-
2
-
-
0035478854
-
Random forests
-
DOI 10.1023/A:1010933404324
-
L. Breiman. Random forests. Machine Learning, 45:5-32, 2001. 10.1023/A:1010933404324. (Pubitemid 32933532)
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N. V. Chawla, K.W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority over- Sampling technique. Journal of Artificial Intelligence Research, 16:321-357, June 2002. (Pubitemid 43057176)
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
6
-
-
37549003336
-
Mapreduce: Simplified data processing on large clusters
-
January
-
J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Communications of ACM, 51:107-113, January 2008.
-
(2008)
Communications of ACM
, vol.51
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
7
-
-
33746218517
-
Efficient optimization of support vector machine learning parameters for unbalanced datasets
-
DOI 10.1016/j.cam.2005.09.009, PII S0377042705005856
-
T. Eitrich and B. Lang. Efficient optimization of support vector machine learning parameters for unbalanced datasets. Journal of Computational and Applied Mathematics, 196:425-436, November 2006. (Pubitemid 44093872)
-
(2006)
Journal of Computational and Applied Mathematics
, vol.196
, Issue.2
, pp. 425-436
-
-
Eitrich, T.1
Lang, B.2
-
8
-
-
0003743417
-
-
Technical report, Technical report, Dept. Statistics, Stanford Univ.
-
J. H. Friedman. Stochastic gradient boosting. Technical report, Technical report, Dept. Statistics, Stanford Univ., 1999.
-
(1999)
Stochastic Gradient Boosting
-
-
Friedman, J.H.1
-
9
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189-1232, 2000.
-
(2000)
Annals of Statistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
10
-
-
52649160312
-
Roughly balanced bagging for imbalanced data
-
S. Hido and H. Kashima. Roughly balanced bagging for imbalanced data. In SIAM Data Mining, pages 143-152, 2008.
-
(2008)
SIAM Data Mining
, pp. 143-152
-
-
Hido, S.1
Kashima, H.2
-
11
-
-
0033645041
-
IR evaluation methods for retrieving highly relevant documents
-
New York, NY, USA, ACM
-
K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. In SIGIR '00: Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pages 41-48, New York, NY, USA, 2000. ACM.
-
(2000)
SIGIR '00: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 41-48
-
-
Järvelin, K.1
Kekäläinen, J.2
-
12
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
New York, NY, USA, ACM
-
H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In Proceedings of the 24th international conference on Machine learning, ICML '07, pages 473-480, New York, NY, USA, 2007. ACM.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning, ICML '07
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
13
-
-
4344713562
-
Choosing search heuristics by non-stationary reinforcement learning
-
A. Nareyek. Choosing search heuristics by non-stationary reinforcement learning. Applied Optimization, 86:523-544, 2003.
-
(2003)
Applied Optimization
, vol.86
, pp. 523-544
-
-
Nareyek, A.1
-
14
-
-
33845686795
-
A decision support tool for tuning parameters in a machine learning algorithm
-
M. Postema, T. Menzies, and X. Wu. A decision support tool for tuning parameters in a machine learning algorithm. In PACES/SPICIS'97 Proceedings, pages 227-235, 1997.
-
(1997)
PACES/SPICIS'97 Proceedings
, pp. 227-235
-
-
Postema, M.1
Menzies, T.2
Wu, X.3
-
15
-
-
84922022293
-
Overview of the 2nd international competition on plagiarism detection
-
M. Potthast, A. Barrón-Cedeño, A. Eiselt, B. Stein, and P. Rosso. Overview of the 2nd international competition on plagiarism detection. In Proceedings of the CLEF'10 Workshop on Uncovering Plagiarism, Authorship and Social Software Misuse, 2010.
-
Proceedings of the CLEF'10 Workshop on Uncovering Plagiarism, Authorship and Social Software Misuse, 2010
-
-
Potthast, M.1
Barrón-Cedeño, A.2
Eiselt, A.3
Stein, B.4
Rosso, P.5
-
17
-
-
77954568972
-
LETOR: A benchmark collection for research on learning to rank for information retrieval
-
10.1007/s10791-009-9123-y
-
T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A benchmark collection for research on learning to rank for information retrieval. Information Retrieval, 13:346-374, 2010. 10.1007/s10791-009-9123-y.
-
(2010)
Information Retrieval
, vol.13
, pp. 346-374
-
-
Qin, T.1
Liu, T.-Y.2
Xu, J.3
Li, H.4
-
18
-
-
0020914923
-
Optimization by simulated annealing: A preliminary computational study for the tsp
-
WSC '83, Piscataway, NJ, USA, IEEE Press
-
C. C. Skiścim and B. L. Golden. Optimization by simulated annealing: A preliminary computational study for the tsp. In Proceedings of the 15th conference on Winter Simulation - Volume 2, WSC '83, pages 523-535, Piscataway, NJ, USA, 1983. IEEE Press.
-
(1983)
Proceedings of the 15th Conference on Winter Simulation
, vol.2
, pp. 523-535
-
-
Skiścim, C.C.1
Golden, B.L.2
-
19
-
-
20844458491
-
Mining with rarity: A unifying framework
-
June
-
G. M. Weiss. Mining with rarity: A unifying framework. SIGKDD Explor. Newsl., 6:7-19, June 2004.
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, pp. 7-19
-
-
Weiss, G.M.1
-
20
-
-
70349265131
-
-
Technical report, Microsoft Technical Report MSR-TR-2008-109
-
Q. Wu, C. Burges, K. Svore, and J. Gao. Ranking, boosting and model adaptation. Technical report, Microsoft Technical Report MSR-TR-2008-109, 2008.
-
(2008)
Ranking, Boosting and Model Adaptation
-
-
Wu, Q.1
Burges, C.2
Svore, K.3
Gao, J.4
|