메뉴 건너뛰기




Volumn , Issue , 2009, Pages 377-384

From online to batch learning with cutoff-averaging

Author keywords

[No Author keywords available]

Indexed keywords

E-LEARNING; NEURAL NETWORKS;

EID: 84858766305     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (14)

References (14)
  • 1
    • 85162041177 scopus 로고    scopus 로고
    • Anonimous. Technical appendix submitted with this manuscript, 2008
    • Anonimous. Technical appendix submitted with this manuscript, 2008.
  • 3
    • 34547997417 scopus 로고    scopus 로고
    • Improved risk bounds for online algorithms
    • N. Cesa-Bianchi and C. Gentile. Improved risk bounds for online algorithms. NIPS 19, 2006.
    • (2006) NIPS , vol.19
    • Cesa-Bianchi, N.1    Gentile, C.2
  • 5
    • 84898678927 scopus 로고    scopus 로고
    • Data-driven online to batch conversions
    • O. Dekel and Y. Singer. Data-driven online to batch conversions. NIPS 18, 2006.
    • (2006) NIPS , vol.18
    • Dekel, O.1    Singer, Y.2
  • 6
    • 0002384441 scopus 로고
    • On tail probabilities for martingales
    • D. A. Freedman. On tail probabilities for martingales. Annals of Prob., 3(1):100-118, 1975.
    • (1975) Annals of Prob. , vol.3 , Issue.1 , pp. 100-118
    • Freedman, D.A.1
  • 7
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • DOI 10.1023/A:1007662407062
    • Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277-296, 1999. (Pubitemid 32210619)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 8
    • 0023014361 scopus 로고
    • Optimal linear discriminants
    • IEEE
    • S. I. Gallant. Optimal linear discriminants. Proc. of ICPR 8, pages 849-852. IEEE, 1986.
    • (1986) Proc. of ICPR , vol.8 , pp. 849-852
    • Gallant, S.I.1
  • 9
    • 33847123284 scopus 로고    scopus 로고
    • Noise tolerant variants of the Perceptron algorithm
    • R. Khardon and G. Wachman. Noise tolerant variants of the perceptron algorithm. Journal of Machine Learning Research, 8:227-248, 2007. (Pubitemid 46280179)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 227-248
    • Khardon, R.1    Wachman, G.2
  • 10
    • 0008160867 scopus 로고    scopus 로고
    • Selective voting for perceptron-like learning
    • Y. Li. Selective voting for perceptron-like learning. Proc. of ICML 17, pages 559-566, 2000.
    • (2000) Proc. of ICML , vol.17 , pp. 559-566
    • Li, Y.1
  • 12
    • 85011913774 scopus 로고
    • From online to batch learning
    • N. Littlestone. From online to batch learning. Proc. of COLT 2, pages 269-284, 1989.
    • (1989) Proc. of COLT , vol.2 , pp. 269-284
    • Littlestone, N.1
  • 13
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386-407, 1958.
    • (1958) Psychological Review , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 14
    • 14344259207 scopus 로고    scopus 로고
    • Solving large scale linear prediction problems using stochastic gradient descent algorithms
    • T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. Proc. of ICML 21, 2004.
    • (2004) Proc. of ICML , vol.21
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.