메뉴 건너뛰기




Volumn 2, Issue 1, 2013, Pages 1-11

A survey of methods for distributed machine learning

Author keywords

Data fragmentation; Distributed learning; Large scale learning; Machine learning; Scalability

Indexed keywords

INTELLIGENT SYSTEMS; LEARNING SYSTEMS; MACHINE LEARNING; SCALABILITY;

EID: 85049799378     PISSN: 21926352     EISSN: 21926360     Source Type: Journal    
DOI: 10.1007/s13748-012-0035-5     Document Type: Review
Times cited : (185)

References (42)
  • 1
    • 85056143670 scopus 로고    scopus 로고
    • Accessed 27 Sept 2010 School of Information and Management and Systems. How much information?
    • School of Information and Management and Systems. How much information? http://www2. sims. berkeley. edu/research/projects/how-much-info/internet. html (2000). Accessed 27 Sept 2010.
    • (2000)
  • 2
    • 85056102702 scopus 로고    scopus 로고
    • D-Lib Magazine. A research library based on the historical collections of the Internet Archive Accessed 27 Oct 2010
    • D-Lib Magazine. A research library based on the historical collections of the Internet Archive. http://www. dlib. org/dlib/february06/arms/02arms. html (2006). Accessed 27 Oct 2010.
    • (2006)
  • 5
    • 33847314004 scopus 로고    scopus 로고
    • Large scale learning with string kernels
    • In: Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.) MIT Press, Cambridge
    • Sonnenburg, S., Ratsch, G., Rieck, K.: Large scale learning with string kernels. In: Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.) Large Scale Kernel Machines, pp. 73-104. MIT Press, Cambridge (2007).
    • (2007) Large Scale Kernel Machines , pp. 73-104
    • Sonnenburg, S.1    Ratsch, G.2    Rieck, K.3
  • 9
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • Provost, F., Kolluri, V.: A survey of methods for scaling up inductive algorithms. Data Min. Knowl. Discov. 3(2), 131-169 (1999).
    • (1999) Data Min. Knowl. Discov. , vol.3 , Issue.2 , pp. 131-169
    • Provost, F.1    Kolluri, V.2
  • 10
    • 0000662737 scopus 로고
    • Search-intensive concept induction
    • Giordana, A., Neri, F.: Search-intensive concept induction. Evol. Comput. 3(4), 375-416 (1995).
    • (1995) Evol. Comput. , vol.3 , Issue.4 , pp. 375-416
    • Giordana, A.1    Neri, F.2
  • 11
    • 0036808967 scopus 로고    scopus 로고
    • Now g-net: learning classification programs on networks of workstations
    • Anglano, C., Botta, M.: Now g-net: learning classification programs on networks of workstations. IEEE Trans. Evol. Comput. 6(5), 463-480 (2002).
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.5 , pp. 463-480
    • Anglano, C.1    Botta, M.2
  • 12
    • 77957902499 scopus 로고    scopus 로고
    • Efficient distributed genetic algorithm for rule extraction
    • Rodríguez, M., Escalante, D. M., Peregrín, A.: Efficient distributed genetic algorithm for rule extraction. Appl. Soft Comput. 11(1), 733-743 (2011).
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 733-743
    • Rodríguez, M.1    Escalante, D.M.2    Peregrín, A.3
  • 13
    • 79958076987 scopus 로고    scopus 로고
    • Regal-tc: a distributed genetic algorithm for concept learning based on regal and the treatment of counterexamples
    • Lopez, L. I., Bardallo, J. M., De Vega, M. A., Peregrin, A.: Regal-tc: a distributed genetic algorithm for concept learning based on regal and the treatment of counterexamples. Soft Comput. 15(7), 1389-1403 (2011).
    • (2011) Soft Comput. , vol.15 , Issue.7 , pp. 1389-1403
    • Lopez, L.I.1    Bardallo, J.M.2    de Vega, M.A.3    Peregrin, A.4
  • 15
    • 84876578081 scopus 로고    scopus 로고
    • A berkeley view of big data: algorithms, machines and people
    • Symposium
    • Stoica, I.: A berkeley view of big data: algorithms, machines and people. In: UC Berkeley EECS Annual Research, Symposium (2011).
    • (2011) UC Berkeley EECS Annual Research
    • Stoica, I.1
  • 17
    • 70450136675 scopus 로고    scopus 로고
    • The hadoop distributed file system: architecture and design
    • Borthakur, D.: The hadoop distributed file system: architecture and design. Hadoop Project Website 11, 21 (2007).
    • (2007) Hadoop Project Website , vol.11 , pp. 21
    • Borthakur, D.1
  • 18
    • 0012255043 scopus 로고    scopus 로고
    • Analysis and synthesis of agents that learn from distributed dynamic data sources
    • In: Wermter, S., Austin, J., Willshaw D. J. (eds.) Springer-Verlag, Berlin
    • Caragea, D., Silvescu, A., Honavar, V.: Analysis and synthesis of agents that learn from distributed dynamic data sources. In: Wermter, S., Austin, J., Willshaw D. J. (eds.) Emergent Neural Computational Architectures Based on Neuroscience, pp. 547-559. Springer-Verlag, Berlin (2001).
    • (2001) Emergent Neural Computational Architectures Based on Neuroscience , pp. 547-559
    • Caragea, D.1    Silvescu, A.2    Honavar, V.3
  • 21
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • In: Gayar, N. E., Kittler, J., Roli, F. (eds.) Springer, New York
