메뉴 건너뛰기




Volumn 26, Issue , 2015, Pages 36-48

A review of Nyström methods for large-scale machine learning

Author keywords

Low rank approximation; Machine learning; Nystr m method; Sampling method

Indexed keywords

APPROXIMATION THEORY; ARTIFICIAL INTELLIGENCE;

EID: 84939997221     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2015.03.001     Document Type: Review
Times cited : (60)

References (72)
  • 2
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • S. Fine, and K. Scheinberg Efficient SVM training using low-rank kernel representations J. Machine Learn. Res. 2 2001 243 264
    • (2001) J. Machine Learn. Res. , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 4
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • C. Williams, and M. Seeger Using the Nyström method to speed up kernel machines Adv. Neural Inform. Process. Syst. 13 2001 682 688
    • (2001) Adv. Neural Inform. Process. Syst. , vol.13 , pp. 682-688
    • Williams, C.1    Seeger, M.2
  • 6
    • 29244453931 scopus 로고    scopus 로고
    • On the Nyström method for approximating a gram matrix for improved kernel-based learning
    • P. Drineas, and M.W. Mahoney On the Nyström method for approximating a gram matrix for improved kernel-based learning J. Machine Learn. Res. 6 2005 2153 2175
    • (2005) J. Machine Learn. Res. , vol.6 , pp. 2153-2175
    • Drineas, P.1    Mahoney, M.W.2
  • 9
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • N. Halko, P.G. Martinsson, and J.A. Tropp Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions SIAM Rev. 53 2011 217 288
    • (2011) SIAM Rev. , vol.53 , pp. 217-288
    • Halko, N.1    Martinsson, P.G.2    Tropp, J.A.3
  • 11
    • 33751075906 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices ii: Computing a low-rank approximation to a matrix
    • P. Drineas, R. Kannan, and M.W. Mahoney Fast Monte Carlo algorithms for matrices ii: Computing a low-rank approximation to a matrix SIAM J. Comput. 36 2006 158 183
    • (2006) SIAM J. Comput. , vol.36 , pp. 158-183
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 14
    • 77957779140 scopus 로고    scopus 로고
    • Clustered Nyström method for large scale manifold learning and dimension reduction
    • K. Zhang, and J.T. Kwok Clustered Nyström method for large scale manifold learning and dimension reduction IEEE Trans. Neural Netw. 21 2009 121 146
    • (2009) IEEE Trans. Neural Netw. , vol.21 , pp. 121-146
    • Zhang, K.1    Kwok, J.T.2
  • 15
    • 59149093832 scopus 로고    scopus 로고
    • Density-weighted Nyström method for computing large kernel eigensystems
    • K. Zhang, and J.T. Kwok Density-weighted Nyström method for computing large kernel eigensystems Neural Comput. 21 2009 121 146
    • (2009) Neural Comput. , vol.21 , pp. 121-146
    • Zhang, K.1    Kwok, J.T.2
  • 20
    • 84862629760 scopus 로고    scopus 로고
    • Fast embedding of sparse music similarity graphs
    • J.C. Platt Fast embedding of sparse music similarity graphs Adv. Neural Inform. Process. Syst. 16 2004 511 578
    • (2004) Adv. Neural Inform. Process. Syst. , vol.16 , pp. 511-578
    • Platt, J.C.1
  • 27
    • 84877740547 scopus 로고    scopus 로고
    • Nyström method vs random fourier features: A theoretical and empirical comparison
    • T. Yang, Y. Li, M. Mahdavi, R. Jin, and Z. Zhou Nyström method vs random fourier features: a theoretical and empirical comparison Adv. Neural Inform. Process. Syst. 24 2012 476 484
    • (2012) Adv. Neural Inform. Process. Syst. , vol.24 , pp. 476-484
    • Yang, T.1    Li, Y.2    Mahdavi, M.3    Jin, R.4    Zhou, Z.5
  • 31
    • 73349115535 scopus 로고    scopus 로고
    • On landmark selection and sampling in high-dimensional data analysis
