메뉴 건너뛰기




Volumn 8, Issue 2 2, 2014, Pages 125-136

Scaling up crowdsourcing to very large datasets: A case for active learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CROWDSOURCING; LEARNING ALGORITHMS; LEARNING SYSTEMS; SENTIMENT ANALYSIS;

EID: 84938053293     PISSN: None     EISSN: 21508097     Source Type: Journal    
DOI: 10.14778/2735471.2735474     Document Type: Conference Paper
Times cited : (171)

References (40)
  • 3
    • 77954717287 scopus 로고    scopus 로고
    • On active learning of record matching packages
    • A. Arasu, M. Götz, and R. Kaushik. On active learning of record matching packages. In SIGMOD, 2010.
    • (2010) SIGMOD
    • Arasu, A.1    Götz, M.2    Kaushik, R.3
  • 4
    • 84866038653 scopus 로고    scopus 로고
    • Active sampling for entity matching
    • K. Bellare et al. Active sampling for entity matching. In KDD, 2012.
    • (2012) KDD
    • Bellare, K.1
  • 8
    • 50649101132 scopus 로고    scopus 로고
    • Image classification using random forests and ferns
    • A. Bosch, A. Zisserman, and X. Muoz. Image classification using random forests and ferns. In ICCV, 2007.
    • (2007) ICCV
    • Bosch, A.1    Zisserman, A.2    Muoz, X.3
  • 9
    • 80053229070 scopus 로고    scopus 로고
    • Using crowdsourcing and active learning to track sentiment in online media.
    • A. Brew, D. Greene, and P. Cunningham. Using crowdsourcing and active learning to track sentiment in online media. In ECAI, 2010.
    • (2010) ECAI
    • Brew, A.1    Greene, D.2    Cunningham, P.3
  • 12
    • 84864596236 scopus 로고    scopus 로고
    • A general agnostic active learning algorithm.
    • S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In ISAIM, 2008.
    • (2008) ISAIM
    • Dasgupta, S.1    Hsu, D.2    Monteleoni, C.3
  • 13
    • 0003102944 scopus 로고
    • Maximum likelihood estimation of observer error-rates using the em algorithm.
    • A. Dawid and A. Skene. Maximum likelihood estimation of observer error-rates using the em algorithm. Applied Statistics, 1979.
    • (1979) Applied Statistics
    • Dawid, A.1    Skene, A.2
  • 14
    • 70350681833 scopus 로고    scopus 로고
    • Efficiently learning the accuracy of labeling sources for selective sampling
    • P. Donmez, J. G. Carbonell, and J. Schneider. Efficiently learning the accuracy of labeling sources for selective sampling. In KDD, 2009.
    • (2009) KDD
    • Donmez, P.1    Carbonell, J.G.2    Schneider, J.3
  • 16
    • 33745118277 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples.
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples. InWGMBV, 2004.
    • (2004) WGMBV
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 18
    • 33749263388 scopus 로고    scopus 로고
    • Batch mode active learning and its application to medical image classification.
    • S. Hoi, R. Jin, J. Zhu, and M. Lyu. Batch mode active learning and its application to medical image classification. In ICML, 2006.
    • (2006) ICML
    • Hoi, S.1    Jin, R.2    Zhu, J.3    Lyu, M.4
  • 20
    • 84867129586 scopus 로고    scopus 로고
    • The big data bootstrap
    • A. Kleiner et al.The big data bootstrap. In ICML, 2012.
    • (2012) ICML
    • Kleiner, A.1
  • 21
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions.
    • R. Kohavi and D. H. Wolpert. Bias plus variance decomposition for zero-one loss functions. In ICML, 1996.
    • (1996) ICML
    • Kohavi, R.1    Wolpert, D.H.2
  • 23
    • 80053259936 scopus 로고    scopus 로고
    • Active learning with amazon mechanical turk
    • F. Laws, C. Scheible, and H. Schütze. Active learning with amazon mechanical turk. In EMNLP, 2011.
    • (2011) EMNLP
    • Laws, F.1    Scheible, C.2    Schütze, H.3
  • 27
    • 85028156346 scopus 로고    scopus 로고
    • Twitter as a corpus for sentiment analysis and opinion mining.
    • A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and opinion mining. In Proceedings of LREC, 2010.
    • (2010) Proceedings of LREC
    • Pak, A.1    Paroubek, P.2
  • 28
    • 84862645517 scopus 로고    scopus 로고
    • Crowdscreen: algorithms for filtering data with humans.
    • A. G. Parameswaran et al. Crowdscreen: algorithms for filtering data with humans. In SIGMOD, 2012.
    • (2012) SIGMOD
    • Parameswaran, A.G.1
  • 29
    • 1242285091 scopus 로고    scopus 로고
    • Active sampling for class probability estimation and ranking.
    • M. Saar-Tsechansky and F. Provost. Active sampling for class probability estimation and ranking. Mach. Learn., 54, 2004.
    • (2004) Mach. Learn. , pp. 54
    • Saar-Tsechansky, M.1    Provost, F.2
  • 30
    • 0242456811 scopus 로고    scopus 로고
    • Interactive deduplication using active learning
    • S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In SIGKDD, 2002.
    • (2002) SIGKDD
    • Sarawagi, S.1    Bhamidipaty, A.2
  • 31
    • 68949137209 scopus 로고    scopus 로고
    • Computer Sciences Technical Report 1648, University ofWisconsin-Madison
    • B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University ofWisconsin-Madison, 2010.
    • (2010) Active learning literature survey
    • Settles, B.1
  • 34
    • 79959405360 scopus 로고    scopus 로고
    • Active learning strategies using svms.
    • M.-H. Tsai et al. Active learning strategies using svms. In IJCNN, 2010.
    • (2010) IJCNN
    • Tsai, M.-H.1
  • 36
    • 40149096977 scopus 로고    scopus 로고
    • A stopping criterion for active learning
    • A. Vlachos. A stopping criterion for active learning. Comput. Speech Lang., 22(3), 2008.
    • (2008) Comput. Speech Lang. , vol.22 , Issue.3
    • Vlachos, A.1
  • 38
    • 84904363684 scopus 로고    scopus 로고
    • ABS: a system for scalable approximate queries with accuracy guarantees
    • K. Zeng, S. Gao, J. Gu, B. Mozafari, and C. Zaniolo. ABS: a system for scalable approximate queries with accuracy guarantees. In SIGMOD, 2014.
    • (2014) SIGMOD
    • Zeng, K.1    Gao, S.2    Gu, J.3    Mozafari, B.4    Zaniolo, C.5
  • 39
    • 84904301645 scopus 로고    scopus 로고
    • The analytical bootstrap:a new method for fast error estimation in approximate query processing.
    • K. Zeng, S. Gao, B.Mozafari, and C. Zaniolo.The analytical bootstrap:a new method for fast error estimation in approximate query processing. In SIGMOD, 2014.
    • (2014) SIGMOD
    • Zeng, K.1    Gao, S.2    Mozafari, B.3    Zaniolo, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.