    • Dietterich, T.: Ensemble methods in machine learning. In: Gayar, N. E., Kittler, J., Roli, F. (eds.) Multiple classifier systems, pp. 1-15. Springer, New York (2000).
    • (2000) Multiple classifier systems , pp. 1-15
    • Dietterich, T.1
  • 22
    • 79960133847 scopus 로고    scopus 로고
    • Probing knowledge in distributed data mining
    • In: Zhong, N., Zhou, L. (eds.) Springer, Berlin
    • Guo, Y., Sutiwaraphun, J.: Probing knowledge in distributed data mining. In: Zhong, N., Zhou, L. (eds.) Methodologies for Knowledge Discovery and Data Mining, pp. 443-452. Springer, Berlin (1999).
    • (1999) Methodologies for Knowledge Discovery and Data Mining , pp. 443-452
    • Guo, Y.1    Sutiwaraphun, J.2
  • 25
    • 22444454265 scopus 로고    scopus 로고
    • Combining classifiers: a theoretical framework
    • Kittler, J.: Combining classifiers: a theoretical framework. Pattern Anal. Appl. 1(1), 18-27 (1998).
    • (1998) Pattern Anal. Appl. , vol.1 , Issue.1 , pp. 18-27
    • Kittler, J.1
  • 28
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. H.: Stacked generalization. Neural Netw. 5(2), 241-259 (1992).
    • (1992) Neural Netw. , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 29
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • Breiman, L.: Pasting small votes for classification in large databases and on-line. Mach. Learn. 36(1), 85-103 (1999).
    • (1999) Mach. Learn. , vol.36 , Issue.1 , pp. 85-103
    • Breiman, L.1
  • 30
    • 0004140497 scopus 로고    scopus 로고
    • Technical report. Available at
    • Breiman. L.: Out-of-bag estimation. Technical report. Available at ftp://ftp. stat. berkeley. edu/pub/users/breiman/OOBestimation. ps (1996).
    • (1996) Out-of-bag estimation
    • Breiman, L.1
  • 31
    • 84947592660 scopus 로고    scopus 로고
    • Distributed pasting of small votes
    • In: Gayar, N. E., Kittler, J., Roli, F. (eds.) Springer, New York
    • Chawla, N., Hall, L., Bowyer, K., Moore, T., Kegelmeyer, W.: Distributed pasting of small votes. In: Gayar, N. E., Kittler, J., Roli, F. (eds.) Multiple Classifier Systems, pp. 52-61. Springer, New York (2002).
    • (2002) Multiple Classifier Systems , pp. 52-61
    • Chawla, N.1    Hall, L.2    Bowyer, K.3    Moore, T.4    Kegelmeyer, W.5
  • 32
    • 2342665431 scopus 로고    scopus 로고
    • Effective stacking of distributed classifiers
    • Tsoumakas G., Vlahavas, I.: Effective stacking of distributed classifiers. In: ECAI, pp. 340-344 (2002).
    • (2002) ECAI , pp. 340-344
    • Tsoumakas, G.1    Vlahavas, I.2
  • 33
    • 0036495711 scopus 로고    scopus 로고
    • Boosting algorithms for parallel and distributed learning
    • Lazarevic, A., Obradovic, Z.: Boosting algorithms for parallel and distributed learning. Distrib. Parallel Databases 11(2), 203-229 (2002).
    • (2002) Distrib. Parallel Databases , vol.11 , Issue.2 , pp. 203-229
    • Lazarevic, A.1    Obradovic, Z.2
  • 34
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Morgan Kaufmann Publishers, Inc., San Francisco
    • Freund, Y., Schapire, R. E.: Experiments with a new boosting algorithm. In: International Conference on Machine Learning, pp. 148-156. Morgan Kaufmann Publishers, Inc., San Francisco (1996).
    • (1996) International Conference on Machine Learning , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 40
    • 2342557114 scopus 로고    scopus 로고
    • Clustering classifiers for knowledge discovery from physically distributed databases
    • Tsoumakas, G., Angelis, L., Vlahavas, I.: Clustering classifiers for knowledge discovery from physically distributed databases. Data Knowl. Eng. 49(3), 223-242 (2004).
    • (2004) Data Knowl. Eng. , vol.49 , Issue.3 , pp. 223-242
    • Tsoumakas, G.1    Angelis, L.2    Vlahavas, I.3
  • 41
    • 70049101797 scopus 로고    scopus 로고
    • PASCAL large scale Learning challenge. In: 25th International Conference on Machine Learning (ICML2008) Workshop
    • Sonnenburg, S., Franc, V., Yom-Tov, E., Sebag, M.: PASCAL large scale Learning challenge. In: 25th International Conference on Machine Learning (ICML2008) Workshop. http://largescale. first. fraunhofer. de. J. Mach. Learn. Res. 10, 1937-1953 (2008).
    • (2008) J. Mach. Learn. Res. , vol.10 , pp. 1937-1953
    • Sonnenburg, S.1    Franc, V.2    Yom-Tov, E.3    Sebag, M.4
  • 42
    • 84891103387 scopus 로고    scopus 로고
    • Scalability analysis of filter-based methods for feature selection
    • In: Howlett R. (ed.) Future Technology Publications, Shoreham-by-sea, UK
    • Peteiro-Barral, D., Bolon-Canedo, V., Alonso-Betanzos, A., Guijarro-Berdinas, B., Sanchez-Marono, N.: Scalability analysis of filter-based methods for feature selection. In: Howlett R. (ed.) Advances in Smart Systems Research, vol. 2, no. 1, pp. 21-26. Future Technology Publications, Shoreham-by-sea, UK (2012).
    • (2012) Advances in Smart Systems Research , vol.2 , Issue.1 , pp. 21-26
    • Peteiro-Barral, D.1    Bolon-Canedo, V.2    Alonso-Betanzos, A.3    Guijarro-Berdinas, B.4    Sanchez-Marono, N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.