-
3
-
-
77954717287
-
On active learning of record matching packages
-
A. Arasu, M. Götz, and R. Kaushik. On active learning of record matching packages. In SIGMOD, 2010.
-
(2010)
SIGMOD
-
-
Arasu, A.1
Götz, M.2
Kaushik, R.3
-
4
-
-
84866038653
-
Active sampling for entity matching
-
K. Bellare et al. Active sampling for entity matching. In KDD, 2012.
-
(2012)
KDD
-
-
Bellare, K.1
-
8
-
-
50649101132
-
Image classification using random forests and ferns
-
A. Bosch, A. Zisserman, and X. Muoz. Image classification using random forests and ferns. In ICCV, 2007.
-
(2007)
ICCV
-
-
Bosch, A.1
Zisserman, A.2
Muoz, X.3
-
9
-
-
80053229070
-
Using crowdsourcing and active learning to track sentiment in online media.
-
A. Brew, D. Greene, and P. Cunningham. Using crowdsourcing and active learning to track sentiment in online media. In ECAI, 2010.
-
(2010)
ECAI
-
-
Brew, A.1
Greene, D.2
Cunningham, P.3
-
12
-
-
84864596236
-
A general agnostic active learning algorithm.
-
S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In ISAIM, 2008.
-
(2008)
ISAIM
-
-
Dasgupta, S.1
Hsu, D.2
Monteleoni, C.3
-
13
-
-
0003102944
-
Maximum likelihood estimation of observer error-rates using the em algorithm.
-
A. Dawid and A. Skene. Maximum likelihood estimation of observer error-rates using the em algorithm. Applied Statistics, 1979.
-
(1979)
Applied Statistics
-
-
Dawid, A.1
Skene, A.2
-
14
-
-
70350681833
-
Efficiently learning the accuracy of labeling sources for selective sampling
-
P. Donmez, J. G. Carbonell, and J. Schneider. Efficiently learning the accuracy of labeling sources for selective sampling. In KDD, 2009.
-
(2009)
KDD
-
-
Donmez, P.1
Carbonell, J.G.2
Schneider, J.3
-
16
-
-
33745118277
-
Learning generative visual models from few training examples.
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples. InWGMBV, 2004.
-
(2004)
WGMBV
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
17
-
-
79959958767
-
Crowddb: answering queries with crowdsourcing.
-
M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answering queries with crowdsourcing. In SIGMOD, 2011.
-
(2011)
SIGMOD
-
-
Franklin, M.J.1
Kossmann, D.2
Kraska, T.3
Ramesh, S.4
Xin, R.5
-
18
-
-
33749263388
-
Batch mode active learning and its application to medical image classification.
-
S. Hoi, R. Jin, J. Zhu, and M. Lyu. Batch mode active learning and its application to medical image classification. In ICML, 2006.
-
(2006)
ICML
-
-
Hoi, S.1
Jin, R.2
Zhu, J.3
Lyu, M.4
-
20
-
-
84867129586
-
The big data bootstrap
-
A. Kleiner et al.The big data bootstrap. In ICML, 2012.
-
(2012)
ICML
-
-
Kleiner, A.1
-
21
-
-
0002872346
-
Bias plus variance decomposition for zero-one loss functions.
-
R. Kohavi and D. H. Wolpert. Bias plus variance decomposition for zero-one loss functions. In ICML, 1996.
-
(1996)
ICML
-
-
Kohavi, R.1
Wolpert, D.H.2
-
23
-
-
80053259936
-
Active learning with amazon mechanical turk
-
F. Laws, C. Scheible, and H. Schütze. Active learning with amazon mechanical turk. In EMNLP, 2011.
-
(2011)
EMNLP
-
-
Laws, F.1
Scheible, C.2
Schütze, H.3
-
24
-
-
84875121323
-
Counting with the crowd.
-
A. Marcus, D. R. Karger, S. Madden, R. Miller, and S. Oh. Counting with the crowd. PVLDB, 2012.
-
(2012)
PVLDB
-
-
Marcus, A.1
Karger, D.R.2
Madden, S.3
Miller, R.4
Oh, S.5
-
25
-
-
84860851183
-
Human-powered sorts and joins.
