메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Distributed tuning of machine learning algorithms using MapReduce Clusters

Author keywords

hyper parameter; machine learning; MapReduce; optimization; tuning

Indexed keywords

ALGORITHM PARAMETERS; HYPER-PARAMETER; HYPERPARAMETERS; LEARNING METHODS; LEARNING PARAMETERS; MACHINE-LEARNING; MAP-REDUCE; MODEL ACCURACY; OVERFITTING; PARAMETER OPTIMIZATION; PARAMETER SPACES; RANDOM FORESTS; RANKING PROBLEMS; REGULARIZATION PARAMETERS; WIKIPEDIA;

EID: 80052331622     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2002945.2002947     Document Type: Conference Paper
Times cited : (19)

References (20)
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman. Random forests. Machine Learning, 45:5-32, 2001. 10.1023/A:1010933404324. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • January
    • J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Communications of ACM, 51:107-113, January 2008.
    • (2008) Communications of ACM , vol.51 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 7
    • 33746218517 scopus 로고    scopus 로고
    • Efficient optimization of support vector machine learning parameters for unbalanced datasets
    • DOI 10.1016/j.cam.2005.09.009, PII S0377042705005856
    • T. Eitrich and B. Lang. Efficient optimization of support vector machine learning parameters for unbalanced datasets. Journal of Computational and Applied Mathematics, 196:425-436, November 2006. (Pubitemid 44093872)
    • (2006) Journal of Computational and Applied Mathematics , vol.196 , Issue.2 , pp. 425-436
    • Eitrich, T.1    Lang, B.2
  • 8
    • 0003743417 scopus 로고    scopus 로고
    • Technical report, Technical report, Dept. Statistics, Stanford Univ.
    • J. H. Friedman. Stochastic gradient boosting. Technical report, Technical report, Dept. Statistics, Stanford Univ., 1999.
    • (1999) Stochastic Gradient Boosting
    • Friedman, J.H.1
  • 9
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189-1232, 2000.
    • (2000) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 10
    • 52649160312 scopus 로고    scopus 로고
    • Roughly balanced bagging for imbalanced data
    • S. Hido and H. Kashima. Roughly balanced bagging for imbalanced data. In SIAM Data Mining, pages 143-152, 2008.
    • (2008) SIAM Data Mining , pp. 143-152
    • Hido, S.1    Kashima, H.2
  • 13
    • 4344713562 scopus 로고    scopus 로고
    • Choosing search heuristics by non-stationary reinforcement learning
    • A. Nareyek. Choosing search heuristics by non-stationary reinforcement learning. Applied Optimization, 86:523-544, 2003.
    • (2003) Applied Optimization , vol.86 , pp. 523-544
    • Nareyek, A.1
  • 14
    • 33845686795 scopus 로고    scopus 로고
    • A decision support tool for tuning parameters in a machine learning algorithm
    • M. Postema, T. Menzies, and X. Wu. A decision support tool for tuning parameters in a machine learning algorithm. In PACES/SPICIS'97 Proceedings, pages 227-235, 1997.
    • (1997) PACES/SPICIS'97 Proceedings , pp. 227-235
    • Postema, M.1    Menzies, T.2    Wu, X.3
  • 17
    • 77954568972 scopus 로고    scopus 로고
    • LETOR: A benchmark collection for research on learning to rank for information retrieval
    • 10.1007/s10791-009-9123-y
    • T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A benchmark collection for research on learning to rank for information retrieval. Information Retrieval, 13:346-374, 2010. 10.1007/s10791-009-9123-y.
    • (2010) Information Retrieval , vol.13 , pp. 346-374
    • Qin, T.1    Liu, T.-Y.2    Xu, J.3    Li, H.4
  • 18
    • 0020914923 scopus 로고
    • Optimization by simulated annealing: A preliminary computational study for the tsp
    • WSC '83, Piscataway, NJ, USA, IEEE Press
    • C. C. Skiścim and B. L. Golden. Optimization by simulated annealing: A preliminary computational study for the tsp. In Proceedings of the 15th conference on Winter Simulation - Volume 2, WSC '83, pages 523-535, Piscataway, NJ, USA, 1983. IEEE Press.
    • (1983) Proceedings of the 15th Conference on Winter Simulation , vol.2 , pp. 523-535
    • Skiścim, C.C.1    Golden, B.L.2
  • 19
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • June
    • G. M. Weiss. Mining with rarity: A unifying framework. SIGKDD Explor. Newsl., 6:7-19, June 2004.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , pp. 7-19
    • Weiss, G.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.