메뉴 건너뛰기




Volumn 150, Issue Part A, 2015, Pages 331-345

MRPR: A MapReduce solution for prototype reduction in big data classification

Author keywords

Big data; Hadoop; Mahout; Nearest neighbor classification; Prototype generation; Prototype reduction

Indexed keywords

BIG DATA; CLASSIFICATION (OF INFORMATION); CLUSTER COMPUTING; DATA MINING; DIGITAL STORAGE;

EID: 84912100031     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.04.078     Document Type: Article
Times cited : (213)

References (55)
  • 1
    • 84878979335 scopus 로고    scopus 로고
    • The big challenges of big data
    • Marx V. The big challenges of big data. Nature 2013, 498(7453):255-260.
    • (2013) Nature , vol.498 , Issue.7453 , pp. 255-260
    • Marx, V.1
  • 3
    • 70350077569 scopus 로고    scopus 로고
    • Defining and Describing an Emerging Phenomenon
    • Technical Report, Gartner
    • D. Plummer, T. Bittman, T. Austin, D. Cearley, D.S. Cloud, Defining and Describing an Emerging Phenomenon, Technical Report, Gartner, 2008.
    • (2008)
    • Plummer, D.1    Bittman, T.2    Austin, T.3    Cearley, D.4    Cloud, D.S.5
  • 5
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • Woniak M., Graña M., Corchado E. A survey of multiple classifier systems as hybrid systems. Inf. Fusion 2014, 16:3-17.
    • (2014) Inf. Fusion , vol.16 , pp. 3-17
    • Woniak, M.1    Graña, M.2    Corchado, E.3
  • 6
    • 80053256327 scopus 로고    scopus 로고
    • A survey of large scale data management approaches in cloud environments
    • Sakr S., Liu A., Batista D., Alomari M. A survey of large scale data management approaches in cloud environments. IEEE Commun. Surv. Tutor. 2011, 13(3):311-336.
    • (2011) IEEE Commun. Surv. Tutor. , vol.13 , Issue.3 , pp. 311-336
    • Sakr, S.1    Liu, A.2    Batista, D.3    Alomari, M.4
  • 8
    • 37549003336 scopus 로고    scopus 로고
    • Map reduce. simplified data processing on large clusters
    • Dean J., Ghemawat S. Map reduce. simplified data processing on large clusters. Commun. ACM 2008, 51(1):107-113.
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 9
    • 73649114265 scopus 로고    scopus 로고
    • Map reduce. a flexible data processing tool
    • Dean J., Ghemawat S. Map reduce. a flexible data processing tool. Commun. ACM 2010, 53(1):72-77.
    • (2010) Commun. ACM , vol.53 , Issue.1 , pp. 72-77
    • Dean, J.1    Ghemawat, S.2
  • 10
    • 21644437974 scopus 로고    scopus 로고
    • The google file system
    • in: Proceedings of the nineteenth ACM symposium on Operating systems principles, SOSP'03
    • S. Ghemawat, H. Gobioff, S.-T. Leung, The google file system, in: Proceedings of the nineteenth ACM symposium on Operating systems principles, SOSP'03, 2003, pp. 29-43.
    • (2003) , pp. 29-43
    • Ghemawat, S.1    Gobioff, H.2    Leung, S.-T.3
  • 12
    • 71749094178 scopus 로고    scopus 로고
    • Parallel k-means clustering based on mapreduce
    • Springer, Berlin, Heidelberg
    • Zhao W., Ma H., He Q. Parallel k-means clustering based on mapreduce. Cloud Computing Lecture Notes in Computer Science 2009, vol. 5931:674-679. Springer, Berlin, Heidelberg.
    • (2009) Cloud Computing Lecture Notes in Computer Science , vol.5931 , pp. 674-679
    • Zhao, W.1    Ma, H.2    He, Q.3
  • 13
    • 84855678613 scopus 로고    scopus 로고
    • Data and task parallelism in ILP using mapreduce
    • Srinivasan A., Faruquie T., Joshi S. Data and task parallelism in ILP using mapreduce. Mach. Learn. 2012, 86(1):141-168.
    • (2012) Mach. Learn. , vol.86 , Issue.1 , pp. 141-168
    • Srinivasan, A.1    Faruquie, T.2    Joshi, S.3
  • 14
    • 80051586560 scopus 로고    scopus 로고
    • A parallel incremental extreme svm classifier
    • He Q., Du C., Wang Q., Zhuang F., Shi Z. A parallel incremental extreme svm classifier. Neurocomputing 2011, 74(16):2532-2540.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2532-2540
    • He, Q.1    Du, C.2    Wang, Q.3    Zhuang, F.4    Shi, Z.5
