메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 3103-3131

Breaking the curse of kernelization: Budgeted stochastic gradient descent for large-scale SVM training

Author keywords

Kernel methods; Large scale learning; Online learning; Stochastic gradient descent; SVM

Indexed keywords

KERNEL METHODS; LARGE-SCALE LEARNING; ONLINE LEARNING; STOCHASTIC GRADIENT DESCENT; SVM;

EID: 84869463516     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (208)

References (55)
  • 12
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2001.
    • (2001) Journal of Machine Learning Research
    • Crammer, K.1    Singer, Y.2
  • 21
  • 29
    • 0036161258 scopus 로고    scopus 로고
    • The relaxed online maximum margin algorithm
    • Y. Li and P. Long. The relaxed online maximum margin algorithm. Machine Learning, 2002.
    • (2002) Machine Learning
    • Li, Y.1    Long, P.2
  • 32
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods -Support Vector Learning, MIT Press, 1998.
    • (1998) Advances in Kernel Methods -Support Vector Learning
    • Platt, J.1
  • 34
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 1958.
    • (1958) Psychological Review
    • Rosenblatt, F.1
  • 45
    • 70449339237 scopus 로고    scopus 로고
    • Tighter perceptron with improved dual use of cached data for model representation and validation
    • Z. Wang and S. Vucetic. Tighter perceptron with improved dual use of cached data for model representation and validation. In International Joint Conference on Neutral Netweok, 2009.
    • (2009) International Joint Conference on Neutral Netweok
    • Wang, Z.1    Vucetic, S.2
  • 53
    • 33749243068 scopus 로고    scopus 로고
    • Solving large scale linear prediction problems using stochastic gradient descent
    • T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent. In International Conference on Machine Learning, 2004.
    • (2004) International Conference on Machine Learning
    • Zhang, T.1
  • 55


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.