-
A. Marcus, E.Wu, D. Karger, S. Madden, and R. Miller. Human-powered sorts and joins. PVLDB, 5, 2011.
-
(2011)
PVLDB
, pp. 5
-
-
Marcus, A.1
Wu, E.2
Karger, D.3
Madden, S.4
Miller, R.5
-
26
-
-
84882680724
-
Active learning for crowd-sourced databases.
-
B. Mozafari, P. Sarkar, M. J. Franklin, M. I. Jordan, and S. Madden. Active learning for crowd-sourced databases. CoRR, 2012.
-
(2012)
CoRR
-
-
Mozafari, B.1
Sarkar, P.2
Franklin, M.J.3
Jordan, M.I.4
Madden, S.5
-
27
-
-
85028156346
-
Twitter as a corpus for sentiment analysis and opinion mining.
-
A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and opinion mining. In Proceedings of LREC, 2010.
-
(2010)
Proceedings of LREC
-
-
Pak, A.1
Paroubek, P.2
-
28
-
-
84862645517
-
Crowdscreen: algorithms for filtering data with humans.
-
A. G. Parameswaran et al. Crowdscreen: algorithms for filtering data with humans. In SIGMOD, 2012.
-
(2012)
SIGMOD
-
-
Parameswaran, A.G.1
-
29
-
-
1242285091
-
Active sampling for class probability estimation and ranking.
-
M. Saar-Tsechansky and F. Provost. Active sampling for class probability estimation and ranking. Mach. Learn., 54, 2004.
-
(2004)
Mach. Learn.
, pp. 54
-
-
Saar-Tsechansky, M.1
Provost, F.2
-
30
-
-
0242456811
-
Interactive deduplication using active learning
-
S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In SIGKDD, 2002.
-
(2002)
SIGKDD
-
-
Sarawagi, S.1
Bhamidipaty, A.2
-
31
-
-
68949137209
-
-
Computer Sciences Technical Report 1648, University ofWisconsin-Madison
-
B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University ofWisconsin-Madison, 2010.
-
(2010)
Active learning literature survey
-
-
Settles, B.1
-
34
-
-
79959405360
-
Active learning strategies using svms.
-
M.-H. Tsai et al. Active learning strategies using svms. In IJCNN, 2010.
-
(2010)
IJCNN
-
-
Tsai, M.-H.1
-
36
-
-
40149096977
-
A stopping criterion for active learning
-
A. Vlachos. A stopping criterion for active learning. Comput. Speech Lang., 22(3), 2008.
-
(2008)
Comput. Speech Lang.
, vol.22
, Issue.3
-
-
Vlachos, A.1
-
37
-
-
84872946975
-
CrowdER:Crowdsourcing entity resolution.
-
J.Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER:Crowdsourcing entity resolution. PVLDB, 5, 2012.
-
(2012)
PVLDB
, pp. 5
-
-
Wang, J.1
Kraska, T.2
Franklin, M.J.3
Feng, J.4
-
38
-
-
84904363684
-
ABS: a system for scalable approximate queries with accuracy guarantees
-
K. Zeng, S. Gao, J. Gu, B. Mozafari, and C. Zaniolo. ABS: a system for scalable approximate queries with accuracy guarantees. In SIGMOD, 2014.
-
(2014)
SIGMOD
-
-
Zeng, K.1
Gao, S.2
Gu, J.3
Mozafari, B.4
Zaniolo, C.5
-
39
-
-
84904301645
-
The analytical bootstrap:a new method for fast error estimation in approximate query processing.
-
K. Zeng, S. Gao, B.Mozafari, and C. Zaniolo.The analytical bootstrap:a new method for fast error estimation in approximate query processing. In SIGMOD, 2014.
-
(2014)
SIGMOD
-
-
Zeng, K.1
Gao, S.2
Mozafari, B.3
Zaniolo, C.4
|