  • 15
    • 84865330735 scopus 로고    scopus 로고
    • Scalable and parallel boosting with mapreduce
    • Palit I., Reddy C. Scalable and parallel boosting with mapreduce. IEEE Trans. Knowl. Data Eng. 2012, 24(10):1904-1916.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.10 , pp. 1904-1916
    • Palit, I.1    Reddy, C.2
  • 16
    • 84875111175 scopus 로고    scopus 로고
    • An ontology enhanced parallel SVM for scalable spam filter training
    • Caruana G., Li M., Liu Y. An ontology enhanced parallel SVM for scalable spam filter training. Neurocomputing 2013, 108:45-57.
    • (2013) Neurocomputing , vol.108 , pp. 45-57
    • Caruana, G.1    Li, M.2    Liu, Y.3
  • 18
    • 85130883648 scopus 로고    scopus 로고
    • Chapman & Hall/Crc Data Mining and Knowledge Discovery Series Chapman & Hall/Crc, Boca Raton, FL, USA, H. Liu, H. Motoda (Eds.)
    • Computational Methods of Feature Selection 2007, Chapman & Hall/Crc Data Mining and Knowledge Discovery Series Chapman & Hall/Crc, Boca Raton, FL, USA. H. Liu, H. Motoda (Eds.).
    • (2007) Computational Methods of Feature Selection
  • 19
    • 84856161441 scopus 로고    scopus 로고
    • Prototype selection for nearest neighbor classification. taxonomy and empirical study
    • García S., Derrac J., Cano J., Herrera F. Prototype selection for nearest neighbor classification. taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(3):417-435.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.3 , pp. 417-435
    • García, S.1    Derrac, J.2    Cano, J.3    Herrera, F.4
  • 21
    • 76749096459 scopus 로고    scopus 로고
    • IFS-CoCo. instance and feature selection based on cooperative coevolution with nearest neighbor rule
    • Derrac J., García S., Herrera F. IFS-CoCo. instance and feature selection based on cooperative coevolution with nearest neighbor rule. Pattern Recognit. 2010, 43(6):2082-2105.
    • (2010) Pattern Recognit. , vol.43 , Issue.6 , pp. 2082-2105
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 22
    • 81355127279 scopus 로고    scopus 로고
    • Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection
    • Derrac J., Cornelis C., García S., Herrera F. Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection. Inf. Sci. 2012, 186(1):73-92.
    • (2012) Inf. Sci. , vol.186 , Issue.1 , pp. 73-92
    • Derrac, J.1    Cornelis, C.2    García, S.3    Herrera, F.4
  • 23
    • 84873123590 scopus 로고    scopus 로고
    • A scalable approach to simultaneous evolutionary instance and feature selection
    • García-Pedrajas N., de Haro-García A., Pérez-Rodríguez J. A scalable approach to simultaneous evolutionary instance and feature selection. Inf. Sci. 2013, 228:150-174.
    • (2013) Inf. Sci. , vol.228 , pp. 150-174
    • García-Pedrajas, N.1    de Haro-García, A.2    Pérez-Rodríguez, J.3
  • 24
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T.M., Hart P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13(1):21-27.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 25
    • 58149475488 scopus 로고    scopus 로고
    • Particle swarm optimization for prototype reduction
    • Nanni L., Lumini A. Particle swarm optimization for prototype reduction. Neurocomputing 2008, 72(4-6):1092-1097.
    • (2008) Neurocomputing , vol.72 , Issue.4-6 , pp. 1092-1097
    • Nanni, L.1    Lumini, A.2
  • 26
    • 78650064965 scopus 로고    scopus 로고
    • IPADE. iterative prototype adjustment for nearest neighbor classification
    • Triguero I., García S., Herrera F. IPADE. iterative prototype adjustment for nearest neighbor classification. IEEE Trans. Neural Netw. 2010, 21(12):1984-1990.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.12 , pp. 1984-1990
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 27
    • 78650282967 scopus 로고    scopus 로고
    • Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification
    • Triguero I., García S., Herrera F. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognit. 2011, 44(4):901-916.
