus 로고    scopus 로고
    • Visualization of large microarray experiments with space maps
    • Gehlenborg, N.; Brazma, A. Visualization of Large Microarray Experiments with Space Maps. BMC Bioinformatics 2009,10, O7.
    • (2009) BMC Bioinformatics , vol.10
    • Gehlenborg, N.1    Brazma, A.2
  • 71
    • 65549109397 scopus 로고    scopus 로고
    • Visualization of genomic data with the hilbert curve
    • Anders, S. Visualization of Genomic Data with the Hilbert Curve. Bioinformatics 2009, 25 (10), 1231-1235.
    • (2009) Bioinformatics , vol.25 , Issue.10 , pp. 1231-1235
    • Anders, S.1
  • 72
    • 0021696833 scopus 로고
    • Selective attention and the organization of visual information
    • Duncan, J. Selective Attention and the Organization of Visual Information. J. Exper. Psych. Gen. 1984, 113 (4), 501-517.
    • (1984) J. Exper. Psych. Gen. , vol.113 , Issue.4 , pp. 501-517
    • Duncan, J.1
  • 73
    • 84893774779 scopus 로고
    • Graphical perception: Theory, experimentation, and application to the development of graphical methods
    • Cleveland, W. S.; Mcgill, R. Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. J. Am. Stat. Assoc. 1984, 79 (387), 531-554.
    • (1984) J. Am. Stat. Assoc. , vol.79 , Issue.387 , pp. 531-554
    • Cleveland, W.S.1    McGill, R.2
  • 76
    • 2942541352 scopus 로고    scopus 로고
    • Applications of machine learning and high-Dimensional visualization in cancer detection, diagnosis, and management
    • McCarthy, J. F.; Marx, K. A.; Hoffman, P. E.; et al. Applications of Machine Learning and High-Dimensional Visualization in Cancer Detection, Diagnosis, and Management. Ann. NY Acad. Sci. 2004, 1020, 239-262.
    • (2004) Ann. NY Acad. Sci. , vol.1020 , pp. 239-262
    • McCarthy, J.F.1    Marx, K.A.2    Hoffman, P.E.3
  • 77
    • 54949101111 scopus 로고    scopus 로고
    • Vectorized radviz and its application to multiple cluster datasets
    • Sharko, J.; Grinstein, G.; Marx, K. A. Vectorized Radviz and Its Application to Multiple Cluster Datasets. IEEE T. Vis.Comput. Gr. 2008, 14 (6), 1444-1451.
    • (2008) IEEE T. Vis.Comput. Gr. , vol.14 , Issue.6 , pp. 1444-1451
    • Sharko, J.1    Grinstein, G.2    Marx, K.A.3
  • 78
    • 0033003760 scopus 로고    scopus 로고
    • A simple statistical parameter for use in evaluation and validation of high throughput screening assays
    • Zhang, J. H.; Chung, T. D. Y.; Oldenburg, K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomolec. Screen. 1999, 4 (2), 67-73.
    • (1999) J. Biomolec. Screen. , vol.4 , Issue.2 , pp. 67-73
    • Zhang, J.H.1    Chung, T.D.Y.2    Oldenburg, K.R.3
  • 79
    • 78951477121 scopus 로고    scopus 로고
    • Identifying actives from hts data sets: Practical approaches for theselection of an appropriate HTS data-Processing method and quality control review
    • Shun, T. Y.; Lazo, J. S.; Sharlow, E. R.; et al. Identifying Actives from HTS Data Sets: Practical Approaches for theSelection of an Appropriate HTS Data-Processing Method and Quality Control Review. J. Biomolec. Screen. 2011, 16 (1), 1-14.
    • (2011) J. Biomolec. Screen. , vol.16 , Issue.1 , pp. 1-14
    • Shun, T.Y.1    Lazo, J.S.2    Sharlow, E.R.3
  • 80
    • 33646264098 scopus 로고    scopus 로고
    • A Comparison of assay performance measures in screening assays: Signal Window,Z' Factor, and assay variability ratio
    • Iversen, P. W.; Eastwood, B. J.; Sittampalam, G. S.; et al. A Comparison of Assay Performance Measures in Screening Assays: Signal Window, Z' Factor, and Assay Variability Ratio. J. Biomolec. Screen. 2006, 11 (3), 247-252.
    • (2006) J. Biomolec. Screen. , vol.11 , Issue.3 , pp. 247-252
    • Iversen, P.W.1    Eastwood, B.J.2    Sittampalam, G.S.3
  • 81
    • 0001180917 scopus 로고    scopus 로고
    • Design of signal windows in high throughput screening assays for drug discovery
    • Sittampalam, G. S.; Iversen, P. W.; Boadt, J. A.; et al. Design of Signal Windows in High Throughput Screening Assays for Drug Discovery. J. Biomolec. Screen. 1997, 2 (3), 159-169.
    • (1997) J. Biomolec. Screen. , vol.2 , Issue.3 , pp. 159-169
    • Sittampalam, G.S.1    Iversen, P.W.2    Boadt, J.A.3
  • 82
    • 84862222160 scopus 로고    scopus 로고
    • Z' Factor including siRNA design quality parameter in RNAi screening experiments
    • Mazur, S.; Kozak, K. Z' Factor including siRNA Design Quality Parameter in RNAi Screening Experiments. RNA Biol. 2012, 9 (5), 624-632.
    • (2012) RNA Biol. , vol.9 , Issue.5 , pp. 624-632
    • Mazur, S.1    Kozak, K.2
  • 83
    • 78649358119 scopus 로고    scopus 로고
    • Kernelized Z' factor in multiparametric screening technology
    • Kozak, K.; Csucs, G. Kernelized Z' Factor in Multiparametric Screening Technology. RNA BIol. 2010, 7 (5), 615-620.
    • (2010) RNA BIol. , vol.7 , Issue.5 , pp. 615-620
    • Kozak, K.1    Csucs, G.2
  • 84
    • 0034568109 scopus 로고    scopus 로고
    • Gene Shaving" as a method for identifying distinct sets of genes with similar expression patterns
    • RESEARCH0003.
    • Hastie, T.; Tibshirani, R.; Eisen, M. B.; et al. "gene Shaving" as a Method for Identifying Distinct Sets of genes with Similar Expression Patterns. Genome Biol. 2000, 1 (2), RESEARCH0003.
    • (2000) Genome Biol. , vol.1 , pp. 2
    • Hastie, T.1    Tibshirani, R.2    Eisen, M.B.3
  • 86
    • 84858433310 scopus 로고    scopus 로고
    • Personal omics profiling reveals dynamic molecular and medical phenotypes
    • Chen, R.; Mias, G. I.; Li-Pook-Than, J.; et al. Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes. Cell 2012, 148 (6), 1293-1307.
    • (2012) Cell , vol.148 , Issue.6 , pp. 1293-1307
    • Chen, R.1    Mias, G.I.2    Li-Pook-Than, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.