    • M.A. Belabbas, and P.J. Wolfe On landmark selection and sampling in high-dimensional data analysis Philos. Trans. Roy. Soc. 367 2009 4295 4312
    • (2009) Philos. Trans. Roy. Soc. , vol.367 , pp. 4295-4312
    • Belabbas, M.A.1    Wolfe, P.J.2
  • 32
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. de Silva, and J. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 2000 2319 2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    Langford, J.3
  • 33
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin, and P. Niyogi Laplacian eigenmaps and spectral techniques for embedding and clustering Adv. Neural Inform. Process. Syst. 13 2001 585 591
    • (2001) Adv. Neural Inform. Process. Syst. , vol.13 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 35
    • 18744388753 scopus 로고    scopus 로고
    • Templates for the solution of algebraic eigenvalue problems: A practical guide
    • Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst Templates for the solution of algebraic eigenvalue problems: a practical guide 2000 SIAM
    • (2000) SIAM
    • Bai, Z.1    Demmel, J.2    Dongarra, J.3    Ruhe, A.4    Van Der Vorst, H.5
  • 42
    • 84885649693 scopus 로고    scopus 로고
    • Improving CUR matrix decomposition and Nyström approximation via adaptive sampling
    • S. Wang, and Z. Zhang Improving CUR matrix decomposition and Nyström approximation via adaptive sampling J. Machine Learn. Res. 14 2013 2729 2769
    • (2013) J. Machine Learn. Res. , vol.14 , pp. 2729-2769
    • Wang, S.1    Zhang, Z.2
  • 44
    • 84910110640 scopus 로고    scopus 로고
    • The matrix ridge approximation: Algorithms and applications
    • Z. Zhang The matrix ridge approximation: algorithms and applications Machine Learn. 97 2014 227 258
    • (2014) Machine Learn. , vol.97 , pp. 227-258
    • Zhang, Z.1
  • 48
    • 34249687049 scopus 로고    scopus 로고
    • Sparsity and incoherence in compressive sampling
    • E.J. Candès, and J. Romberg Sparsity and incoherence in compressive sampling Inverse Problems 23 2007 969 986
    • (2007) Inverse Problems , vol.23 , pp. 969-986
    • Candès, E.J.1    Romberg, J.2
  • 49
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • E.J. Candès, and B. Recht Exact matrix completion via convex optimization Found. Comput. Math. 9 2009 717 772
    • (2009) Found. Comput. Math. , vol.9 , pp. 717-772
    • Candès, E.J.1    Recht, B.2
  • 58
    • 80053143723 scopus 로고    scopus 로고
    • Fast embedding of sparse similarity graphs
    • J.C. Platt Fast embedding of sparse similarity graphs Adv. Neural Inform. Process. Syst. 15 2003 571 578
    • (2003) Adv. Neural Inform. Process. Syst. , vol.15 , pp. 571-578
    • Platt, J.C.1
  • 65
    • 85027942406 scopus 로고    scopus 로고
    • Multi-view Laplacian twin support vector machines
    • X. Xie, and S. Sun Multi-view Laplacian twin support vector machines Appl. Intell. 41 2014 1059 1068
    • (2014) Appl. Intell. , vol.41 , pp. 1059-1068
    • Xie, X.1    Sun, S.2
  • 67
    • 84881557445 scopus 로고    scopus 로고
    • A novel multiple Nyström-approximating kernel discriminant analysis
    • Z. Wang, W. Jie, and D. Gao A novel multiple Nyström-approximating kernel discriminant analysis Neurocomputing 119 2013 385 398
    • (2013) Neurocomputing , vol.119 , pp. 385-398
    • Wang, Z.1    Jie, W.2    Gao, D.3
  • 69
    • 84922552957 scopus 로고    scopus 로고
    • Multitask centroid twin support vector machines
    • X. Xie Multitask centroid twin support vector machines Neurocomputing 149 2015 1085 1091
    • (2015) Neurocomputing , vol.149 , pp. 1085-1091
    • Xie, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.