    • (2011) Pattern Recognit. , vol.44 , Issue.4 , pp. 901-916
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 28
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • Cano J.R., Herrera F., Lozano M. Stratification for scaling up evolutionary prototype selection. Pattern Recognit. Lett. 2005, 26(7):953-963.
    • (2005) Pattern Recognit. Lett. , vol.26 , Issue.7 , pp. 953-963
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 29
    • 77956666864 scopus 로고    scopus 로고
    • Stratified prototype selection based on a steady-state memetic algorithm. a study of scalability
    • Derrac J., García S., Herrera F. Stratified prototype selection based on a steady-state memetic algorithm. a study of scalability. Memet. Comput. 2010, 2(3):183-199.
    • (2010) Memet. Comput. , vol.2 , Issue.3 , pp. 183-199
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 30
    • 83755196562 scopus 로고    scopus 로고
    • A study of the scaling up capabilities of stratified prototype generation
    • in: Proceedings of the third World Congress on Nature and Biologically Inspired Computing (NABIC'11)
    • I. Triguero, J. Derrac, S. García, F. Herrera, A study of the scaling up capabilities of stratified prototype generation, in: Proceedings of the third World Congress on Nature and Biologically Inspired Computing (NABIC'11), 2011, pp. 304-309.
    • (2011) , pp. 304-309
    • Triguero, I.1    Derrac, J.2    García, S.3    Herrera, F.4
  • 32
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection. a scaling up approach
    • García S., Cano J.R., Herrera F. A memetic algorithm for evolutionary prototype selection. a scaling up approach. Pattern Recognit. 2008, 41(8):2693-2709.
    • (2008) Pattern Recognit. , vol.41 , Issue.8 , pp. 2693-2709
    • García, S.1    Cano, J.R.2    Herrera, F.3
  • 33
    • 84865861460 scopus 로고    scopus 로고
    • Multi-selection of instances. a straightforward way to improve evolutionary instance selection
    • García-Pedrajas N., Pérez-Rodríguez J. Multi-selection of instances. a straightforward way to improve evolutionary instance selection. Appl. Soft Comput. 2012, 12(11):3590-3602.
    • (2012) Appl. Soft Comput. , vol.12 , Issue.11 , pp. 3590-3602
    • García-Pedrajas, N.1    Pérez-Rodríguez, J.2
  • 34
    • 63549097654 scopus 로고    scopus 로고
    • Mars: a mapreduce framework on graphics processors
    • in: Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques, PACT'08, ACM, New York, NY, USA
    • B. He, W. Fang, Q. Luo, N.K. Govindaraju, T. Wang, Mars: a mapreduce framework on graphics processors, in: Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques, PACT'08, ACM, New York, NY, USA, 2008, pp. 260-269.
    • (2008) , pp. 260-269
    • He, B.1    Fang, W.2    Luo, Q.3    Govindaraju, N.K.4    Wang, T.5
  • 35
    • 79961074433 scopus 로고    scopus 로고
    • Phoenix++: modular mapreduce for shared-memory systems
    • in: Proceedings of the Second International Workshop on MapReduce and Its Applications, ACM, New York, NY, USA
    • J. Talbot, R.M. Yoo, C. Kozyrakis, Phoenix++: modular mapreduce for shared-memory systems, in: Proceedings of the Second International Workshop on MapReduce and Its Applications, ACM, New York, NY, USA, 2011, pp. 9-16, doi:. doi:10.1145/1996092.1996095.
    • (2011) , pp. 9-16
    • Talbot, J.1    Yoo, R.M.2    Kozyrakis, C.3
  • 36
    • 74049113467 scopus 로고    scopus 로고
    • O'Reilly Media, Inc., Sebastopol, CA, USA
    • White T. Hadoop: The Definitive Guide 2012, O'Reilly Media, Inc., Sebastopol, CA, USA. 3rd edition.
    • (2012) Hadoop: The Definitive Guide
    • White, T.1
  • 37
    • 84912107230 scopus 로고    scopus 로고
    • Apache hadoop
    • A.H. Project, Apache hadoop, 2013, http://hadoop.apache.org/.
    • (2013)
    • Project, A.H.1
  • 38
    • 84912085180 scopus 로고    scopus 로고
    • Apache mahout
    • A.M. Project, Apache mahout, 2013, http://mahout.apache.org/.
    • (2013)
    • Project, A.M.1
  • 39
    • 0016127071 scopus 로고
    • Finding prototypes for nearest neighbor classifiers
    • Chang C.-L. Finding prototypes for nearest neighbor classifiers. IEEE Trans. Comput. 1974, 23(11):1179-1184.
    • (1974) IEEE Trans. Comput. , vol.23 , Issue.11 , pp. 1179-1184
    • Chang, C.-L.1
  • 41
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst., Man Cybern. 1972, 2(3):408-421.
    • (1972) IEEE Trans. Syst., Man Cybern. , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 42
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • Hart P.E. The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 1968, 18:515-516.
    • (1968) IEEE Trans. Inf. Theory , vol.18 , pp. 515-516
    • Hart, P.E.1
  • 43
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson D.R., Martinez T.R. Reduction techniques for instance-based learning algorithms. Mach. Learn. 2000, 38(3):257-286.
    • (2000) Mach. Learn. , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 44
    • 0036790661 scopus 로고    scopus 로고
    • A merge-based condensing strategy for multiple prototype classifiers
    • Mollineda R., Ferri F., Vidal E. A merge-based condensing strategy for multiple prototype classifiers. IEEE Trans. Syst., Man Cybern. B 2002, 32(5):662-668.
    • (2002) IEEE Trans. Syst., Man Cybern. B , vol.32 , Issue.5 , pp. 662-668
    • Mollineda, R.1    Ferri, F.2    Vidal, E.3
  • 45
    • 18144451785 scopus 로고    scopus 로고
    • High training set size reduction by space partitioning and prototype abstraction
    • Sánchez J.S. High training set size reduction by space partitioning and prototype abstraction. Pattern Recognit. 2004, 37(7):1561-1564.
    • (2004) Pattern Recognit. , vol.37 , Issue.7 , pp. 1561-1564
    • Sánchez, J.S.1
  • 47
    • 0036684204 scopus 로고    scopus 로고
    • Discovering useful concept prototypes for classification based on filtering and abstraction
    • Lam W., Keung C.K., Liu D. Discovering useful concept prototypes for classification based on filtering and abstraction. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 14(8):1075-1090.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.14 , Issue.8 , pp. 1075-1090
    • Lam, W.1    Keung, C.K.2    Liu, D.3
  • 49
    • 85060036181 scopus 로고
    • Validity of the single processor approach to achieving large scale computing capabilities
    • in: Proceedings of the Spring Joint Computing Conference, ACM, New York, NY, USA
    • G.M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, in: Proceedings of the Spring Joint Computing Conference, ACM, New York, NY, USA, 1967, pp. 483-485.
    • (1967) , pp. 483-485
    • Amdahl, G.M.1
  • 52
    • 0025489075 scopus 로고
    • The self organizing map
    • Kohonen T. The self organizing map. Proc. IEEE 1990, 78(9):1464-1480.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 53
    • 35348902771 scopus 로고    scopus 로고
    • Fast nearest neighbor condensation for large data sets classification
    • Angiulli F. Fast nearest neighbor condensation for large data sets classification. IEEE Trans. Knowl. Data Eng. 2007, 19(11):1450-1464.
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.11 , pp. 1450-1464
    • Angiulli, F.1
  • 54
    • 14644399617 scopus 로고    scopus 로고
    • Differential Evolution A Practical Approach to Global Optimization
    • Price K.V., Storn R.M., Lampinen J.A. Differential Evolution A Practical Approach to Global Optimization. Natural Computing Series 2005, ISBN 978-3-540-31306-9.
    • (2005) Natural Computing Series
    • Price, K.V.1    Storn, R.M.2    Lampinen, J.A.3
  • 55
    • 65649109765 scopus 로고    scopus 로고
    • Scale factor local search in differential evolution
    • Neri F., Tirronen V. Scale factor local search in differential evolution. Memet. Comput. 2009, 1(2):153-171.
    • (2009) Memet. Comput. , vol.1 , Issue.2 , pp. 153-171
    • Neri, F.1    Tirronen, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.